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A steady-state superradiant laser can be used to generate ultranarrow-linewidth light, and thus has impor-
tant applications in the fields of quantum information and precision metrology. However, the light produced
by such a laser is still essentially classical. Here, we show that the introduction of a Rydberg medium into a
cavity containing atoms with a narrow optical transition can lead to the steady-state superradiant emission of
ultranarrow-linewidth non-classical light. The cavity nonlinearity induced by the Rydberg medium strongly
modifies the superradiance threshold, and leads to a Mollow triplet in the cavity output spectrum—this behavior
can be understood as an unusual analogue of resonance fluorescence. The cavity output spectrum has an ex-
tremely sharp central peak, with a linewidth that can be far narrower than that of a classical superradiant laser.
This unprecedented spectral sharpness, together with the non-classical nature of the light, could lead to new
applications in which spectrally pure quantum light is desired.
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Highly stable optical frequency references play a crucial
role in optical atomic clocks [1, 2], gravitational wave detec-
tion [3], quantum computation [4], and quantum optomechan-
ics [5]. Currently, the linewidth of lasers stabilized to optical
reference cavities is limited by the Brownian thermomechan-
ical noise in the cavity mirrors [6–8]. This fundamental ther-
mal limit can be overcome by using a steady-state superradi-
ant laser [9, 10] that works in the so-called “bad-cavity” limit,
such that its lasing frequency is instead largely determined by
an ultranarrow optical atomic transition [11, 12]. The insen-
sitivity of the lasing frequency to thermal noise in the cav-
ity mirrors allows for robust real-world applications, without
the engineering of a low-vibration environment [13]. Signifi-
cant experimental progress in building superradiant lasers has
recently been reported, including a proof-of-principle experi-
ment using cold rubidium atoms [14], and latest work using a
mHz transition in cold strontium atoms [15, 16]. These super-
radiant lasers all output approximately classical light.

Alternatively, nonclassical light, such as squeezed light,
has found numerous applications in precision measurement
[17], quantum information [18], and quantum simulation [19].
Here, we address the question of whether it is possible to
generate nonclassical light and steady-state superradiance si-
multaneously, thereby achieving the benefits of both. The an-
swer is not obvious for a number of reasons. First, a natural
route towards generating non-classical light from a superradi-
ant laser is to induce a strong nonlinearity in the cavity, which
could be achieved by coupling a nonlinear medium (for ex-
ample a single atom) strongly to the cavity [20, 21]. However,
coupling a single atom to a cavity strongly enough can be an-
tithetical to the bad-cavity limit required for steady-state su-
perradiance. Second, suppose a large cavity nonlinearity has
been achieved and is consistent with the bad-cavity limit. It

is not a priori clear whether a strongly nonlinear cavity can
support the phase synchronization of all atoms required for
superradiance and spectral narrowing of the output light [22].

Remarkably, neither of these concerns turns out to pose a
fundamental constraint; in this manuscript, we give a concrete
example of a nonclassical (anti-bunched) light source with ex-
tremely narrow spectral linewidth, generated via steady-state
superradiance. The first problem above is solved by using a
Rydberg medium to generate the strong cavity nonlinearity
[23–26]. The major benefit of using a Rydberg medium is
that one no longer requires a single atom to couple strongly
to the cavity in order to generate a strong nonlinearity, mak-
ing the generation of nonclassical light both more convenient
and more consistent with the bad-cavity limit. The collective
enhancement effect enables a sufficiently strong nonlinearity
that, even for a bad cavity, the presence of more than one pho-
ton is completely blockaded; the cavity mode degenerates into
a two-level system, describing the presence or absence of a
single Rydberg polariton.

The second problem is addressed by a careful analysis of
how superradiance works in a blockaded cavity. In a nutshell,
the blockaded cavity can still synchronize the phases of the
lasing atoms, although in a different parameter regime than
that of a standard superradiant laser. The synchronized atoms
act back on the two-level cavity as a strong and nearly coher-
ent driving field, similar to the problem of resonance fluores-
cence but with the roles of atoms and light reversed [Fig. 1(a)].
An important consequence of this new physical picture is that
the cavity output spectrum should consist of three peaks, the
so-called Mollow triplet [27]. We verify this feature, and fur-
ther demonstrate that the Mollow triplet is superimposed on
an extremely sharp central peak. This peak is related to the
narrow spectrum of a standard superradiant laser, but remark-
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Figure 1: (Color online) (a) Schematic setup for steady-state super-
radiance with Rydberg polaritons. Two cold atomic ensembles are
trapped inside a single-mode cavity, one used as a superradiant las-
ing medium and the other as a Rydberg medium. In the bad-cavity
limit, a simple intuitive picture emerges in which a two-level cav-
ity (linewidth κ) is driven near-coherently by the superradiant atoms
(effective Rabi frequency Ωeff). b† denotes the creation operator for
the two-level cavity (or the Rydberg polariton) mode. (b) Level dia-
gram of an atom in the Rydberg medium: |s〉, |e〉, and |R〉 denote the
ground, intermediate, and Rydberg states, respectively. The |s〉↔ |e〉
transition is coupled to the cavity mode a with detuning ∆1 and cou-
pling strength g1. The |e〉 ↔ |R〉 transition is driven by a laser with
a two-photon detuning ∆2 and Rabi frequency ΩR. (b) Eigenstates
of the Rydberg-cavity system form Jaynes-Cummings ladders. By
setting the detuning of the superradiant atoms from the cavity to gR,
the superradiant atoms only couple to the |0〉 ↔ |+〉 transition under
the rotating wave approximation.

