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A quantum simulator is a restricted class of quantum computer that controls the interactions
between quantum bits in a way that can be mapped to certain difficult quantum many-body prob-
lems. As more control is exerted over larger numbers of qubits, the simulator can tackle a wider
range of problems, with the ultimate limit being a universal quantum computer that can solve gen-
eral classes of hard problems. We use a quantum simulator composed of up to 53 qubits to study
a non-equilibrium phase transition in the transverse field Ising model of magnetism, in a regime
where conventional statistical mechanics does not apply. The qubits are represented by trapped
ion spins that can be prepared in a variety of initial pure states. We apply a global long-range
Ising interaction with controllable strength and range, and measure each individual qubit with near
99% efficiency. This allows the single-shot measurement of arbitrary many-body correlations for the
direct probing of the dynamical phase transition and the uncovering of computationally intractable
features that rely on the long-range interactions and high connectivity between the qubits.

There have been many recent demonstrations of quan-
tum simulators with varying numbers of qubits and de-
grees of individual qubit control [1]. For instance, small
numbers of qubits stored in trapped atomic ions [2, 3]
and superconducting circuits [4] have been used to simu-
late various magnetic spin or Hubbard models with indi-
vidual qubit state preparation and measurement. Large
numbers of atoms have simulated similar models, but
with global control and measurements [5] or with corre-
lations that only appear over a few atom sites [6]. An
outstanding challenge is to increase qubit number while
maintaining individual qubit control and measurement,
with the goal of performing simulations or algorithms
that cannot be efficiently solved classically. Atomic sys-
tems are excellent candidates for this scaling, because
their qubits can be made virtually identical, with flexible
and reconfigurable control through external optical fields
and high initialization and detection efficiency for indi-
vidual qubits. Recent work with neutral atoms [7, 8] has
demonstrated many-body quantum dynamics with up to
51 atoms coupled through van der Waals Rydberg inter-
actions, and the current work presents the optical control
and measurement of a similar number of atomic ions in-
teracting through their long-range Coulomb-coupled mo-
tion.

We perform a quantum simulation of a dynamical
phase transition (DPT) with up to 53 trapped ion qubits.
The understanding of such nonequilibrium behavior is of
great interest to a wide range of subjects, from social sci-
ence [9] and cellular biology [10] to astrophysics [11] and
quantum condensed matter physics [12]. Recent theoret-
ical studies of DPT [13–20] involve the transverse field
Ising model (TFIM), the quintessential model of quan-
tum phase transitions [21]. A recent experiment inves-
tigated a DPT with up to 10 trapped ion qubits, where
the transverse field dominated the interactions [3]. These

studies have considered long-time spin relaxation dynam-
ics [13–15, 20, 22] and non-analytic time evolution of non-
local quantities [3, 17–20].

In this experiment, we employ a quantum quench–a
sudden change in the system Hamiltonian–to bring a col-
lection of interacting trapped ion qubits out of equilib-
rium [3, 23–25]. The theoretical description of the dy-
namics is made difficult by the population of exponen-
tially many excited states of the many-body spectrum,
typically accompanied by massive entanglement between
the qubits. Given the long-range interactions between
the qubits, the entanglement growth is generally much
faster [26] than in locally connected systems [7, 8], mak-
ing the classical simulation of the quench dynamics even
more challenging. The nature of the long-range Ising in-
teraction also leads to unique dynamical features and an
emergent higher dimensionality of the system [20, 27, 28].

We experimentally implement a quantum many-body
Hamiltonian with long-range Ising interactions and flex-
ible tuning parameters [29, 30]. As outlined in Fig. 1,
we initialize the qubits (effective spin-1/2 systems) in a
product state all polarized along the x direction of the
Bloch sphere, and suddenly turn on the TFIM Hamilto-
nian given by (h = 1)

H =
∑
i<j

Jijσ
x
i σ

x
j +Bz

∑
i

σzi . (1)

Here σγi (γ = x, y, z) is the Pauli matrix acting on the
ith spin along the γ direction of the Bloch sphere, Jij is
the Ising coupling between spins i and j, and Bz denotes
the transverse magnetic field, which acts as the control
parameter for crossing dynamical criticality in the DPT.

