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We demonstrate that a weakly disordered metal with short-range interactions exhibits a transition
in the quantum chaotic dynamics when changing the temperature or the interaction strength. For
weak interactions, the system displays exponential growth of the out-of-time-ordered correlator
(OTOC) of the current operator. The Lyapunov exponent of this growth is temperature-independent
in the limit of vanishing interaction. With increasing the temperature or the interaction strength,
the system undergoes a transition to a non-chaotic behaviour, for which the exponential growth
of the OTOC is absent. We conjecture that the transition manifests itself in the quasiparticle
energy-level statistics and also discuss ways of its explicit observation in cold-atom setups.

A classical chaotic system is a system whose evolution
is exponentially sensitive to the initial conditions. Be-
cause small perturbations of the Hamiltonian or the ini-
tial state of a chaotic system may dramatically change its
dynamics, its evolution may appear random even without
any random elements in the Hamiltonian.

The concept of chaos in quantum systems is more
subtle and has several different widely used definitions.
When a quantum system has a well-defined classical
limit, this system is often called chaotic if the classi-
cal limit of its dynamics is chaotic. Another definition
of quantum chaos involves energy-level statistics. When
the dynamics of a system is apparently random, one may
expect this system to be described by the random-matrix
theory, which leads to the Wigner-Dyson statistics of the
energy levels. An immense amount of numerical data (see
Ref. [1] for review) suggests that various systems with
Wigner-Dyson level statistics, such as disordered metals
and non-integrable billiards, exhibit classical chaotic dy-
namics, thereby confirming the equivalence of the two
definitions in these cases.

Numerous recent studies suggest another notion
of quantum chaos, which is related to the ex-
ponential growth of out-of-time-ordered correlators
(OTOCs) of Hermitian operators, quantities of the form
〈[Â(t), B̂(0)]2〉. Such correlators were first introduced
half a century ago [2] for electrons in weakly disor-
dered metals; it was demonstrated that the correlator
of the single-momentum projections grows exponentially,
〈[p̂z(t), p̂z(0)]2〉 ∝ exp(2λt), where the exponent λ gives
the rate of divergence between two initially close clas-
sical electron trajectories. However, exponential growth
of OTOCs in quantum systems takes place only on suf-
ficiently short times, in contrast with classical chaotic
dynamics.

The last couple of years have seen an upsurge of re-
search activity (see, for example, Refs. [3–22]) on OTOCs

and quantum chaos, in part motivated by a recent pre-
diction [3] of the bound λ ≤ 2πT/~ on the Lyapunov ex-
ponent in strongly interacting systems at temperature T .
OTOCs are also expected [5–8, 10] to distinguish between
many-body-localised [23][24] and many-body-delocalised
phases. Despite recent advances in rigorous microscopic
calculations of OTOCs in disordered interacting systems
(see, e.g., Refs. [4, 10–12]), the generic conditions for the
existence of chaotic behaviour in such systems still re-
main to be investigated.

In this paper, we demonstrate that weakly disor-
dered interacting systems exhibit a phase transition from
quantum-chaotic to non-chaotic behaviour when increas-
ing the temperature or the interaction strength. We dis-
tinguish between chaotic and non-chaotic behaviour via
the OTOC of momentum projections.

Results. We demonstrate that in a weakly disordered
system with short-range interactions, the time depen-
dence of the OTOC of momentum P̂z of the entire system
is given by

F (t) =
〈

[P̂z(t), P̂z(0)]2
〉
∝ exp

[
2λt− 2t

τ(T )

]
, (1)

where we omitted the subleading terms, which at t = 0
ensure the vanishing of the correlator; the averaging 〈. . .〉
is carried out with respect to both the state of the elec-
trons and disorder realisations; T is the temperature; λ is
the classical Lyapunov exponent in a non-interacting dis-
ordered system; and 1/τ(T ) ∝ T 2 is the rate of inelastic
quasiparticle scattering at the Fermi surface. Depending
on which term in the exponent dominates, the OTOC
exhibits exponential growth or lack thereof.

