One of the applications of quantum technology is to use quantum states and measurements to communicate which offers more reliable security promises. Quantum data hiding, which gives the source party the ability of sharing data among multiple receivers and revealing it at a later time depending on his/her will, is one of the promising information sharing schemes which may address practical security issues. In this work, we propose a novel quantum data hiding protocol. By concatenating different subprotocols which apply to rather symmetric hiding scenarios, we cover a variety of more general hiding scenarios. We provide the general requirements for constructing such protocols and give explicit examples of encoding states for five parties. We also proved the security of the protocol in sense that the achievable information by unauthorized operations asymptotically goes to zero. In addition, due to the capability of the sender to manipulate his/her subsystem, the sender is able to abort the protocol remotely at any time before he/she reveals the information.