ably it has a quantum-limited linewidth that can be two orders
of magnitude smaller for realistic experimental parameters.

Model and its implementation.—The setup we propose to
achieve non-classical light from a superradiant laser is illus-
trated in Fig. 1(a). Two trapped ensembles of cold atoms are
both coupled near-resonantly to a cavity; one serves as a Ryd-
berg medium, and the other as a superradiant lasing medium.
Experimentally, these two media can be two separately ad-
dressed parts of a single atomic ensemble.

Atoms in the Rydberg medium have three relevant levels:
a ground state |s〉, an excited state |e〉 (decay rate γe), and
a long-lived Rydberg level |R〉 (decay rate γR), as shown in
Fig. 1(b). We assume that the |s〉 ↔ |e〉 transition is cou-
pled to the cavity mode (decay rate γc) with uniform cou-
pling g1 and detuning ∆1, while the |e〉 ↔ |R〉 transition is
driven by a laser with Rabi frequency ΩR and two-photon
detuning ∆2. Assuming that the Rydberg state is sufficiently
high-lying that all atoms are within the Rydberg blockade ra-
dius [28], only one atom can be in the state |R〉, and it is
possible to reduce the Rydberg medium to a two-level su-
per atom with a ground state |sss〉 = |s1 · · ·sNR〉 and an excited
state |RRR〉 ≡ 1√

NR
∑

NR
i=1 |s1 · · ·Ri · · ·sNR〉 (NR denotes the number

of atoms in the Rydberg medium). Note that this reduction
also relies on the adiabatic elimination of the intermediate
state |ei〉, which requires that there is much less than 1 to-

tal atoms in state |e〉. A sufficient condition to assume is
∆1� g1

√
NR,ΩR,γR. With this condition met, and within the

rotating wave approximation, the Rydberg-cavity system is
described by the Hamiltonian HR = gR(a†|sss〉〈RRR|+h.c.). Here
gR =

√
NRg1ΩR/∆1 and ∆2 = Ω2

R/∆1 is chosen to cancel an
AC stark shift, thereby bringing the cavity mode into two-
photon Raman resonance with the |sss〉 ↔ |RRR〉 transition. Each
eigenstate of HR is the superposition of state |n,sss〉 (n cav-
ity photons and no Rydberg excitation) with state |n− 1,RRR〉
(n−1 cavity photons and one Rydberg excitation), forming a
Jaynes-Cummings ladder with energy shifts that increase with
n as gR,

√
2gR,
√

3gR · · · [Fig. 1(c)]. The nonlinearity in this
spectrum is effectively strong if it is well resolved, requiring
gR � γR,γc. Based on the value of ΩR in existing Rydberg-
EIT experiments [24, 25], gR can be as large as a few MHz, far
exceeding typical values of . 100 kHz for γR and γc [15, 16].

Atoms in the superradiant medium couple to the cavity
mode on a narrow-linewidth transition between ground state
|s′〉 and optically excited state |e′〉 (decay rate γ), with uni-
form coupling g2 and detuning δ . The subsystem composed
of the superradiant atoms and the cavity is described by the
Hamiltonian HS =

g2
2 ∑

N
j=1(σ

+
j a+σ

−
j a+)+ δ

2 ∑
N
j=1 σ

z
j , where

σ
+
j ≡ |e′〉〈s′| for the jth atom. By choosing δ = gR, the su-

perradiant atoms only couple resonantly to the transition be-
tween the ground state |0〉 ≡ |0,sss〉 and the Rydberg polari-
ton state |+〉 ≡ (|0,RRR〉+ |1,sss〉)/

√
2. Thus, under the strong-

nonlinearity condition gR � γc,γR,g2, the subsystem com-
posed of the Rydberg medium and cavity is restricted to the
subspace spanned by |0〉 and |+〉. Making another rotating
wave approximation, the combined system of superradiant
atom, Rydberg medium, and cavity is therefore described by
the effective Hamiltonian

Heff =
g
2

N

∑
j=1

(σ−j b† +σ
+
j b). (1)

Here, g = g2/
√

2 and b† ≡ |+〉〈0| creates a Rydberg polari-
ton [Fig. 1(c)]. Thus we have achieved the desired model: the
superradiant atoms couple to a blockaded cavity mode, or Ry-
dberg polariton. The blockaded cavity mode contains a half
photon and decays at a rate κ = (γc + γR)/2, described by the
Liouvillian Lcav[ρ] = −κ

2 (b
†bρ +ρb†b−2bρb†). Measure-

ment of the mode b can be carried out by directly measuring
the output of the cavity mode a, since a = b/

√
2 in the sub-

space spanned by |0〉 and |+〉. Alternatively, one can measure
b by probing the Rydberg excitations inside the cavity.

