We present numerical evidence for an extended order parameter and conjugate field for the dynamic phase transition in a Ginzburg-Landau mean-field model driven by an oscillating field. The order parameter, previously taken to be the time-averaged magnetization, comprises the deviations of the Fourier components of the magnetization from their values at the critical period. The conjugate field, previously taken to be the time-averaged magnetic field, comprises the even Fourier components of the field. The scaling exponents β and δ associated with the extended order parameter and conjugate field are shown numerically to be consistent with their values in the equilibrium mean-field model.