Abstract

While many statistical properties of deep random quantum circuits can be deduced, often rigorously and other times heuristically, by an approximation to global Haar-random unitaries, the statistics of constant-depth random quantum circuits are generally less well-understood due to a lack of amenable tools and techniques. We circumvent this barrier by considering a related constant-time Brownian circuit model which shares many similarities with constant-depth random quantum circuits but crucially allows for direct calculations of higher order moments of its output distribution. Using mean-field (large-n) techniques, we fully characterize the output distributions of Brownian circuits at shallow depths and show that they follow a Porter-Thomas distribution, just like in the case of deep circuits, but with a truncated Hilbert space. The access to higher order moments allows for studying the expected and typical Linear Cross-entropy (XEB) benchmark scores achieved by an ideal quantum computer versus the state-of-the-art classical spoofers for shallow Brownian circuits. We discover that for these circuits, while the quantum computer typically scores within a constant factor of the expected value, the classical spoofer suffers from an exponentially larger variance. Numerical evidence suggests that the same phenomenon also occurs in constant-depth discrete random quantum circuits, like those defined over the all-to-all architecture. We conjecture that the same phenomenon is also true for random brickwork circuits in high enough spatial dimension.

Publication Details
Publication Type
Journal Article
Year of Publication
2024
URL
https://arxiv.org/abs/2411.04169
Journal
arXiv
Contributors
Date Published
11/2024