The right panel of Fig. 1 shows a simplified Bloch-
sphere representation of the DPT dynamics. The spins
quickly evolve from the longitudinally polarized initial
state, and then either precess about a large transverse
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Figure 1: Illustration of the DPT from a quantum quench. We subject a system of interacting spins to a sudden change
of the Hamiltonian and study the resulting quantum dynamics. (a) An isolated spin system is prepared in a product state, and
an Ising spin-spin interaction is suddenly turned on, along with a tunable transverse magnetic field (see text for details). At
the end of the evolution, we measure the spin magnetizations along the initial spin orientation direction. (b) A Bloch-sphere
representation [20] of the average spin magnetization. Spins are initially fully polarized along the longitudinal x direction of the
Bloch sphere, and evolve with Ising interactions along x competing with the transverse field along z, resulting in oscillations
and relaxations. Blue curves illustrate the quench dynamics with a low transverse field; green curves indicate the dynamics
with a large transverse field across criticality.
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Figure 2: Real-time spin dynamics after a quantum quench of 16 spins in an Ising chain. (a) Polarized spins

evolve under the long-range Ising Hamiltonian with a small transverse field (B̃z/J0 = 0.6). The broken symmetry given by the

initial polarized state is preserved during the evolution. (b) When the transverse field is increased (B̃z/J0 = 0.8), the dynamics

shows a faster initial relaxation, before settling to a non-zero plateau. (c) Under larger transverse fields (B̃z/J0 = 1.6), the
Larmor precession takes over, and the spins oscillate and relax to zero average magnetization. The dashed lines are numerical
simulations based on exact diagonalization. Insets: cumulative time-averages of the spin magnetization, smoothing out temporal
fluctuations and showing the plateaus. Each point is the average of 200 experimental repetitions. Error bars are statistical,
computed from quantum projection noise and detection infidelities as described in Appendix B.

magnetic field (green curves in Fig. 1), or stay pinned
near the initial conditions when the transverse field is
small (blue curves in Fig. 1).

To implement the quantum Hamiltonian (see Appen-
dices B-C), each spin in the chain is encoded in the
2S1/2 |F = 0,mF = 0〉 ≡ |↓〉z and |F = 1,mF = 0〉 ≡
|↑〉z hyperfine “clock” states of a 171Yb+ ion and sep-
arated by a frequency of ν0 = 12.642821 GHz. We store
a chain of up to N = 53 ions in a linear rf Paul trap,
as described in Appendix A [30] and initialize the qubits
in the product state |↓↓ · · · ↓〉x, where |↓〉x ≡ |↓〉z + |↑〉z.
Spin-spin interactions are generated by spin-dependent
optical dipole forces from an applied laser field, which

give rise to tunable long-range Ising couplings that fall
off approximately algebraically as Jij ≈ J0/|i − j|α [29–
31]. The power-law exponent α is set between 0.8−1.0 in
the experiment, and the maximum interaction strengths
are J0 =(0.82, 0.56, 0.38, 0.65) kHz, for (8, 12, 16, and
53) spins, respectively. The transverse field is generated
by a controllable Stark shift of the spin qubit splitting
from the same laser field, as described in Appendix C.

We finally measure the magnetization of each spin 〈σxi 〉
along x. We rotate all the spins by an angle of π/2 about
the y-axis of the Bloch sphere (exchanging σxi ↔ σzi )
and then illuminate the ions with resonant radiation and
collect the σzi -dependent fluorescence on a camera with
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Figure 3: Two-body Correlations. Long-time averaged
values of the two-body correlations C2 over all pairs of spins,
for different numbers of spins in the chain. Statistical er-
ror bars are ± one standard deviation from measurements
covering 21 different time steps. Solid lines in (a)-(c) are ex-
act numerical solutions to the Schrödinger equation, and the
shaded regions take into account uncertainties from experi-
mental Stark shift calibration errors. Dashed lines in (a) and
(b) are calculations using a canonical (thermal) ensemble with
an effective temperature corresponding to the initial energy
density. For N=53 spins in (d), the correlations are uniformly
degraded from residual Stark shifts across the ion chain, so in
this case we normalize to the maximum correlation at small
field (see Appendix D). Exact diagonalization for N=53 spins
is out of reach, so we instead fit the experimental data to
a Lorentzian function with linear background, shown by the
dashed line.

site-resolved imaging [31]. We estimate a spin detection
efficiency of ∼ 99% for each qubit (see Appendix E),
providing access to all possible many-body correlators in
a single shot.