Photon loss out of the cavity is countered by incoherently
pumping the lasing atoms at a rate w, described by the Liouvil-
lian Lpump[ρ] = −w

2 ∑
N
j=1(σ

−
j σ

+
j ρ + ρσ

−
j σ

+
j − 2σ

+
j ρσ

−
j ).

The superradiant atoms are also subject to spontaneous emis-
sion at rate γ and dephasing at rate γd/2. In the following
analysis, we will ignore dephasing because it is not important
to our main result [29], and will ignore spontaneous emission
because it will be dominated by the incoherent pumping in
typical experiments (γ � w), leading to a master equation for



3

the full system

dρ

dt
= i[ρ,Heff]+Lcav[ρ]+Lpump[ρ]. (2)

Similar to a standard superradiant laser, we want to operate
in the bad-cavity limit where the cavity decay rate κ is much
larger than the collectively enhanced atomic decay rate NCγ

(C≡ g2/(κγ) is the single atom cooperativity) [14, 30]. In this
limit, we will show that the cavity output inherits the narrow
linewidth of the atomic transition, obtaining a frequency sta-
bility far beyond that of the cavity and the laser used to drive
the Rydberg medium.

Methods of calculations.—Equation (S1) cannot be exactly
solved analytically, and brute-force numerical simulation is
limited to N . 10 atoms because the Liouville-space dimen-
sion scales as 4N . As we will show, the physics we are in-
terested in requires large numbers of atoms, necessitating ap-
proximate analytical treatments and/or more sophisticated nu-
merical methods. Fortunately, due to a permutation symmetry
amongst the superradiant atoms, the dynamics is restricted to
only a small corner of the full Liouville space, with dimen-
sion scaling only as ∼ N3 rather than ∼ 4N [31]. Here, we
also exploit an additional U(1) phase symmetry of the cou-
pled Rydberg-polariton and superradiant-atom system, allow-
ing us to further reduce this scaling from ∼ N3 to ∼ N2, and
thereby to perform calculations with N up to several hundred.
We defer the details of this new numerical algorithm to the
supplemental material [32].

Since N = 104 − 106 in typical experiments, we still re-
quire an approximate analytical treatment to better understand
the large N limit. To this end we perform a cumulant expan-
sion, which takes into account correlations beyond mean-field
theory that are crucial to the spectral properties of the cavity
output [11, 30]. The cumulant expansion is based on the in-
tuition that, in the bad-cavity limit, higher-order correlations
among the cavity and atoms are small. For example, a second-
order cumulant expansion involves approximating 〈b†σ

−
1 σ

z
2〉

by 〈b†σ
−
1 〉〈σ

z
2〉 and reduces Eq. (S1) to a closed set of cou-

pled nonlinear equations that can be solved analytically. In
the bad-cavity limit, we generally find good agreement be-
tween exact numerics performed for N ∼ 102 and analytical
solutions based on the cumulant expansion [32].

Superradiance in a blockaded cavity.—We define the oc-
currence of superradiance as when the atomic correlation
function 〈σ+

1 σ
−
2 〉 (equal to 〈σ+

i σ
−
j 〉 for any i 6= j due to per-

mutation symmetry) becomes finite in the large N limit, thus
signaling collective radiation. For a normal cavity, superra-
diance takes place when w/(NCγ) . 1 [11]. To understand
this result, we note that the cavity mode first synchronizes the
phases of the atoms, creating a large collective atomic dipole.
This dipole then drives photons into the cavity with an effec-
tive Rabi frequency Ωeff ≈ Ng〈σ+

1 σ
−
2 〉1/2, creating a photon

flux κ(Ωeff/κ)2 ≈ N2Cγ〈σ+
1 σ
−
2 〉. Because Heff conserves the

total number of photons and atomic excitations, in steady state
this photon flux should equal the single-atom pumping rate w
times the number of atoms in the ground state, Nw〈1−σ

z
1〉/2.

It can be shown that the maximum value of 〈σ+
1 σ
−
2 〉 is 1/8

under incoherent pumping, with a corresponding 〈σ z
1〉 = 1/2

[34]. Thus w=NCγ/2 maximizes the collective radiation [see
Fig. 2(a)].

