A DMRG Study of Excitons in the 2D t-J Model

Abstract: Antiferromagnetic materials with microscopic behavior resembling that of the Fermi-Hubbard model are expected to host excitons, or bound electron-hole pairs. In order to investigate such behavior, we have optimized states of the t-J model in the single-particle-single-hole sector using the density matrix renormalization group (DMRG).

QCVV: Making Quantum Computers Less Broken

Abstract: Quantum computing hardware capabilities have grown tremendously over the past decade, as evidenced by demonstrations of both quantum advantage and error-corrected logical qubits.  These breakthroughs have been driven, in part, by advances in quantum characterization, verification, and validation (QCVV).  I will discuss how QCVV provides a hardware-agnostic framework for assessing the performance of quantum computers; I will describe in detail how specific QCVV protocols (such as gate set tomography and robust phase estimation) have been used to characterize and sig

Electron-Photon Exchange-Correlation Functional in the Weak and Strong Light–Matter Coupling Regimes

Abstract: The intersection of quantum electrodynamics (QED) and density-functional theory (DFT) has opened up exciting opportunities in controlling quantum matter through light-matter coupling. This frontier, however, is beset with computational challenges, especially in the weak and strong coupling regimes. Building upon previous research, we present the results of nonperturbative QED functional in the long-wavelength limit, centered solely on the matter Hilbert space.

How to relate quantum position verification to information-theoretic cryptography, and new steps towards practical implementation

Abstract: The task of quantum position verification (QPV) deploys quantum information with the aim to use a party's position as a cryptographic credential. One well-studied proposed protocol for this task, f-routing, involves a mixture of classical information and a single quantum bit that has to be routed somewhere as a function of the classical information.