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Lieb-Robinson bounds are powerful analytical tools for constraining the dynamic and static properties of
non-relativistic quantum systems. Recently, a complete picture for closed systems that evolve unitarily in time
has been achieved. In experimental systems, however, interactions with the environment cannot generally be
ignored, and the extension of Lieb-Robinson bounds to dissipative systems which evolve non-unitarily in time
remains an open challenge. In this work, we prove two Lieb-Robinson bounds that constrain the dynamics of
open quantum systems with long-range interactions that decay as a power-law in the distance between particles.
Using a combination of these Lieb-Robinson bounds and mixing bounds which arise from “reversibility”—
naturally satisfied for thermal environments—we prove the clustering of correlations in the steady states of
open quantum systems with long-range interactions. Our work provides an initial step towards constraining the
steady-state entanglement structure for a broad class of experimental platforms, and we highlight several open
directions regarding the application of Lieb-Robinson bounds to dissipative systems.

I. INTRODUCTION

While the speed of information transfer is always bounded
by the speed of light, many quantum platforms operate in
a non-relativistic regime where typical velocities are far be-
low this threshold. Nevertheless, the Schrödinger equation
admits fundamental limits to the rate at which correlations
can spread throughout the system. Such bounds are known as
Lieb-Robinson bounds and are connected to a diverse array of
phenomena, including the decay of correlations in the ground
state [1], generation of topological order [2, 3], efficiency of
classical/quantum simulation [4, 5], hardness of bosonic sam-
pling tasks [6], heating rates in periodically driven Floquet
systems [7, 8], and signatures of quantum chaos [9, 10].

To date, most formulations of Lieb-Robinson bounds ap-
ply to closed systems that evolve via a unitary time-evolution
operator. In such systems, recent advances have proved tight
information-transfer bounds for interaction ranges that span
the whole spectrum from local [11, 12] to highly non-local
regimes [5, 13–15], and have been saturated via explicit state-
transfer protocols [16–18]. While a complete picture for quan-
tum information transfer has emerged for closed quantum sys-
tems, the analogous question for systems that evolve non-
unitarily in time remains less well understood. For a broad
range of quantum platforms (including noisy quantum simu-
lators), interactions with a larger environment are unavoidable
and must be taken into account to accurately describe dynam-
ics. While progress in this direction has been made [19–23],
the question of how the fundamental rate of information trans-
fer differs for systems that interact with some larger environ-
ment remains unanswered.

Indeed, the notion of a Lieb-Robinson bound in an open
system may seem a priori surprising from the point of view
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of quantum trajectories [24]. In this picture, in a time-step
dt the system’s wavefunction either evolves via a non-unitary
evolution operator, or a quantum jump discontinuously alters
the state. A specific trajectory belonging to a spatially-local
Hamiltonian with local dissipation can transfer information
faster than the limit set by the Hamiltonian’s Lieb-Robinson
bound [25]. Intuitively, this is because conditioning on mea-
surements is an inherently nonlocal process. As an extreme
example, it is possible to create a highly-entangled (GHZ)
state from a product state in a time t = O(1) using only lo-
cally entangling gates and measurements, for a specific out-
come of the measurements [26]. This would violate the Lieb-
Robinson bound for local systems, which gives t = Ω(r) for
distance r [27]. After averaging over trajectories, the state of
the system can be represented via a density matrix ρ which
evolves via a master equation: dρ/dt = L(ρ). Subsequently,
the notion of a Lieb-Robinson bound is properly restored upon
averaging over trajectories.

In this work, we make progress on the question of the fun-
damental rates of information propagation in open systems
by proving a broad class of Lieb-Robinson bounds for sys-
tems with long-range interactions—specifically those that de-
cay as a power-law 1/rα in the distance r between particles,
for some α > 0. Such power-law-decaying interactions fea-
ture in experimental platforms relevant to quantum computa-
tion and simulation, such as Rydberg atoms [28], trapped ion
crystals [29, 30], polar molecules [31], and nitrogen-vacancy
color centers in diamond [32]. In all of these platforms, inter-
actions with a larger environment cannot be neglected, and a
Markovian description of system dynamics is often justified.
In such systems, improved understanding of the fundamen-
tal rates of information transfer has spurred the development
of optimal protocols for quantum information processing and
state transfer [16, 18].

In addition to bounding dynamics of open long-range sys-
tems, we use these Lieb-Robinson bounds to constrain the en-
tanglement structure of the corresponding steady states. For
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closed systems, Lieb-Robinson bounds have played an impor-
tant role in proving rigorous statements on the decay of cor-
relations in gapped ground states [1]. This justifies the use of
finite-dimensional matrix-product-state representations of the
ground state in one-dimensional systems with local interac-
tions [33]. In this work, we prove the clustering of correlations
in the steady states of open power-law systems, which may
serve as a first step towards establishing an area-law scaling
of entanglement for these systems, similar to what was done
in Ref. [34] for the closed case.