If one operates very deeply in the bad-cavity limit, such
that κ � N2Cγ , then 〈b†b〉 = N2Cγ〈σ+

1 σ
−
2 〉/κ � 1 and the

photon blockade becomes irrelevant. We are instead inter-
ested in the situation NCγ � κ � N2Cγ . This regime is
readily achievable in current experiment [14–16], and ensures
both the bad-cavity limit and a strong blockade effect, since
〈b†b〉 � 1 in the absence of a blockade. For convenience,
we define a dimensionless parameter κ̃ ≡ [κ/(N2Cγ)]1/2 =
κ/(Ng), and restrict our analysis to 1/

√
N� κ̃ � 1.

For a blockaded cavity, we find that superradiance instead
takes place when w ∼ κ/N = gκ̃ [Fig. 2(a)]; comparing to
the result w ∼ NCγ = g/κ̃ for a normal cavity, we see that
superradiance now occurs at a much smaller pumping rate.
This is because the collective dipole formed by the superra-
diant atoms is now driving a two-level cavity, which saturates
(〈b†b〉→ 1/2) when Ωeff� κ . As before, since Heff conserves
the sum of photonic and atomic excitations, detailed balance
requires Nw〈1−σ

z
1〉/2= κ〈b†b〉; thus w≈ 2κ/N is necessary

to maximize the collective radiation. Formally, our analytical
solution based on the cumulant expansion shows that in the
large N limit,

〈b†b〉 ≈ 1
4

(
1+ w̃−

√
(1− w̃)2 +4w̃2κ̃2

)
(3)

with w̃ ≡ w(N/κ) defined as a dimensionless pumping rate.
Thus the photon flux is maximized when w̃≈ 2/(1+4κ̃2)≈ 2,
or w≈ 2κ/N, consistent with the above argument.

Next, we turn to the spectral properties of the cavity output.
Figure 2(b) shows the results of a numerical calculation of the
normalized power spectrum S(ω) = 1

2π

∫
∞

−∞
g(1)(t)eiωtdt, with

g(1)(t)≡ 〈b†(t)b(0)〉/〈b†b〉 (assuming steady state is reached
at t = 0). Remarkably, S(ω) is very similar to the resonance-
fluorescence spectrum of a two-level atom with linewidth
κ , driven by a laser with Rabi frequency Ωeff and a small
linewidth Γ� κ [33]. In particular, a Mollow triplet is ob-
served with splittings of ≈Ωeff between three peaks of width
∼ κ . In addition, there is a sharp peak (linewidth Γ� κ) at
ω = 0, arising from the coherent scattering of the collective
atomic dipole off the blockaded cavity.

To determine Γ, we use the quantum regression theorem
together with the cumulant expansion [32] to analytically cal-
culate g(1)(t) in the large N limit, obtaining

g(1)(t)≈ 〈1−2b†b〉e−Γt/2 + 〈2b†b〉e−κt/2, (4)

Γ≈Cγ

√
(1− w̃)2 +4w̃2κ̃2. (5)

As shown in Fig. 2(c), the long-time behavior of g(1)(t) in the
above solution agrees well with exact numerical calculations,
allowing us to reliably extract Γ from Eq. (5) for large N (due
to higher-order correlations ignored in the cumulant expan-
sion, Eq. (4) is not accurate for t . 1/κ).
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Figure 2: (Color online) (a) Comparison of the steady-state solutions for 〈b†b〉 and 〈σ+
1 σ
−
2 〉 between the cases of a normal cavity (where b

is a bosonic mode) and a blockaded cavity (where b is a Rydberg polariton mode). The solutions are obtained using a cumulant expansion
for N = 105 superradiant atoms and κ = N2Cγ/16 (κ̃ = 0.25). For the normal cavity, the superradiance peaks at w ≈ NCγ/2, while for the
blockaded cavity the superradiance peaks at w ≈ 1.6κ/N. (b) The normalized power spectrum S(ω) of the Rydberg polariton mode from
exact numerical calculations. The height of the sharp coherent scattering peak (linewidth Γ) at ω = 0 far exceeds the limit of the vertical
axis. A Mollow triplet with splitting Ωeff ≈ Ng〈σ+

1 σ
−
2 〉

1/2 and linewidth ∼ κ is clearly observed. The dotted line is from the analytical
expression of the Mollow triplet assuming a two-level system with decay rate κ , driven with Rabi frequency Ωeff by a laser (see Eq. 10.5.27
in Ref. [33]). Here N = 100, κ = NCγ and w = 2κ/N. (c) Exact numerical calculations of g(1)(t) and g(2)(t) for N = 100, κ = 10NCγ

(κ̃ ≈ 0.3), and w = 1.05κ/N. The long-time behavior of g(1)(t) matches well with the analytical expression 〈1−2b†b〉e−Γt/2 in Eq. (4) (here
〈1−2b†b〉 ≈ 0.306). From g(2)(t) we observe photon anti-bunching within a time t ≈ π/Ωeff, which is the time needed to achieve a π-pulse
on the two-level Rydberg polariton mode.