The simplest observable of quench dynamics, after
evolving the system under the TFIM for time t, is the
average magnetization of the spins along x, 〈σx(t)〉 =∑
i〈σxi (t)〉/N . Figure 2 shows the measured average mag-

netization for N = 16 spins through 2πJ0t = 4.8, for
different values of the transverse field. We formulate a
renormalized field B̃z, to account for the divergence of
the energy density of the long-range Ising interactions,
so that the ratio B̃z/Jo is meaningful in the thermody-
namic limit (see Appendix C and Ref. [32]). This allows
a fair comparison of the DPT for different numbers of
spins in the chain.

The evolution of the time-dependent magnetization

separates into two distinctive regimes: one that breaks
the Z2 symmetry (σx,yi → −σx,yi ) of the Ising Hamilto-
nian (Fig. 2a), as was explicitly set by the initial con-
ditions; and one that restores this symmetry (Fig. 2c),
where the intermediate time dynamics oscillates around
and relaxes to zero average magnetization. In between
these two regimes we observe a relaxation to a non-
zero steady value (Fig. 2b). Cumulative time-averages

〈σx〉(t) =
∫ t
0
〈σx(τ)〉dτ/t (insets in Fig. 2) clearly reveal

the long-time magnetization plateaus.
The DPT is expected to occur between the small and

large transverse field regimes, where the spin alignment
changes abruptly from ferromagnetic to paramagnetic in
the long time limit as shown in Fig. 1. This phase transi-
tion is well-established for α = 0, as shown in Appendix
G. Strong numerical evidence shows that such a transi-
tion will survive [20, 22] for the small values of α chosen
in our experiments, but not for α =∞ where interactions
are nearest-neighbor only.

Further signatures of the DPT can be observed by
measuring the spatially averaged two-spin correlations
C2 =

∑
i,j〈σxi σxj 〉/N2. From the behavior of the mag-

netizations described above, we expect that C2 → 1 for
small B̃z and C2 → 1/2 for large B̃z at long times, since
the collective spin precesses around the z axis and C2 os-
cillates between one and zero. Figure 3 shows the cumu-
lative time-averaged correlations. Near the critical value
of B̃z, we observe the emergence of a dip in C2 (Fig. 3,
which is a direct signature of the DPT. The sharpening
of the dip for larger system sizes is not strong, which may
be due to a logarithmic finite-size scaling (see Appendix
G).

For a non-integrable system such as the long-range
TFIM studied here, it might be conjectured that the
spins eventually reach a thermal distribution [33]. How-
ever, we find that this is only true for small B̃z (Fig. 3a-
b). We note that the thermal values of the correlator C2

do not exhibit a dip or show signatures of a phase tran-
sition with varying B̃z/J0 for system sizes that we are
able to model numerically. Interestingly, thermalization
appears to break down in this quenched system, which
we suspect is a consequence of the inherent long-range
nature of the Ising interactions [34].

We further explore many-body dynamical properties
of this system by investigating higher-order correla-
tions, which are even harder to calculate classically [35].
Through high-efficiency single-shot state detection of all
of the spins, we directly measure higher-order correla-
tion observables. Single-shot images for N = 53 spins
are shown in Fig. 4a and are reconstructed from binary
thresholding and image convolution of the ion chain fluo-
rescence distribution (Appendix E). The analysis of these
binary strings gives direct information of correlations up
to arbitrary order.

