Abstract

Many promising quantum applications depend on the efficient quantum simulation of an exponentially large sparse Hamiltonian, a task known as sparse Hamiltonian simulation, which is fundamentally important in quantum computation. Although several theoretically appealing quantum algorithms have been proposed for this task, they typically require a black-box query model of the sparse Hamiltonian, rendering them impractical for near-term implementation on quantum devices.


In this paper, we propose a technique named Hamiltonian embedding. This technique simulates a desired sparse Hamiltonian by embedding it into the evolution of a larger and more structured quantum system, allowing for more efficient simulation through hardware-efficient operations. We conduct a systematic study of this new technique and demonstrate significant savings in computational resources for implementing prominent quantum applications. As a result, we can now experimentally realize quantum walks on complicated graphs (e.g., binary trees, glued-tree graphs), quantum spatial search, and the simulation of real-space Schrödinger equations on current trapped-ion and neutral-atom platforms. Given the fundamental role of Hamiltonian evolution in the design of quantum algorithms, our technique markedly expands the horizon of implementable quantum advantages in the NISQ era.

Publication Details
Publication Type
Journal Article
Year of Publication
2024
URL
https://arxiv.org/abs/2401.08550
Journal
arXiv
Contributors
Date Published
01/2024