G.
Refael
Zou, Y. ., Barnett, R. ., & Refael, G. . (2010). Particle-hole symmetric localization in optical lattices using time modulated random on-site potentials. Physical Review B, 82. http://doi.org/10.1103/PhysRevB.82.224205
Titum, P. ., Lindner, N. H., & Refael, G. . (2017). Disorder-induced transitions in resonantly driven Floquet topological insulators. Physical Review B, 96. http://doi.org/10.1103/PhysRevB.96.054207 (Original work published August 2017)
Seetharam, K. ., Titum, P. ., Kolodrubetz, M. ., & Refael, G. . (2018). Absence of thermalization in finite isolated interacting Floquet systems. Physical Review B, 97. http://doi.org/10.1103/PhysRevB.97.014311 (Original work published January 2018)
Robertson, A. ., Galitski, V. M., & Refael, G. . (2011). Dynamic Stimulation of Quantum Coherence in Systems of Lattice Bosons. Physical Review Letters, 106. http://doi.org/10.1103/PhysRevLett.106.165701
Lutchyn, R. M., Galitski, V. M., Refael, G. ., & Das Sarma, S. . (2008). Dissipation-driven quantum phase transition in superconductor-graphene systems. Physical Review Letters, 101. http://doi.org/10.1103/PhysRevLett.101.106402
Lindner, N. H., Bergman, D. L., Refael, G. ., & Galitski, V. M. (2013). Topological Floquet spectrum in three dimensions via a two-photon resonance. Physical Review B, 87. http://doi.org/10.1103/PhysRevB.87.235131
Lindner, N. H., Refael, G. ., & Galitski, V. M. (2011). Floquet topological insulator in semiconductor quantum wells. Nature Physics, 7, 490–495. http://doi.org/10.1038/nphys1926
Keser, A. C., Ganeshan, S. ., Refael, G. ., & Galitski, V. M. (2016). Dynamical many-body localization in an integrable model. Physical Review B, 94. http://doi.org/10.1103/PhysRevB.94.085120
Curtis, J. ., Refael, G. ., & Galitski, V. M. (2019). Evanescent modes and step-like acoustic black holes. Annals of Physics, 407, 148–165. http://doi.org/10.1016/j.aop.2019.04.017
Barnett, R. ., Chen, E. ., & Refael, G. . (2010). Vortex synchronization in Bose-Einstein condensates: a time-dependent Gross-Pitaevskii equation approach. New Journal of Physics, 12. http://doi.org/10.1088/1367-2630/12/4/043004