The occurrence of long domains of correlated spins in
the state |↑〉x (fluorescing spins) signifies the fully po-
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Figure 4: Domain statistics and reconstructed single shot images of 53 spins. (a) Top and bottom: reconstructed
images based on binary detection of spin state (see Appendix E).The top image shows a chain of 53 ions in bright spin states.
The other three images show 53 ions in combinations of bright and dark spin states. Center: statistics of the sizes of domains,
or blocks with spins pointing along the same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which could be expected for infinite-temperature
thermal state. Long tails of deviations are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain sizes
in each single experimental shot. Error bars are the standard deviation of the mean (see Appendix F). Dashed lines represent
a piecewise linear fit, from which we extract the transition point (see text). The green, yellow, and red data points correspond
to the transverse fields shown in the domain statistics data on the left.

larized initial state, where the correlations in the initial
state are largely preserved by the interactions. With an
increasing transverse field, the absence of spin-ordering
is reflected by exponentially small probabilities for ob-
serving long strings. We plot the domain length statis-
tics in Fig. 4a at late times (see Appendix F), for three
example transverse field strengths, B̃z/J0 = (0.1, 1.0,
1.6). The dashed lines in Fig. 4a are fits to exponen-
tials on the histogram of domain sizes. The rare occur-
rence of especially large domains (e.g. the red boxes in
Fig. 4a) shows the existence of many-body high-order
correlations, where the order is given by the length of
the domain. We plot the mean of the largest domain size
in Fig. 4b, as a function of the normalized transverse field
strength. The average longest domain size ranges from
12 to 20, and shows a sharp transition across the critical
point of the DPT. We fit this observable to a piecewise
linear function, and extract the critical point to be B̃z/J0
= 0.89(7). For more details, see Appendix F.

The DPT studied here, with up to 53 trapped ion
qubits, is the largest quantum simulation ever performed
with high-efficiency single shot individual qubit measure-
ments. This gives access to arbitrary many-body corre-
lators that carry information that is difficult or impossi-
ble to model classically. This experimental platform can
be extended to tackle provably hard quantum problems
such as Ising sampling [36]. Given an even higher level
of control over the interactions between spins, as already
demonstrated for smaller numbers of trapped ion qubits
[37], this same system can be upgraded to a universal
quantum computer.

APPENDIX A: CONFINEMENT OF LONG ION
CHAINS

The ion chain is confined in a 3-layer linear Paul trap
with νcm = 4.85 MHz transverse center-of-mass motional
frequency [30]. The harmonic axial confinement is kept
low enough so that the lowest energy conformation of
the ions in a line; for 8 − 16 ions the axial center-of-
mass frequency is ∼ 400 kHz and for 53 ions it is ∼ 200
kHz. The ion spacing is anisotropic across the chain, with
typical spacings of 1.5 µm at the center of the chain and
3.5 µm at either end [38].

The effective lifetime of an ion chain is limited by
Langevin collisions with the residual background gas
in the UHV apparatus [39], which in general re-orders
the crystal but can also melt the crystal and even ulti-
mately eject the ions from the trap from rf-heating or
other mechanisms. This can be mitigated by quickly re-
cooling the chain, and we expect that occasionally the
crystal returns without notice. Rarely, such collisions
with the background gas are inelastic, either populating
the 171Yb+ ion in the metastable F7/2 state or forming
a YbH+ molecule. The 355 nm Raman laser quickly re-
turns the ions back to their atomic ground state manifold,
with a small probability of creating doubly-charged ions.
The mean time between Langevin collisions is expected
to be of order 1 collision per hour per trapped ion, and
we expect that the mean lifetime for a chain of ions might
therefore scale inversely with the number of ions. For 53
ions we observe an average lifetime of about 5 minutes.
However, we observe rare events where a long ion chain
survives for about 30 minutes. We speculate that either
the chain is consistently re-captured instantaneously, or
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the local pressure in the chamber is anomalously low dur-
ing these periods. Because we can load an ion chain in
under 1 minute, this enables a reasonable duty-cycle of
collecting data.

APPENDIX B: STATE PREPARATION

Two off-resonant laser beams at 355 nm globally
address the ions and drive stimulated Raman tran-
sitions between the two hyperfine qubit clock states
2S1/2 |F = 0,mF = 0〉 and |F = 1,mF = 0〉. The Ra-
man beatnotes are provided by the frequency comb from
the mode-locked laser, resulting in coherent qubit rota-
tions [40, 41]. The ion chain is about 100 µm in length,
and the beams are focused to a 200 µm full width half
maximum along the ion chain, resulting in a 30 ∼ 40%
intensity imbalance between the center and edges of the
chain. In order to prepare each individual ion in the
|↓〉x ≡

1√
2
(|↓〉z + |↑〉z) state, we first optically pump the

ions in the |↓〉z state with a 99.9% efficiency [40] and then
we apply a π/2 rotation around y axis. However, if we
use a square pulse, the beam inhomogeneity leads to an
imperfect state preparation.