At low temperatures and interaction strengths, the
behaviour of the system is similar to that in the ab-
sence of interactions, with an exponentially growing
OTOC, which comes from pairs of close electron tra-
jectories and from energies in the interval ε ∼ T near
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the Fermi surface. The Lyapunov exponent λ is de-
termined by the quasiparticle parameters at the Fermi
surface and is temperature-independent, in contrast
with strongly-interacting systems, where a temperature-
dependent bound on the Lyapunov exponent was con-
jectured [3]. The exponential growth only persists for t
shorter than the Ehrenfest time tE = λ−1 ln(apF ) (here-
inafter ~ = 1), where a is the characteristic impurity size
and pF is the Fermi momentum.

For large temperatures and strong interactions, in-
elastic large-momentum scattering destroys correlations
between electrons with close trajectories and thus sup-
presses the exponential growth. There exists a critical
temperature (or interaction strength, for a given tem-
perature) which corresponds to τ(T ) = λ−1 and sepa-
rates the regimes of exponential growth and the lack of
exponential growth. We conjecture that the transition
from chaotic to non-chaotic behaviour is accompanied
by a change of quasiparticle energy-level statistics from
Wigner-Dyson to Poisson or to other types of statistics.
The transition may also be observed explicitly in dou-
ble layers of ultracold atoms or molecules exposed to a
random potential.

Model. We consider a weakly disordered metal in di-
mension d > 1 described by the Hamiltonian

Ĥ =

∫
Ψ̂†(r)

[
ξk̂ +

∑
i

U(r− ri)

]
Ψ̂(r) dr

+

∫
Ψ̂†(r)Ψ̂†(r′)w(r− r′)Ψ̂(r′)Ψ̂(r) dr dr′, (2)

where Ψ̂† and Ψ̂ are fermionic operators, ξk̂ is the oper-
ator of the kinetic energy; there are identical randomly
located impurities in the system, with U(r−ri) being the
potential of the i-th impurity; w(r−r′) is the interaction
potential between two particles, which is assumed to be
short-range in this paper. Here we disregard the spin de-
gree of freedom, because it has no qualitative effect on
our results.

Formalism. Describing transport in a disordered sys-
tem often involves perturbative expansions in interac-
tions and random potential, using Wick’s theorem to re-
duce observables in various orders of perturbation the-
ory to two-point correlators, i.e. Green’s functions [25].
A similar approach may be adopted when calculating
four-point OTOCs [4], defining Green’s functions on a
four-branch time contour instead of the conventional two-
branch Keldysh contour [26].

Here we use an alternative approach, developed re-
cently in Ref. [27], which consists in deriving kinetic (or
master) equations for higher-order correlators, similar to
the joint distribution functions of two copies of the sys-

tem of electrons. We introduce four correlation functions

Kαβ(r1, r1′ ; r2, r2′ ; t) =〈[
Ψ̂α†(r1, t)Ψ̂

α(r1′ , t), P̂z(0)
] [

Ψ̂β†(r2, t)Ψ̂
β(r2′ , t), P̂z(0)

]〉
,

(3)

where each of the indices α and β may take two values:
e (electron) or h (hole); Ψ̂α(r) = Ψ̂(r) is the annihilation
operator for an electron at location r and Ψ̂h = Ψ̂†(r) is
the hole annihilation operator. The time evolution of the
correlators Kee, Khh and Keh,he is similar to the evolu-
tion of the joint distribution functions of two electrons,
two holes and electron-hole pairs, respectively. More-
over, for a system in a classical environment, of which a
random potential is a special case, the evolution of the
correlators (3) exactly matches that of the density matrix
of pairs of electrons and/or holes, respectively [27].

The relation of the OTOC of momentum projections
to the correlation functions Kαβ is given by

F (t) =

∫
R1,R2,p1,p2

p1zp2z K
ee(p1,R1;p2,R2; t), (4)

where our conventions for coordinate and momen-
tum integration are

∫
R
. . . =

∫
. . . dR and

∫
p
. . . =∫

. . . dp
(2π)d

, respectively, in the d-dimensional space;

Kee(p1,R1;p2,R2; t) is the Wigner-transform (a func-
tion of the centre-of-mass coordinates Ri = ri+ri′

2
and the Fourier-transform of the coordinate differ-
ence, ri − ri′ → pi) of the correlation function
Kee(r1, r1′ ; r2, r2′ ; t). Equation (4) is similar to the re-
lation between the correlator 〈p1zp2z〉 of the momentum
projections of two electrons and the joint density matrix
of these electrons.