According to Eq. (5), Γ is minimized at w̃ = 1, achieving
Γmin = 2κ̃Cγ . This is a surprising and important result, be-
cause without photon blockade, the linewidth of the cavity
output is at least Cγ [11]. In fact, Cγ is the smallest energy
scale in the full system, but the photon blockade effect has
led to a new energy scale that is parametrically smaller in
κ̃ . Because 1/

√
N � κ̃ � 1, the central linewidth can be

up to 100 times smaller than that of a classical superradiant
laser for N = 106 lasing atoms. Meanwhile, the photon flux
is nearly maximized (〈b†b〉 ≈ (1− κ̃)/2 ≈ 1/2), and the out-
put light is nonclassical due to the nonlinearity of the cav-
ity. In particular, clear anti-bunching can be seen by plotting
g(2)(t)≡ 〈b†(0)b†(t)b(t)b(0)〉/〈b†b〉2 [see Fig. 2(c)], and oc-
curs because a Rabi oscillation time t ≈ π/Ωeff is required to
refill the blockaded cavity after photon emission.

One speculative explanation for the blockade-induced
linewidth narrowing is as follows. For a normal cavity, Γ =
Cγ = g2/κ can be understood by adiabatically eliminating the
cavity, which is well justified in the bad-cavity limit. For a
blockaded cavity, this adiabatic elimination is not strictly jus-
tified, because it masks the correlations induced by the photon
blockade. However, the blockade effect can be captured by
renormalizing Cγ by a factor 〈1− 2b†b〉 originating from the
commutation relation [b,b†] = 1−2b†b of the blockaded cav-
ity mode b, in contrast to the [a,a†] = 1 of the normal cavity
mode a. Physically, this can be interpreted as a suppression
of the cavity-mediated spontaneous emission by the blockade
effect, which prohibits successive emissions. In the limit of
a strong blockade effect, κ̃ � 1, we indeed find that Eqs. (3)
and (5) lead to Γ≈Cγ〈1−2b†b〉.

Finally, we note that the linewidth reduction attributable
to the photon blockade comes with a tradeoff. The fraction

of the power contained within the narrow-linewidth spectral
component is also given by the small factor 〈1− 2b†b〉, as
can be seen from Eq. (4). One can transfer this narrow but
low-power spectral component to a high-power laser via a ho-
modyne phase lock. However, the requirement to detect many
photons within a time given by the inverse bandwidth of the
phase-lock feedback loop makes the requirements on presta-
bilization of the high-power laser’s frequency more severe.

Outlook.—We envision a proof-of-principle experiment
similar to Ref. [14] in the near future where a Raman transition
in cold Rb atoms is used to produce a tunable lasing transition
linewidth γ , making the parameter regime required in our pro-
posal more readily accessible. The photon blockade could be
obtained by driving a Rydberg transition in a sub-ensemble
of the Rb atoms [25]. The modified superradiant threshold,
narrower linewidth, and nonclassical character of the emitted
light can be observed by measuring the photon flux, g(1)(t),
and g(2)(t) at the cavity output. By tuning the strength and
range of interactions among the Rydberg states, one may be
able to engineer more general forms of nonclassical light (be-
yond simple anti-bunching), while maintaining the spectral
sharpness by staying in the superradiant regime. We expect
such nonclassical light to become useful in a variety of future
applications, including sub shot-noise spectroscopy [35, 36],
quantum networks of optical clocks [37], and realizations of
fractional quantum Hall states [38, 39].
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57 (2012).

[25] O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D.
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Supplemental Material for “Steady-state superradiance with Rydberg polaritons”
This supplemental material provides technical details for the numerical and the cumulant expansion methods used in solving

Eq. (2) of the main text. For completeness, we rewrite Eq. (2) of the main text, this time including terms associated with
dephasing (Ldeph) and spontaneous emission (Lspont) of the lasing atoms:

dρ

dt
= i[ρ,Heff]+Lcav[ρ]+Lpump[ρ]+Lspont[ρ]+Ldeph[ρ], (S1)

Heff =
g
2

N

∑
j=1

(σ+
j b+σ

−
j b†), (S2)

Lcav[ρ] =−
κ

2
(b†bρ +ρb†b−2bρb†), (S3)

Lpump[ρ] =−
w
2

N

∑
j=1

(σ−j σ
+
j ρ +ρσ

−
j σ

+
j −2σ

+
j ρσ

−
j ), (S4)

Lspont[ρ] =−
γ

2

N

∑
j=1

(σ+
j σ
−
j ρ +ρσ

+
j σ
−
j −2σ

−
j ρσ

+
j ), (S5)

Ldeph[ρ] =−
γd

4

N

∑
j=1

(ρ−σ
z
j ρσ

z
j ), (S6)

where σ js are the Pauli matrices for the lasing atoms, and b is the blockaded cavity mode.
Two important symmetries that can greatly simplify our calculations exist in the above master equation: The first is the

permutation symmetry among all of the atoms, and the second is the U(1) symmetry associated with invariance under the
simultaneous transformations σ

−
j → σ

−
j eiφ (for all js) and b→ beiφ . In a typical experiment, the initial state of the atoms

and cavity breaks neither the permutation nor the U(1) symmetry, thus at any time during the state evolution we will assume
〈σ−j 〉= 0 for all js and 〈b〉= 0.