To mitigate intensity imperfections across the chain,
we employ a BB1 dynamical decoupling pulse se-
quence [42] (written for each spin i):

U1(π/2) = e−i
π
2 σ

θ
i e−iπσ

3θ
i e−i

π
2 σ

θ
i e−i

π
4 σ

y
i ,

where, in addition to the π/2 rotation e−i
π
4 σ

y
i , three ad-

ditional rotations are applied: a π-pulse along an angle
θ = cos−1(−1/16) = 93.6◦, a 2π-pulse along 3θ, and an-
other π-pulse along θ, where the axes of these additional
rotations are in the x-y plane of the Bloch sphere with
the specified angle referenced to the x-axis. With this
scheme, we measure a state preparation fidelity of up to
99% for the well-compensated ions, and an average fi-
delity of 93%, limited by the ions at the edges of the
chain.

APPENDIX C: GENERATING THE ISING
HAMILTONIAN

We generate spin-spin interactions by applying a spin
dependent optical dipole force induced by the global Ra-
man beams, which are aligned with a wavevector dif-
ference ∆k along a principal axis of transverse motion
[30]. Two beatnotes of the non-copropagating Raman
beams are tuned near the transverse upper and lower
motional sideband frequencies at ν0 ± µ, in the usual
Mølmer-Sørensen configuration [43]. In the Lamb-Dicke
regime, this gives rise to the Ising-type Hamiltonian [30]

in Eq. (1) with Ising coupling between ions i and j,

Jij = Ω2νR
∑
m

bimbjm
µ2 − ν2m

≈ J0
|i− j|α

. (2)

Here Ω is the global (carrier) Rabi frequency, νR =
h∆k2/(8π2M) is the recoil frequency, bim is the normal
mode transformation matrix of the i-th ion with the mth
normal mode (

∑
i |bim|2 =

∑
m |bim|2 = 1) [38], M is the

mass of a single ion, and νm is the frequency of the m-th
normal mode. Here, the beatnote frequency detuning µ
is assumed to be sufficiently far from all sidebands, or
|µ− νm| � Ωbim

√
νR/νm, so that the spins only couple

through the motion virtually and no phonons are pro-
duced.

The approximate power-law exponent in Eq. 2 can
be tuned between 0 < α < 3 in principle, but in prac-
tice we are restricted to 0.5 < α < 1.8 in order to avoid
motional decoherence and experimental drifts. To keep
α roughly constant across the different system sizes we
adjust the sideband detuning δm = µ − νm to the val-
ues δm = ±(56, 69, 82, 60) kHz for N = (8, 12, 16, 53),
respectively, and we set the Rabi frequencies so that
the respective nearest-neighbor Ising couplings are J0 =
(0.82, 0.56, 0.38, 0.65) kHz. In this work we have α ≈ 0.8
for N = 8− 16, and α ≈ 1 for N = 53.

With α < 1 the long range interaction term in the
Hamiltonian (1) is super-extensive for a 1D linear chain.
In order to have a well defined thermodynamic limit of
the Hamiltonian, the couplings are typically rescaled to
J̃ij = Jij/N using the Kac normalization constant [32]

N =
1

N

∑
i,j

Jij
J0
.

Since all our observables are a function of the ratio of
the field to the Ising coupling strength Bz/J0, we instead
equivalently renormalize the magnetic field using B̃z =
NBz and retain the original form of the Ising coupling.

APPENDIX D: GENERATING THE
TRANSVERSE MAGNETIC FIELD

In order to generate the effective magnetic field, we
asymmetrically adjust the two Raman beatnotes to ν0 ±
µ + Bz resulting in a uniform effective transverse mag-
netic field of Bz in Eq. (1) (not yet Kac-renormalized as
described above).

