We consider the problem of implementing two-party interactive quantum communication over noisy channels, a necessary endeavor if we wish to fully reap quantum advantages for communication. For an arbitrary protocol with n messages, designed for noiseless qudit channels (where d is arbitrary), our main result is a simulation method that fails with probability less than 2−Θ (nє) and uses a qudit channel n (1 + Θ (√є)) times, of which an є fraction can be corrupted adversarially. The simulation is thus capacity achieving to leading order, and we conjecture that it is optimal up to a constant factor in the √є term. Furthermore, the simulation is in a model that does not require pre-shared resources such as randomness or entanglement between the communicating parties. Perhaps surprisingly, this outperforms the best known overhead of 1 + O(√є loglog1/є) in the corresponding classical model, which is also conjectured to be optimal [Haeupler, FOCS’14]. Our work also improves over the best previously known quantum result where the overhead is a non-explicit large constant [Brassard et al., FOCS’14] for low є.
Keywords
Abstract
Year of Publication
2018
Conference Name
50th Annual ACM SIGACT Symposium on Theory of Computing
Date Published
06/2018
Publisher
Association for Computing Machinery
Conference Location
New York, NY, USA
ISBN Number
9781450355599
URL
https://doi.org/10.1145/3188745.3188908
DOI
10.1145/3188745.3188908
Group