Abstract

To achieve scalable quantum information processing, great efforts have been devoted to the creation of large-scale entangled states in various physical systems. Ultracold atom in optical lattice is considered as one of the promising platforms due to its feasible initialization and parallel manipulation. In this work, we propose an efficient scheme to generate and characterize global entanglement in the optical lattice. With only two-layer quantum circuits, the generation utilizes two-qubit entangling gates based on the superexchange interaction in double wells. The parallelism of these operations enables the generation to be fast and scalable. To verify the entanglement of this non-stabilizer state, we mainly design three complementary detection protocols which are less resource-consuming compared to the full tomography. In particular, one just needs two homogenous local measurement settings to identify the entanglement property. Our entanglement generation and verification protocols provide the foundation for the further quantum information processing in optical lattice.

Publication Details
Publication Type
Journal Article
Year of Publication
2022
Volume
8
DOI
10.1038/s41534-022-00609-0
URL
https://arxiv.org/abs/2209.01531
Journal
npj Quantum Information
Contributors
Groups
Date Published
09/2022