This paper is organized as follows: in Section II, we sum-
marize the existing Lieb-Robinson bounds for open long-
range systems and present two new bounds that are tighter
for particular regimes of the power-law exponent α. The first
yields a polynomial light cone for α > 2d, using a technique
pioneered in Ref. [5]. The second gives a linear light cone for
α > 3 in 1D, using the method from Ref. [13]. In Section III,
we also prove the clustering of correlations in the steady states
of open long-range systems. Specifically, we provide bounds
on the extent of the covariance correlations and mutual infor-
mation under certain assumptions on the Liouvillian mixing
times. We also prove a stability theorem for the stationary
state under local Liouvillian perturbations, generalizing the
results of Ref. [22].

II. LIEB-ROBINSON BOUNDS FOR OPEN LONG-RANGE
SYSTEMS

In this section, we review the results of the previous best-
known Lieb-Robinson bounds for open long-range systems
and state two new Lieb-Robinson bounds.

As a general set-up, we consider evolution by a long-
range Liouvillian L(t) that acts on a lattice Λ consisting of
finite-level systems at each site. We denote by H the finite-
dimensional Hilbert space representing all possible states of
the system and by B(H) the space of all operators on H.
For an operator O ∈ B(H), we will be interested in how its
expectation value changes as a function of time: 〈O(t)〉 =
tr[O(t)ρ] = tr[Oρ(t)], where ρ is the initial state of the sys-
tem, which evolves (in the Schrödinger picture) via ρ(t) =
eLtρ. For these purposes, the time-evolution of O can be ex-
pressed as O(t) = eL

†tO, where L† is the adjoint Lindblad
superoperator, defined as

L†O = +i[H,O] +
∑
i

[
L†iOLi −

1

2
{L†iLi, O}

]
, (1)

where H is the Hamiltonian and Li are Lindblad operators
(also referred to as “jump” operators) [35]. We emphasize
that O(t) is not equivalent to the Heisenberg-Langevin time
evolution for the operator O. For example, if the system has
a unique steady state, all operators O(t) will be proportional
to the identity at long times: limt→∞O(t) ∼ I. Thus two
operators that do not commute at t = 0 will start to commute
at long times.

We will state the Lieb-Robinson-type bounds in this paper
in terms of time-independent Liouvillians. However, we note

that the proofs can be generalized with minor modifications to
the case of time-dependent Liouvillians—i.e. those for which
both H and Li are allowed to vary in time.

To impose the long-range condition on L, we decompose it
into L =

∑
Z⊂Λ LZ , where for any pair of sites i, j, we have

the condition∑
Z3i,j

‖LZ‖∞ := sup
O∈B(H)

‖LZO‖
‖O‖

≤ 1

dist(i, j)α
, (2)

where ‖ · ‖ denotes the standard operator norm, or ∞-norm,
and ‖ · ‖∞ denotes the superoperator, or “∞ → ∞” norm
(referred to as such because the second term in Eq. (2) uses the
operator∞-norm in both the numerator and the denominator).
Here dist(i, j) is the distance between i and j, and α is the
positive real parameter that controls the long-ranged nature of
the interaction.

A. Prior work on open-system Lieb-Robinson bounds

In Ref. [23], Sweke et al. generalized the Lieb-Robinson
bound in Ref. [1] for α > d to open systems. Letting
A ∈ B(X) be an operator supported on X , KY ∈ LY be
a Liouvillian supported on Y , and eL

†t be the evolution un-
der the adjoint Liouvillian superoperator. The corresponding
superoperator bound is:∥∥∥KY (eL

†tA)
∥∥∥ ≤ C‖KY ‖∞ ‖A‖ |X||Y |

(
evt − 1

rα

)
, (3)

where r := d(X,Y ), and C and v are O(1) constants. In
the closed-system picture, the conventional Lieb-Robinson-
type bound can be recovered by choosing KY such that
KY (OX) = i[OX , OY ] and replacing ‖KY ‖∞ with 2‖OY ‖.

For this conventional bound, the velocity scales as v ∝ 2α,
which diverges in the limit α → ∞. To recover the Lieb-
Robinson bound for short-range interacting systems, an im-
proved bound is required that uses a slight modification of the
technique from Ref. [23]:∥∥∥KY (eL

†tA)
∥∥∥ ≤ C‖KY ‖∞ ‖A‖ |X||Y |

(
eṽt

[(1− µ)r]α

+ eṽt−µr
)
,

(4)

where µ ∈ (0, 1) and ṽ are constants, and ṽ is independent of
α. The closed-system version of this bound was first proven
in Ref. [36] for two-body interactions and later generalized to
k-body interactions in Ref. [8]. In Ref. [23], Sweke et al. also
prove Lieb-Robinson-type bounds for α ≤ d. For this regime
of α, one needs to restrict to a finite-sized lattice, due to the
energy being (in general) non-additive for subsystems [37].
Denoting the system size of the lattice by N := |Λ|, the com-
bined strength J of the terms acting on a single site scales as
J = Θ

(
N1−α/d) for α < d and J = Θ(logN) for α = d

[10, 27]. The bound then becomes:∥∥∥KY (eL
†tA)

∥∥∥ ≤ C‖KY ‖∞ ‖A‖ |X||Y |
(
eJt − 1

Jrα

)
. (5)



3

The effective Lieb-Robinson velocity in this case diverges in
the thermodynamic limit, but is finite for all finite N .

