David
A.
Huse
Christakis, L. ., Rosenberg, J. ., Raj, R. ., Chi, S. ., Morningstar, A. ., Huse, D. A., … Bakr, W. . (2023). Probing site-resolved correlations in a spin system of ultracold molecules. Nature, 614, 64–69. http://doi.org/10.1038/s41586-022-05558-4 (Original work published February 2023)
Pozderac, C. ., Speck, S. ., Feng, X. ., Huse, D. A., & Skinner, B. . (2023). Exact solution for the filling-induced thermalization transition in a one-dimensional fracton system. Physical Review B, 107. http://doi.org/10.1103/physrevb.107.045137 (Original work published January 2023)
Sommers, G. ., Gullans, M. J., & Huse, D. A. (2023). Self-dual quasiperiodic percolation. Physical Review E, 107. http://doi.org/10.1103/physreve.107.024137 (Original work published February 2023)
Majidy, S. ., Lasek, A. ., Huse, D. A., & Halpern, N. . (2023). Non-Abelian symmetry can increase entanglement entropy. Physical Review B, 107. http://doi.org/10.1103/physrevb.107.045102 (Original work published January 2023)
Chan, A. ., Shivam, S. ., Huse, D. A., & De Luca, A. . (2022). Many-body quantum chaos and space-time translational invariance. Nature Communications, 13. http://doi.org/10.1038/s41467-022-34318-1 (Original work published December 2022)
Barratt, F. ., Agrawal, U. ., Gopalakrishnan, S. ., Huse, D. A., Vasseur, R. ., & Potter, A. C. (2022). Field Theory of Charge Sharpening in Symmetric Monitored Quantum Circuits. Physical Review Letters, 129. http://doi.org/10.1103/physrevlett.129.120604 (Original work published September 2022)
Yan, Z. ., Meng, Z. ., Huse, D. A., & Chan, A. . (2022). Height-conserving quantum dimer models. Physical Review B, 106. http://doi.org/10.1103/physrevb.106.l041115 (Original work published July 2022)
Micklitz, T. ., Morningstar, A. ., Altland, A. ., & Huse, D. A. (2022). Emergence of Fermi’s Golden Rule. Physical Review Letters, 129. http://doi.org/10.1103/physrevlett.129.140402 (Original work published September 2022)
Bulchandani, V. ., Huse, D. A., & Gopalakrishnan, S. . (2022). Onset of many-body quantum chaos due to breaking integrability. Physical Review B, 105. http://doi.org/10.1103/PhysRevB.105.214308 (Original work published June 2022)
Noel, C. ., Niroula, P. ., Risinger, A. ., Egan, L. ., Biswas, D. ., Cetina, M. ., … Monroe, C. . (2021). Observation of measurement-induced quantum phases in a trapped-ion quantum computer. Nature Phys. (in press); ArXiv:2106.05881. Retrieved from https://arxiv.org/abs/2106.05881