Abstract

Most experimental and theoretical studies of adiabatic optimization use stoquastic Hamiltonians, whose ground states are expressible using only real nonnegative amplitudes. This raises a question as to whether classical Monte Carlo methods can simulate stoquastic adiabatic algorithms with polynomial overhead. Here, we analyze diffusion Monte Carlo algorithms. We argue that, based on differences between L1 and L2 normalized states, these algorithms suffer from certain obstructions preventing them from efficiently simulating stoquastic adiabatic evolution in generality. In practice however, we obtain good performance by introducing a method that we call Substochastic Monte Carlo. In fact, our simulations are good classical optimization algorithms in their own right, competitive with the best previously known heuristic solvers for MAX-k-SAT at k=2,3,4.

Publication Details
Publication Type
Journal Article
Year of Publication
2016
Volume
94
Number of Pages
042318
DOI
10.1103/PhysRevA.94.042318
URL
https://arxiv.org/abs/1607.03389
Journal
Physical Review A
Contributors
Groups
Date Published
07/2016