Electron-Photon Exchange-Correlation Functional in the Weak and Strong Light–Matter Coupling Regimes

The intersection of quantum electrodynamics (QED) and density-functional theory (DFT) has opened up exciting opportunities in controlling quantum matter through light-matter coupling. This frontier, however, is beset with computational challenges, especially in the weak and strong coupling regimes. Building upon previous research, we present the results of nonperturbative QED functional in the long-wavelength limit, centered solely on the matter Hilbert space.

Quantum Advantage in Sensing and Simulation

Since the discovery of Shor’s factoring algorithm, there has been a sustained interest in finding more such examples of quantum advantage, that is, tasks where a quantum device can outperform its classical counterpart. While the universal, programmable quantum computers that can run Shor’s algorithm represent one direction in which to search for quantum advantage, they are certainly not the only one. In this dissertation, we study the theory of quantum advantage along two alternative avenues: sensing and simulation.

Harnessing Quantum Systems for Sensing, Simulation, and Optimization

Quantum information science offers a remarkable promise: by thinking practically about how quantum systems can be put to work to solve computational and information processing tasks, we gain novel insights into the foundations of quantum theory and computer science. Or, conversely, by (re)considering the fundamental physical building blocks of computers and sensors, we enable new technologies, with major impacts for computational and experimental physics.

Collective light scattering in cold atomic ensembles: super-radiance, driven Dicke model and correlations

Abstract: This talk will present our work on the observation of super-radiance in a cloud of cold atoms driven by a laser. We start from an elongated cloud of laser cooled atoms that we excite either perpendicularly or along its main axis. This situation bears some similarities with cavity quantum electrodynamics: here the cavity mode is replaced by the diffraction mode of the elongated cloud. We observe superradiant pulses of light after population inversion.

Universal dynamics of nonequilibrium quantum matter

Abstract: Today’s programmable quantum simulators offer versatile platforms for exploring many-body phases and dynamics in correlated quantum systems. In this talk, we present some new—and surprising—insights into nonequilibrium quantum dynamics inspired by such recent experimental advances. First, we focus on understanding the evolution of closed quantum systems driven through a phase transition, which is crucial for quantum state preparation and adiabatic algorithms.