The initial values of the correlators (3) for an electron
gas with the (single-particle) distribution function fk are
given by

Kαα(p1,R1;p2,R2; 0) = −Kαᾱ(p1,R1;p2,R2; 0)

= ∂Z1
∂Z2

g(R1 −R2,p1 − p2), (5)

where ᾱ labels an “antiparticle” of α (ē = h; h̄ = e); ∂Z1

and ∂Z2 are derivatives with respect to the z components
of R1 and R2; the function g(R1 −R2,p1 −p2) is given
by

g(R1 −R2,p1,p2) = −(4π)dδ(p1 − p2)∫
q

fp1−q(1− fp1+q)e2iq·(R1−R2) (6)

and is sharply peaked at the origin as a function of R1−
R2 and p1 − p2.

Impurity scattering. In a non-interacting system, elec-
tron wavepackets move along classical trajectories at suf-
ficiently short times. When two classical electrons with
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FIG. 1. (Colour online) Classical trajectories of electrons
scattered by impurities.

parallel momenta and slightly different impact parame-
ters collide with an impurity, their momenta get scattered
at slightly different angles, as shown in Fig. 1. During
subsequent collisions and propagation between impuri-
ties, the distance and the angle between the trajectories
grow further. This leads to the exponential divergence
between trajectories, as was first found in Ref. [2] and
as also confirmed by the calculations in this paper, so
long as the distance between trajectories remains smaller
than the characteristic impurity size a. As soon as the
distance between the trajectories exceeds the impurity
size, the classical motion of electrons becomes uncorre-
lated and the OTOC ceases to grow exponentially.

The typical initial distance between the trajectories
which contribute to the OTOC is determined by func-
tions Kαβ , Eq. (3), at t = 0 and, thus, by the function g,
Eq. (6), whose width may be estimated as λF = 2π/pF
for momenta p1 and p2 near the Fermi surface. As a re-
sult of impurity collisions, the functions Kαβ gets broad-
ened to the characteristic width a in time on the order
of the Ehrenfest time tE = λ−1 ln(pFa).

When considering the OTOC evolution on distances
|R1−R2| � λF , it is possible to make the approximation
g(R1−R2,p1,p2) ≈ −(2π)dδ(p1−p2)δ(R1−R2)fp1

(1−
fp1). It follows then from Eq. (5) that

〈
[P̂z(t), P̂z(0)]2

〉
=

〈(
∂pz(t)

∂z(0)

)2
〉
g,dis

, (7)

where pz(t) is the momentum of an electron along a clas-
sical trajectory with given initial conditions (p, r); z(0)
is the coordinate along the z-axis at t = 0; and the aver-
aging on the right-hand side is carried out with respect
to the impurity locations (dis) and the initial momentum
p and coordinate r of a classically moving electron:

〈. . .〉g = −
∫
p,r

. . . fp(1− fp). (8)

Eqs. (7) and (8) illustrate that the momentum-OTOC
characterises the sensitivity of electron momenta at time
t to the change of the initial coordinates.

To obtain the momentum divergence of the classical
electron trajectories we introduce the separation ζ be-
tween respective pieces of the trajectories, as shown in
Fig. 1. Such a separation vector is well-defined, so long
as the trajectories are close; the respective pieces between
two consecutive collisions may then be considered almost
parallel. By analysing the scattering on a single impurity
and free propagation between the impurities, we derive
(the details will be reported elsewhere [28]) the equations
for the evolution of the average separation ζ, the momen-
tum difference Q between the electrons (see Fig. 1) and
the correlator 〈Q · ζ〉 between the momentum difference
Q and vector ζ:

d
dt

〈
Q2
〉

=
4p2Fλ

3

v2F

〈
ζ2
〉
,

d
dt

〈
ζ2
〉

= 2vF
pF
〈ζ ·Q〉 ,

d
dt 〈ζ ·Q〉 = vF

pF

〈
Q2
〉
,

(9)

where the averaging 〈. . .〉 is carried out with respect to
the impurity locations; we assumed that the electron mo-
menta are close to the Fermi momentum pF and have
velocities vF ;

λ =

(
nimpv

3
F

4(d− 1)

