Iman
Marvian
Hulse, A., Liu, H., & Marvian, I. (2024). A framework for semi-universality: Semi-universality of 3-qudit SU(d)-invariant gates. ArXiv. http://doi.org/10.48550/arXiv.2407.21249 (Original work published July 2024)
Liu, H., Hulse, A., & Marvian, I. (2024). Unitary Designs from Random Symmetric Quantum Circuits. ArXiv. http://doi.org/10.48550/arXiv.2408.14463 (Original work published October 2024)
Yadavalli, S., & Marvian, I. (2024). Optimal Distillation of Coherent States with Phase-Insensitive Operations. ArXiv. http://doi.org/10.48550/arXiv.2409.05974 (Original work published September 2024)
Zhukas, L., Wang, Q., Katz, O., Monroe, C., & Marvian, I. (2025). Observation of the Symmetry-Protected Signature of 3-body Interactions. ArXiv. http://doi.org/10.48550/arXiv.2409.05974 (Original work published September 2024)
Pilatowsky-Cameo, S., Marvian, I., Choi, S., & Ho, W. (2024). Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs. Physical Review X. http://doi.org/10.1103/PhysRevX.14.041059 (Original work published December 2024)
Marvian, I., Liu, H., & Hulse, A. (2024). Rotationally Invariant Circuits: Universality with the Exchange Interaction and Two Ancilla Qubits. Phys. Rev. Lett., 132, 130201. http://doi.org/10.1103/PhysRevLett.132.130201 (Original work published March 2024)
Marvian, I., Liu, H., & Hulse, A. (2022). Qudit circuits with SU(d) symmetry: Locality imposes additional conservation laws. ArXiv. http://doi.org/10.48550/arxiv.2105.12877 (Original work published January 2022)
Marvian, I., Liu, H., & Hulse, A. (2024). Rotationally-Invariant Circuits: Universality with the exchange interaction and two ancilla qubits. Physical Review Letters. http://doi.org/10.1103/PhysRevLett.132.130201 (Original work published March 2024)
Marvian, I. (2024). Theory of Quantum Circuits with Abelian Symmetries. Physical Review Research. http://doi.org/10.1103/PhysRevResearch.6.043292 (Original work published December 2024)
Gao, L., Li, H., Marvian, I., & Rouzé, C. (2024). Sufficient statistic and recoverability via Quantum Fisher Information metrics. Springer Nature Link. http://doi.org/10.1007/s00220-024-05053-z (Original work published July 2024)