To induce the quantum quench, the sidebands are
switched on in about 100 ns using acousto-optic mod-
ulators (AOMs), which control the detuning and ampli-
tude of the Raman beatnotes. These two beatnotes corre-
spond to different beam angles out of the AOM, so we im-
age these beams onto the ion chain in order to maximize
the overlap of all frequency components. We measure a
residual effective linear gradient of magnetic field across
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Figure 5: Distributions of the largest domain size. Statistics of the largest domain size in each experimental shot (200
experiments for each of the last 5 time steps). Considering only the largest domains of each shot eliminates undesirable biasing
toward small domain sizes present in Fig. 4a. Domain sizes are related to many-body correlators, where a domain size of N
corresponds to an N-body correlator. Dashed lines are fits to a two parameter Gamma distribution proportional to e−x/βxα−1,
with shape parameter α and scale parameter β.

the chain, resulting from a fourth-order Stark shift gra-
dient [44] arising from the non-perfect overlap of the two
beatnotes. This effect is measured to be ∆Bz = ±0.65
kHz end-to-end on a 16 ion chain, and was included in
the numerics. This gradient is dominated by uniform
magnetic fields Bz > 2 kHz, but it still plays a role at
zero or small magnetic fields causing an effective depo-
larization of the initial state |↓↓ · · · ↓〉x. Additional spin-
depolarization errors can be caused by Stark shift fluc-
tuations or residual spin-phonon coupling, and are likely
responsible for the slight decay seen in Fig. 2a of the main
text.

APPENDIX E: SINGLE SHOT DETECTION AND
IMAGE PROCESSING

We detect the ion spin state by globally rotating all
the spins into the measurement basis (composite (BB1)
π
2 pulse as describe above, to rotate x basis into z ba-
sis), followed by the scattering of resonant laser radia-
tion on the 2S1/2 |F = 1〉−2P1/2 |F = 0〉 cycling transi-
tion (wavelength near 369.5 nm and radiative linewidth
γ/2π ≈ 20 MHz). The |↑〉z “bright” state fluoresces
strongly while the |↓〉z “dark” state fluoresces almost no
photons because the laser is far from resonance [40].

The fluorescence of the ion chain is imaged onto an
EMCCD camera (Model Andor iXon 897) using an imag-
ing objective with 0.4 numerical aperture and a magnifi-
cation of 60. The fluorescence of each ion covers roughly
a 5x5 array of pixels on the EMCCD. After collecting the
fluorescence for an integration time of 300 µs, we collect a
mean of about 20 photons per bright ion, distributed in a
circular region of interest (ROI) around the center of the
ion position. In every single shot, we use a simple binary
threshold to determine the state of each ion (|↓〉z or|↑〉z),
providing a binary detection of the quantum state of any
ion with near 99% accuracy. The residual 1% errors in-
clude off-resonant optical pumping of the ion between
states during detection, readout noise and background
counts, and crosstalk between adjacent ions.

The individual ion ROI areas on the camera are de-
termined from periodically acquiring diagnostic images,
where a resonant repumper laser is applied to cause each
ion to fluoresce strongly regardless of its state. The sig-
nal to background noise ratio in the diagnostic shots is
larger than 100, yielding precise knowledge of the cen-
ter locations. Ion separations range from 1.5 um to 3.5
um depending on the trap settings and the distance from
the chain center, and are always much larger than the
resolution limit of the diffraction-limited imaging sys-
tem (500+100

−0 nm Airy ring radius projected at the ion
position). We utilize the pre-determined ion centers to
process the individual detection shots and optimize the
integration area on the EMCCD camera to collect each
ion’s fluorescence while minimizing crosstalk. We esti-
mate crosstalk to be dominated by nearest-neighbor flu-
orescence, which can bias a dark ion to be erroneously
read as bright with less than 1% probability.

APPENDIX F: DOMAIN SIZE STATISTICAL
DATA ANALYSIS

Here we present the detailed analysis of the domain
statistics presented in Fig. 4. The raw domain statistics
are analyzed from the binary tally of bright and dark
ions, and sorting them into domains with consecutive
spins up (bright) or down (dark). The collection of all
200 experimental repetitions for the last 5 time steps (out
of 21 time steps in total) are treated equally, and results
into the statistics given in Fig. 4a.