I. CUMULANT EXPANSION METHOD

The second-order cumulant expansion allows us to make the following approximations 〈b†σ
−
1 σ

z
2〉 ≈ 〈b†σ

−
1 〉〈σ

z
2〉,

〈σ−1 σ
+
2 b†b〉 ≈ 〈σ−1 σ

+
2 〉〈b†b〉, and 〈b†bσ

z
1〉 ≈ 〈b†b〉〈σ z

1〉. With these approximations, the equations of motion for 〈σ z
1〉, 〈σ

+
1 σ
−
2 〉,

〈b†b〉, and 〈b†σ
−
1 〉 form the following closed set:

d〈σ z
1〉

dt
= i
(
〈b†

σ
−
1 〉−〈bσ

+
1 〉
)
− (w+ γ)〈σ z

1〉+(w− γ), (S7)

d〈σ+
1 σ
−
2 〉

dt
≈

g〈σ z
1〉

2i

(
〈b†

σ
−
1 〉−〈σ

+
1 b〉

)
− (w+ γ + γd)〈σ+

1 σ
−
2 〉, (S8)

d〈b†b〉
dt

=
Ng
2i

(
〈b†

σ
−
1 〉−〈σ

+
1 b〉

)
−κ〈b†b〉, (S9)

d〈b†σ
−
1 〉

dt
≈ ig

2

{[
(N−1)〈σ−1 σ

+
2 〉+

〈σz〉+1
2

]
〈1−2b†b〉+ 〈b†b〉〈σ z

1〉
}
− w+κ + γ + γd

2
〈b†

σ
−
1 〉. (S10)

Steady-state values of 〈σ z
1〉, 〈σ

+
1 σ
−
2 〉, 〈b†b〉, and 〈b†σ

−
1 〉 are obtained by setting the l.h.s. of Eqs. (S7-S10) to zero. To obtain

the spectral properties of the cavity output, we use the quantum regression theorem [40] to calculate 〈b†(t)b(0)〉,

d
dt

(
b†(t)b(0)
σ
+
1 (t)b(0)

)
≈
(
−κ

2
iNg

2 〈1−2b†b〉
− ig

2 〈σ
z
1〉 −w+γ+γd

2

)(
b†(t)b(0)
σ
+
1 (t)b(0)

)
. (S11)

Here equal-time steady-state expectation values are implied unless two time arguments are explicitly shown. We have also made
additional approximations based on the cumulant expansion, such as 〈b†(t)b(0)σ z

1〉 ≈ 〈b†(t)b(0)〉〈σ z
1〉.

The approximations made above are justified by good agreement between the solutions of Eqs. (S7-S11) and exact numerical
calculations of Eq. (S1) when κ � NCγ (the bad-cavity limit) and t� 1/κ in 〈b†(t)b(0)〉 (see Fig. S1).
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Figure S1: (Color online) Comparison between exact numerical calculations and analytical calculations using the second-order cumulant
expansion. (a) The steady-state value of 〈σ+

1 σ
−
2 〉 as a function of pumping rate w for κ = 10NCγ . Better agreement is observed for larger N.

(b) The linewidth Γ fitted from the long-time (t� 1/κ) exponential decay in 〈b†(t)b(0)〉 as a function of κ for N = 100. Good agreement is
found for κ � NCγ .

II. NUMERICAL METHOD

We now present a highly efficient numerical method for solving Eq. (S1). Our numerical method can actually be applied to
any cavity-QED master equation that has the aforementioned permutation symmetry and U(1) symmetry. Thus in the following,
we will assume a more general situation where the cavity mode has at most M photons. The fully blockaded cavity can be
studied by setting M = 1, whereas a normal (harmonic) cavity mode or a cavity mode with a generic form of nonlinearity can be
studied by assuming a sufficiently large M. To avoid confusion in notations, below we will call this general cavity mode a as b
is reserved for the blockaded cavity mode.

