Abstract

Non-smooth optimization models play a fundamental role in various disciplines, including engineering, science, management, and finance. However, classical algorithms for solving such models often struggle with convergence speed, scalability, and parameter tuning, particularly in high-dimensional and non-convex settings. In this paper, we explore how quantum mechanics can be leveraged to overcome these limitations. Specifically, we investigate the theoretical properties of the Quantum Hamiltonian Descent (QHD) algorithm for non-smooth optimization in both continuous and discrete time. First, we propose continuous-time variants of the general QHD algorithm and establish their global convergence and convergence rate for non-smooth convex and strongly convex problems through a novel Lyapunov function design. Furthermore, we prove the finite-time global convergence of continuous-time QHD for non-smooth non-convex problems under mild conditions (i.e., locally Lipschitz). In addition, we propose discrete-time QHD, a fully digitized implementation of QHD via operator splitting (i.e., product formula). We find that discrete-time QHD exhibits similar convergence properties even with large time steps. Finally, numerical experiments validate our theoretical findings and demonstrate the computational advantages of QHD over classical non-smooth non-convex optimization algorithms.

Publication Details
Publication Type
Journal Article
Year of Publication
2025
URL
https://arxiv.org/abs/2503.15878
Journal
https://arxiv.org/abs/2503.15878
Contributors
Groups
Date Published
3/2025