Abstract

We examine the problem of finding the minimum number of Pauli measurements needed to uniquely determine an arbitrary n-qubit pure state among all quantum states. We show that only 11 Pauli measurements are needed to determine an arbitrary two-qubit pure state compared to the full quantum state tomography with 16 measurements, and only 31 Pauli measurements are needed to determine an arbitrary three-qubit pure state compared to the full quantum state tomography with 64 measurements. We demonstrate that our protocol is robust under depolarizing error with simulated random pure states. We experimentally test the protocol on two- and three-qubit systems with nuclear magnetic resonance techniques. We show that the pure state tomography protocol saves us a number of measurements without considerable loss of fidelity. We compare our protocol with same-size sets of randomly selected Pauli operators and find that our selected set of Pauli measurements significantly outperforms those random sampling sets. As a direct application, our scheme can also be used to reduce the number of settings needed for pure-state tomography in quantum optical systems.

Publication Details
Publication Type
Journal Article
Year of Publication
2016
Volume
93
Number of Pages
032140
DOI
10.1103/PhysRevA.93.032140
URL
http://arxiv.org/abs/1601.05379
Journal
Physical Review A
Contributors
Groups
Date Published
03/2016