Robin
Kothari
Childs, A. M., Kothari, R., Kovacs-Deak, M., Sundaram, A., & Wang, D. (2025). Quantum divide and conquer. ACM Transactions on Quantum Computing, Volume 6(Issue 2), 1–26. http://doi.org/https://doi.org/10.1145/3723884 (Original work published April 2025)
Wang, D., Sundaram, A., Kothari, R., Kapoor, A., & Roetteler, M. (2021). Quantum Algorithms for Reinforcement Learning with a Generative Model. Proceedings of the 38th International Conference on Machine Learning, PMLR, 139. Retrieved from https://proceedings.mlr.press/v139/wang21w.html (Original work published December 2021)
Arunachalam, S., Belovs, A., Childs, A. M., Kothari, R., Rosmanis, A., & de Wolf, R. (2020). Quantum Coupon Collector. Proceedings of the 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), Leibniz International Proceedings in Informatics, 158, 10:1–10:17. http://doi.org/10.4230/LIPIcs.TQC.2020.10 (Original work published February 2020)
Ben-David, S., Bouland, A., Garg, A., & Kothari, R. (2018). Classical lower bounds from quantum upper bounds. ArXiv. Retrieved from https://arxiv.org/abs/1807.06256 (Original work published July 2018)
Childs, A. M., Kothari, R., & Somma, R. (2017). Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing, 46, 1920–1950. http://doi.org/10.1137/16M1087072 (Original work published December 2017)
Berry, D., Childs, A. M., Cleve, R., Kothari, R., & Somma, R. (2015). Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters, 114, 090502. http://doi.org/10.1103/PhysRevLett.114.090502 (Original work published March 2015)
Berry, D., Childs, A. M., & Kothari, R. (2015). Hamiltonian simulation with nearly optimal dependence on all parameters. Proceedings of the 56th IEEE Symposium on Foundations of Computer Science, 792–809. http://doi.org/10.1109/FOCS.2015.54 (Original work published January 2015)
Berry, D., Childs, A. M., Cleve, R., Kothari, R., & Somma, R. (2014). Exponential improvement in precision for simulating sparse Hamiltonians. Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014), 283–292. http://doi.org/10.1145/2591796.2591854 (Original work published May 2014)