∫ [(
dφ

dρ

)2

+ (d− 2)
sin2 φ

ρ2

]
Sd−1ρ

d−2dρ

) 1
3

(10)

is the classical Lyapunov exponent (for d = 3, the same
leading rate of exponential divergence between trajec-
tory pairs was reported in Ref. [2]); nimp is the impurity
concentration; φ(ρ) is the angle of scattering on a single
impurity as a function of the impact parameter ρ, and
Sd−1 is the area of a unit sphere in a d − 1-dimensional
space (in this paper we consider d > 1). According to
Eqs. (9), the average momentum difference Q(t) between
two trajectories with the same initial momentum pF and
separation ζ0 is given by

〈
Q2(t)

〉
=

2

3

(
pFλζ0
vF

)2 [
e2λt + 2e−λt cos

(
λt
√

3− 2π

3

)]
.

(11)

OTOC in a non-interacting system. For sufficiently
long times, exceeding the transport scattering time τtr ={
vFnimp

∫
Sd−1ρ

d−2 [1− cosφ(ρ)] dρ
}−1

, the quasiparti-
cle momentum p(t) is uncorrelated with its initial di-
rection, however, there are still correlations between
close pairs of trajectories which contribute to the OTOC
growth. Using Eqs. (7), (8) and (11), we find the OTOC
growth in a weakly disordered non-interacting system:

F (t) = −2(d− 1)

3d2

p2
Fλ

2νF
v2
F

V · Te2λt, (12)

where we kept only the leading exponentially growing
contribution; νF is the density of states at the Fermi sur-
face in the d-dimensional conductor under consideration;
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V is the volume of the system; and we assume that the
temperature T is sufficiently high, T � λ. For very low
temperatures, T � λ, the OTOC is given by Eq. (12)
with T replaced by a constant of order λ.

Electrons far from the Fermi surface. So far we consid-
ered quasiparticles near the Fermi surface. We note, how-
ever, that quasiparticles far from the Fermi surface may
yield significant contributions to the OTOC in a non-
interacting system. Although their concentration is expo-
nentially suppressed, ∝ e−|E−EF |/T , their contribution to
the OTOC grows exponentially with velocity, ∝ econst·vt.
Strictly speaking, the OTOC in a non-interacting system
is dominated by the quasiparticles with the largest veloc-
ity in the band. However, in the presence of interaction,
the inelastic relaxation rate grows rapidly away from the
Fermi surface, 1/τ(E) ∝ |E − EF |2 for |E − EF | � T ,
which strongly suppresses the lifetime of excitations with
high energies and their contributions to the OTOC. In
this paper we, therefore, neglect such high-energy exci-
tations and focus on the quasiparticles near the Fermi
surface.

Effect of interaction on OTOCs. To the lowest order
in the interaction strength [28], we derive the evolution of
the correlation functions Kαβ , Eq. (3), between impurity
collisions for small p1 − p2 in the form

∂tK
αβ(p1,p2) = −

(
1

τα(p1)
+

1

τβ(p2)

)
Kαβ(p1,p2)

+
1

τᾱ(p1)
Kᾱβ(p1,p2) +

1

τβ̄(p2)
Kαβ̄(p1,p2),

(13)

where we omitted the coordinate arguments of the func-
tions Kαβ ; the indices α and β again label electrons and
holes (α, β = e, h) and we have introduced the electron
scattering rate

1

τe(p)
= 2π

∫
p′,q

(1− fp′)(1− fp+q)fp′+q|w(q)|2

δ(ξp + ξp′+q − ξp+q − ξp′) (14)

and a similar hole scattering rate given by Eq. (14)
with the replacements f → 1 − f . For excitations
on the Fermi surface and for short-range interactions
under consideration, 1/τe = 1/τh = 1/τ(T ) = T 2 ·
Ck2d−3

F

[∫
r
|w(r)|

]2
/v3
F , where the constant C ∼ 1 de-

pends on the space dimensionality and the details of the
Fermi surface.