In the presence of dissipative processes, exploiting either the permutation or the U(1) symmetry numerically is nontrivial. For
example, unlike in the case of coherent dynamics, permutation symmetry does not imply a restriction of dynamics to the well-
known Dicke-state basis, because the Liouvillians Eqs. (S4-S6) can couple states within the Dicke-subspace to states outside of it
[41]. In addition, although the aforementioned U(1) symmetry guarantees that the Hamiltonian Heff conserves the total number
of atomic and cavity excitations (i.e. a†a+∑

N
j=1 σ

z
j ), this symmetry does not imply such a conservation law for dissipative

dynamics. To correctly make use of both symmetries, we start by constructing the following basis states for the density matrix:

ρ(N+,N−,NZ ,Na† ,Na) =
( 1

2NN!∑P
(σ+

1 ⊗·· ·⊗σ
+
N+
⊗σ

−
N++1⊗·· ·⊗σ

−
N++N− (S12)

⊗σ
z
N++N−+1⊗·· ·σ

z
N++N−+NZ

⊗ IN++N−+NZ+1⊗·· ·⊗ IN

)
⊗ (a†)Na† aNa , (S13)

where the notation ∑P denotes the summation over all permutations of the atomic indices 1,2, · · ·N. The indices
(N+,N−,NZ ,Na† ,Na) specify how many (σ+

i ,σ−i ,σ z
i ,a

†,a) appear in the above basis state. Assuming that the initial state
of the atoms is invariant under permutations, then at any time t, we can express ρ(t) as

ρ(t) = ∑
N+,N−,NZ ,Na,Na†

c(N+,N−,NZ ,Na† ,Na)(t)ρ(N+,N−,NZ ,Na† ,Na). (S14)

This choice of basis states allows us to exploit the U(1) symmetry easily, because the invariance of ρ(t) under the transfor-
mation σ

+
j → σ

+
j eiφ and a†→ a†eiφ implies that

δN = N++Na† −N−−Na (S15)

is a conserved quantity. The physical meaning of this conserved quantity is that, although the environment can change the total
number of atomic and photonic excitations, it cannot build up coherence among states with different total number of excitations.
Since we assume an initial state with 〈a〉= 〈σ−j 〉= 0, ρ(t) will be restricted to the δN = 0 subspace.

Together with the natural constraint N++N−+NZ ≤ N, Na† ,Na ≤M, we have reduced the Liouville-space dimension from
4N(M+1)2 to only ∼ N2(M+1)2, making efficient numerical calculations possible. To write down a numerical algorithm, we
still need to find explicit representations of the initial state and the Liouvillian superoperators in this basis set.
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A. Normalization and initial state

Because the Pauli matrices are traceless, only the basis states with N+ = N− = NZ = 0 have nonzero trace with respect to the
atomic Hilbert space, and the trace of such a state over the atomic Hilbert space is 1 due to the normalization factor in Eq. (S12).
In addition, only basis states with Na = Na† have nonzero trace with respect to the photonic Hilbert space, and the trace for a
basis state with Na = Na† = m over the truncated photonic Hilbert space is given by

Tr[(a†)mam] =
M

∑
n=m

n!
(n−m)!

= (M+1)M · · ·(M+1−m)/(m+1)≡ Pm. (S16)

As a result, a normalized initial state must satisfy Tr[ρ(t)] = ∑
M
m=0 c(0,0,0,m,m)(t)Pm = 1. For simplicity, we will choose our initial

state to be a completely mixed state proportional to an identity matrix: ρ(0) = c(0,0,0,0,0)(0)ρ(0,0,0,0,0), with c(0,0,0,0,0)(0) =
1/P0 =

1
M+1 .

B. Matrix elements for cavity operators

We will now find the matrix elements for the cavity operators by writing down the rules for applying a and a† on the left or
the right side of the basis state ρ(N+,N−,NZ ,Na† ,Na). For notational simplicity, we will ignore the (N+,N−,NZ) indices here because

the cavity operators cannot change them. Since ρ(Na† ,Na) ≡ (a†)Na† aNa is normal ordered, the operations that preserve the normal
ordering are simple:

ρ(Na† ,Na)a = ρ(Na† ,Na+1), (S17)

a†
ρ(Na† ,Na) = ρ(Na†+1,Na). (S18)

A complication arises when we need to bring aρ(Na† ,Na) = a(a†)Na† aNa into the normal order, particularly since [a,a†] 6= 1
(because the cavity Hilbert space is truncated to a maximum of M photons). Within the truncated Hilbert space, it can be shown
that [a,a†] = 1− M+1

M! (a†)MaM. Using this commutation relation repeatedly gives us

ρ(Na† ,Na)a
† = ρ(Na†+1,Na)+Naρ(Na† ,Na−1)−

M+1
(M−Na +1)!

ρ(M+1+Na†−Na,M), (S19)

aρ(Na† ,Na) = ρ(Na† ,Na+1)+Na†ρ(Na†−1,Na)−
M+1

(M−Na† +1)!
ρ(M,M+1+Na−Na† ), (S20)

where we implicitly assume (here and in everything that follows) that any indices Na† ,Na in a basis state ρ(Na† ,Na) should lie
between 0 and M, otherwise we need to drop such an “illegal” basis state because it will be annihilated by either a or a†.
Eqs. (S17-S20) will allow us to construct all terms in Lcav[ρ].