To analyze the large domains, or the outliers of the dis-
tributions in Fig. 4, we find the largest domain in each
single shot, and plot the statistical distribution in Fig. 5.
In the main text the mean (standard error of the mean)
are used to extract the data (error bars) presented in
Fig. 4b. This has an underlying assumption that the
central-limit theorem holds for our largest domain size
statistics. In addition, we analyze the distribution in the
actual data, and fit the histogram to a two parameter
Gamma distribution, shown as the dashed lines in Fig.
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Figure 6: The spatially and long-time averaged spin-spin correlation C2(∞) ≡ limT→∞
1
T

∫ T
0
〈(Σx(t)/N)2〉dt calculated as a

function of the ratio B̃z/J0 for the case of α = 0. The finite N curves are calculated using exact diagonalization, and the
infinite N curve is calculated using the analytical expression in Eq. (6).

5. From the fit parameters we can extract the mean, tak-
ing the skewness of the distribution into account. This
systematically shifts the largest domain size by about 1
for all the datasets, and a piecewise fit similar to that de-
scribed in the main text yields the critical point B̃z/J0 =
0.92(7) from this alternative data analysis method, in
good agreement with that obtained in the main text.

APPENDIX G: ANALYTICAL STUDY OF THE
DPT FOR α = 0

In this section, we show analytically that in the α→ 0
limit (Jij = J0 for i 6= j), the spatially averaged two-
point correlation C2 = 1

N2

∑
i,j〈σxi σxj 〉 measured in our

experiment will undergo a DPT when B̃z is tuned across
J0 in the thermodynamic and long time limit. The case
α ∼ 1 in our experiment cannot be treated analytically
or numerically for large system sizes, but appears to
have qualitatively similar dynamics with the α = 0 case
treated here analytically.

We first rewrite the Hamiltonian for α = 0 using col-
lective spin operators Σx,y,z =

∑N
i=1 σ

x,y,z
i :

H0 =
J0
N

(Σx)2 + B̃zΣ
z. (3)

We then normalize the Ising interactions to make H0

extensive, which allows a well-defined thermodynamic
limit. According to the Heisenberg equation, we have
(setting h = 1)

dσx

dt
= i[H0,Σ

x] = −2B̃zΣ
z. (4)

We note that the thermodynamic (N → ∞) limit co-
incides with the semiclassical limit for the Hamiltonian
in Eq. (3). Thus we can assign to the values of Σx,y,z

classical vectors of length N on a Bloch sphere, i.e.

(Σx,Σy,Σz) = N(cos θ, sin θ sinφ, sin θ cosφ). The above
equation of motion can then be reduced to:

dθ

dt
= 2B̃z sinφ, (5)

together with the equation cosφ = sin θJ0/B̃z that comes
from energy conservation.

Given the initial state θ(t = 0) = 0, the dynamics of
the correlation C2 = cos2 θ can be obtained analytically.
In the long time limit, we find that the time-averaged

value of C2(∞) ≡ limT→∞
∫ T
0
〈C2(t)〉dt/T follows

C2(∞) ≡

∫ ξ
0

cos2 θdθ

2
√

(B̃z/J0)2−sin2 θ∫ ξ
0

dθ

2
√

(B̃z/J0)2−sin2 θ 2

(6)

where ξ = sin−1[min(|B̃z/J0|, 1)]. We have plotted
C2(∞) as a function of B̃z/J0 in Figure 6. A sharp dip
is observed, confirming the existence of the dynamical
phase transition.

To understand how C2(∞) at B̃z = J0 scales with N ,
we note that there are only N + 1 orthogonal quantum
states for the collective spin , but the Bloch sphere has a
surface area of 4π. This is because each orthogonal quan-
tum state occupies a small area on the Bloch sphere with
radius ∼ 1/

√
N due to the usual uncertainty relation be-

tween the different projections of spin. As a result, the
upper limit of the integral over θ in Eq. (6) can only reach
π
2 − ε, with ε ∼ 1/

√
N . It can therefore be shown that

C2(∞)B̃z→J0 ∼ 1/ log(N). (7)

We conclude that size of the dip in the DPT only drops
logarithmically with N , which may qualitatively explain
why only a weak sharpening of the DPT is observed in
the experiment as the spin chain grows in size.
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