Equation (13) may be understood qualitatively as fol-
lows. When two quasiparticles α and β propagate along
close trajectories with close momenta p1 and p2, each
of them may get inelastically scattered, with rates 1/τα
and 1/τβ , as reflected by the first term on the right-hand
side of Eq. (13). In the spirit of Ref. [27], quasiparticle
states with significantly different momenta may be con-
sidered as an external bath. If one electron in a pair gets

FIG. 2. (Colour online) Setup for measuring OTOCs; two
layers of particles exposed to the same random potential.

scattered, its momentum changes significantly due to the
short-range nature of the interaction, further motion of
these electrons is uncorrelated, and they no longer con-
tribute to the exponential growth of the OTOC. There
are also reverse processes, described by the last two terms
in Eq. (13); a pair of electrons with close momenta may
be created by inelastic processes; the respective contribu-
tions to Kee, for example, require the existence of holes
with momenta under consideration and are thus propor-
tional to Keh,he. We note also that we assume short-
range interactions, with radius r0 � |R1−R2|, which do
not lead to direct interaction between electrons on close
trajectories. Depending on whether or not the interac-
tion radius r0 is smaller than λF , Eqs. (13) apply to the
entire OTOC evolution or to its later stages; in the lat-
ter case one has to use other effective initial conditions
in place of (5).

Eqs. (13) describe the evolution of the correlation func-
tions Kαβ between impurity collisions and indicate that
distributions with Kαα ∝ −Kαᾱ for all α, as corre-
sponds to the initial conditions (5), relax with the rate
1/τe + 1/τh = 2/τ(T ), where we have taken into ac-
count that electrons and holes have equal relaxation rates
1/τ(T ) on the Fermi surface. Thus, inelastic scattering
suppresses correlations between pairs of electrons with
close momenta and leads to the exponential suppression
of the OTOC as described by the second term in the ex-
ponent in Eq. (1). At large temperatures or interaction
strengths, this suppression prevents exponential growth,
and a chaotic system becomes non-chaotic.

Relation to level statistics. Usually, systems which
exhibit chaotic dynamics in the classical limit also
display Wigner-Dyson statistics of the energy lev-
els [1]. We conjecture that the transition between
chaotic and non-chaotic behaviour, discussed in this
paper, may also be accompanied by the change of
energy-level statistics characterised by the correla-
tor R2(ω) =

〈
ρ
(
E − ω

2

)
ρ
(
E + ω

2

)〉
, where ρ(E) =

− 1
πV Im

∫
r
GR(r, r, E) is the quasiparticle density of

states, and the averaging is carried out with respect to
the impurity locations. We leave, however, a rigorous
analysis of the relation between the exponential growth
of OTOCs and energy level statistics for future studies.
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Potential for experimental observation in double lay-
ers. The evolution of the correlators Kαβ is similar
to that of the correlations between two layers of parti-
cles exposed to the same random potential, as shown in
Fig. 2, which suggests a way for experimental observa-
tions of the OTOC and the transition between chaotic
and non-chaotic behaviour by observing momentum cor-
relations between the two layers of, e.g., ultracold atoms
or molecules. Indeed, as it has been demonstrated in
Ref. [27], the OTOCs in a system coupled to a classi-
cal environment may be mapped onto the evolution of
two copies of that system coupled to the same environ-
ment. Initial correlations between the particles in the
layers may be induced, for example, by switching on at-
tractive interactions between the layers for a short time.

Conclusion. We have demonstrated that a weakly dis-
ordered metal with short-range interactions displays a
transition between quantum-chaotic and non-chaotic dy-
namics, identified through the OTOC behaviour, when
changing the temperature or interaction strength. We
conjecture that the transition is accompanied by a change
in the level statistics of the system. Natural other fu-
ture research directions include analysing other models
of interaction, quasiparticle dispersion, interplay with
weak-localisation effects, etc. Also, we expect our re-
sults to hold qualitatively if the inelastic scattering comes
from phonons or other types of external baths instead of
electron-electron interactions, because such a bath may
suppress correlations between electron trajectories simi-
larly to interactions.

Another question, which deserves a separate inves-
tigation, is the effect of rare events on the quantum
chaotic dynamics. Exponentially-rare fluctuations of the
impurity density in a disordered material may lead to
sparse regions with large values of the Lyapunov expo-
nent, which may affect the exponential growth of OTOCs
on sufficiently short times scales. A detailed analysis of
the effect of such rare events on the transition discussed
in this paper and on other aspects of quantum chaos will
be presented elsewhere.
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