An important step in building a quantum computer is calibrating experimentally implemented quantum gates to produce operations that are close to ideal unitaries. The calibration step involves estimating the error in gates and then using controls to correct the implementation. Quantum process tomography is a standard technique for estimating these errors, but is both time consuming, (when one only wants to learn a few key parameters), and requires resources, like perfect state preparation and measurement, that might not be available. With the goal of efficiently estimating specific errors using minimal resources, we develop a parameter estimation technique, which can gauge two key parameters (amplitude and off-resonance errors) in a single-qubit gate with provable robustness and efficiency. In particular, our estimates achieve the optimal efficiency, Heisenberg scaling. Our main theorem making this possible is a robust version of the phase estimation procedure of Higgins et al. [B. L. Higgins, New J. Phys. 11, 073023 (2009)].