C. Matrix elements for atomic operators

The matrix elements for the atomic operators can be determined in a similar manner. For simplicity, here we ignore the
(Na† ,Na) indices in specifying the basis state ρ(N+,N−,NZ ,Na† ,Na) as the atomic operators cannot change the quantum numbers Na

and Na† . Let us start with the collective atomic operators σ± = ∑i σ
±
i and σ z = ∑i σ

z
i , which obey

σ
+

ρ(N+,N−,NZ) =
1
2

N−[ρ(N+,N−−1,NZ)+ρ(N+,N−−1,NZ+1)]−NZρ(N++1,N−,NZ−1)+NIρ(N++1,N−,NZ), (S21)

ρ(N+,N−,NZ)σ
+ =

1
2

N−[ρ(N+,N−−1,NZ)−ρ(N+,N−−1,NZ+1)]+NZρ(N++1,N−,NZ−1)+NIρ(N++1,N−,NZ), (S22)

σ
−

ρ(N+,N−,NZ) =
1
2

N+[ρ(N+−1,N−,NZ)−ρ(N+−1,N−,NZ+1)]+NZρ(N+,N−+1,NZ−1)+NIρ(N,N−+1,NZ), (S23)

ρ(N+,N−,NZ)σ
− =

1
2

N+[ρ(N+−1,N−,NZ)+ρ(N+−1,N−,NZ+1)]−NZρ(N+,N−+1,NZ−1)+NIρ(N,N−+1,NZ), (S24)

σ
z
ρ(N+,N−,NZ) = (N+−N−)ρ(N+,N−,NZ)+NZρ(N+,N−,NZ−1)+NIρ(N+,N−,NZ+1), (S25)

ρ(N+,N−,NZ)σ
z = (N−−N+)ρ(N+,N−,NZ)+NZρ(N+,N−,NZ−1)+NIρ(N+,N−,NZ+1). (S26)
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Again we have implicitly assumed that the indices N+, N−, and NZ in a basis state ρ(N+,N−,NZ) should lie between 0 and N and
satisfy N++N−+NZ ≤ N, otherwise we will drop the illegal basis state. The recycling terms in Lspont and Lpump cannot be
written in terms of collective atomic operators, and must be treated separately; we find

2
N

∑
j=1

σ
−
j ρ(N+,N−,NZ)σ

+
j = (NI−NZ)ρ(N+,N−,NZ)+NZρ(N+,N−,NZ−1)−NIρ(N+,N−,NZ+1), (S27)

2
N

∑
j=1

σ
+
j ρ(N+,N−,NZ)σ

−
j = (NI−NZ)ρ(N+,N−,NZ)−NZρ(N+,N−,NZ−1)+NIρ(N+,N−,NZ+1). (S28)

These rules enable us to construct the matrices for Lspont[ρ], Lpump[ρ], and Ldeph[ρ], and combined with the rules for application
of cavity operators we can also construct the representation of Heff.

D. Measurement

The expectation value of most observables we are interested in can be calculated very efficiently without the need of writing
down the matrices for them. For example, to calculate 〈σ z〉 we can use the rule in Eq. (S25) and the fact that only the N+ =
N− = NZ = 0, Na† = Na basis states have nonzero trace:

Tr[σ z
ρ(t)] =

M

∑
m=0

c(0,0,1,m,m)(t)Pm. (S29)

Similarly, we can calculate 〈σ+
i σ
−
j 〉 and 〈a†a〉 using

Tr[σ+
i σ
−
j ρ(t)] = Tr[

σ+σ−− (1+σ z)/2
N(N−1)

ρ(t)] =
N

∑
m=0

c(1,1,0,m,m)(t)Pm/[4N(N−1)], (S30)

Tr[a†aρ(t)] =
M

∑
m=0

c(0,0,0,m,m)(t)Tr[ρ(0,0,0,m+1,m+1)+mρ(0,0,0,m,m)] =
M−1

∑
m=0

c(0,0,0,m,m)Pm+1 +
M

∑
m=0

c(0,0,0,m,m)mPm. (S31)

The calculation of the two-time correlation g(1)(τ) = 〈a†(t + τ)a(t)〉/〈a†(t)a(t)〉 is more complicated. We need to first find
ρ ′(t) = aρ(t), which is in the δN = 1 subspace and requires a new set of basis states {ρ(N+,N−,NZ ,Na† ,Na)} with δN = 1 to be
represented. Next, we evolve the master equation [Eq. (S1)] for time τ using ρ ′(t) as the initial state, and measure a†(t + τ):

〈a†(t + τ)a(t)〉= Tr[a†
ρ
′(t + τ)] =

M−1

∑
m=0

c′(0,0,0,m+1,m)(t + τ)Pm+1. (S32)


