Yuan
Su
Costa, P. ., An, D. ., Sanders, Y. ., Su, Y. ., Babbush, R. ., & Berry, D. . (2021). Optimal scaling quantum linear systems solver via discrete adiabatic theorem. ArXiv. Retrieved from https://arxiv.org/abs/2111.08152 (Original work published November 2021)
Xu, S. ., Susskind, L. ., Su, Y. ., & Swingle, B. . (2020). A Sparse Model of Quantum Holography. ArXiv. Retrieved from https://arxiv.org/abs/2008.02303 (Original work published August 2020)
Berry, D. ., Childs, A. M., Su, Y. ., Wang, X. ., & Wiebe, N. . (2020). Time-dependent Hamiltonian simulation with L1-norm scaling. Quantum, 4. http://doi.org/10.22331/q-2020-04-20-254 (Original work published April 2020)
Nam, Y. ., Su, Y. ., & Maslov, D. . (2020). Approximate Quantum Fourier Transform with O(nlog(n)) T gates. Npj Quantum Information, 6. http://doi.org/10.1038/s41534-020-0257-5 (Original work published March 2020)
Wang, X. ., Wilde, M. ., & Su, Y. . (2020). Efficiently computable bounds for magic state distillation. Phys. Rev. Lett., 124. http://doi.org/10.1103/PhysRevLett.124.090505 (Original work published March 2020)
Childs, A. M., & Su, Y. . (2019). Nearly optimal lattice simulation by product formulas. Phys. Rev. Lett., 123. http://doi.org/10.1103/PhysRevLett.123.050503 (Original work published December 2019)
Wang, X. ., Wilde, M. ., & Su, Y. . (2019). Quantifying the magic of quantum channels. New Journal of Physics, 21. http://doi.org/10.1088/1367-2630/ab451d (Original work published October 2019)
Childs, A. M., Ostrander, A. ., & Su, Y. . (2019). Faster quantum simulation by randomization. Quantum, 3. http://doi.org/10.22331/q-2019-09-02-182 (Original work published August 2019)
Su, Y. . (2019). Framework for Hamiltonian simulation and beyond: standard-form encoding, qubitization, and quantum signal processing. Quantum Views, 3. http://doi.org/10.22331/qv-2019-08-13-21 (Original work published August 2019)
Gilyen, A. ., Su, Y. ., Low, G. ., & Wiebe, N. . (2018). Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. Proceedings of the 51st ACM Symposium on Theory of Computing, 193–204. http://doi.org/10.1145/3313276.3316366 (Original work published June 2018)