Stephen
Jordan
Sewell, T. ., Bapat, A. ., & Jordan, S. . (2022). Estimating gate complexities for the site-by-site preparation of fermionic vacua. ArXiv. Retrieved from https://arxiv.org/abs/2207.01692 (Original work published July 2022)
Bapat, A. ., & Jordan, S. . (2019). Bang-bang control as a design principle for classical and quantum optimization algorithms. Quantum Information & Computation, 19, 424–446. http://doi.org/10.1007/s11128-021-03298-4 (Original work published May 2019)
Moosavian, A. ., & Jordan, S. . (2018). Faster Quantum Algorithm to simulate Fermionic Quantum Field Theory. Phys. Rev. A 98, 012332 (2018), A, 012332. http://doi.org/10.1103/PhysRevA.98.012332 (Original work published May 2018)
Bierhorst, P. ., Knill, E. ., Glancy, S. ., Zhang, Y. ., Mink, A. ., Jordan, S. ., … Shalm, L. . (2018). Experimentally Generated Randomness Certified by the Impossibility of Superluminal Signals. Nature, 556, 223–226. http://doi.org/10.1038/s41586-018-0019-0 (Original work published April 2018)
Alagic, G. ., Bapat, A. ., & Jordan, S. . (2014). Classical Simulation of Yang-Baxter Gates. In Conference on the Theory of Quantum Computation, Communication and Cryptography. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. http://doi.org/10.4230/LIPICS.TQC.2014.161 (Original work published December 2014)
An, D. ., Fang, D. ., Jordan, S. ., Liu, J.-P. ., Low, G. ., & Wang, J. . (2022). Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation. ArXiv. http://doi.org/10.48550/arxiv.2205.01141 (Original work published May 2022)