B. Power-law light-cone bound for α > 2d

We prove a Lieb-Robinson bound for α > 2d using the
truncation-of-unitaries-approach presented by Tran et al. [8].
The technique takes as input the existing open-systems Lieb-
Robinson bound in Eq. (4) and bootstraps it to obtain a tighter
bound: ∥∥∥KY (eL

†tA)
∥∥∥ ≤ C‖KY ‖∞ ‖A‖

tα−d

rα−2d
. (6)

This bound yields the power-law light-cone contour t =

r
α−2d
α−d . The proof of this bound involves approximating the

time evolution of the operators by a sequence of operators that
span successively larger and larger subsets of the lattice, and
bounding the error of each successive approximation by the
existing Lieb-Robinson bound. We provide the full details of
the derivation in Appendix E.

C. Linear light-cone bound for d = 1, α > 3

Finally, we prove a bound with a linear light cone for open-
long-range systems with α > 3 in d = 1 dimensions based
on the techniques developed in Ref. [13]. In the process, we
tighten the tail of the Lieb-Robinson bound given in that work
from 1/r to approximately 1/rα−2. The authors of Ref. [13]
proved the following bound for the closed-system dynamics
of Hamiltonian H =

∑
ij Hij consisting of two-body terms:∥∥[eiHtAe−iHt, B]

∥∥ ≤ C ‖A‖ ‖B‖ t
r
, (7)

where B ∈ B(Y ) is an operator supported on Y . Likewise
assuming a two-body Liouvillian L =

∑
ij Lij , we obtain the

following open-systems bound:∥∥∥KY (eL
†tA)

∥∥∥ ≤ C ‖KY ‖∞ ‖A‖
t

rα−2−o(1)
, (8)

where the o(1) denotes some constant that can be made arbi-
trarily small. The result yields a linear light cone t & r for
all α > 3. The proof roughly proceeds by expanding out the
evolution operator eL

†t into a series of products of Liouvillian
terms Lij . For each term in the series, we select out a subse-
quence of terms that move the operator forward (i.e. towards
Y ) and integrate out the other terms. By only taking into ac-
count the contributions from the terms in the subsequences,
we are able to obtain a tighter Lieb-Robinson bound. We pro-
vide the mathematical details of the proof in Appendix F.

III. BOUNDS ON CORRELATIONS IN THE STEADY
STATES OF OPEN LONG-RANGE SYSTEMS

In this section, we prove the clustering of correlations in
the steady states of open long-range systems. We first state

FIG. 1. The evolution of an operator A initially supported on X by
an adjoint Liouvillian L† can be approximated by the same operator
evolved by the truncated version of the Liouvillian, L̃†, supported on
a ball of radius r around X , up to an error given by C(r, t).

a lemma that describes how to use a modified version of the
Lieb-Robinson bounds stated in the previous section to bound
how far operators can spread under evolution by the (adjoint)
Liouvillian L†. Specifically, we give a bound on the error of
approximating the time-evolution of an operator A supported
on a site X ∈ Λ by a truncated adjoint Liouvillian that only
acts on ball of radius r centered on a site X ∈ Λ (see Fig. 1).

Lemma 1 (Bounds on the error incurred by approximating of
time-evolved operators by local ones). Let A be an operator
initially supported on a site X ∈ Λ and let L̃ be the restriction
of the long-range Liouvillian L to the ball of radius r cen-
tered on X . Let Ã(t) be the time-evolved version of A under
L̃†. Then the error in the approximation of A(t) by Ã(t) is
bounded by

‖A(t)− Ã(t)‖ ≤ K‖A‖ C(r, t), (9)

whereK is some constant, and C(r, t) is a modified version of
the standard Lieb-Robinson bound adapted to the problem of
locally approximating time-evolved operators. In the large-r
limit, the tightest-known bounds for open systems with long-
range interactions with α > d scale asymptotically as

C(r, t) ∝


evt/rα−d, α > d,

tα−d+1/rα−3d, α > 3d,

t2/rα−3, α > 3, d = 1.

(10)

For α ≤ d, the bounds also depend on the system size of
the lattice N := |Λ|. When r ∝ N1/d, the bounds scale as
follows:

C(N, t) ∝


eΘ(N1−α/d)t − 1

Θ
(
N1−α/d

) , α < d,

eΘ(log(N))t − 1

Θ(log(N))
, α = d.

(11)

This concludes the statement of Lemma 1.

The proof of Lemma 1 follows straightforwardly from the
open-system Lieb-Robinson bounds detailed in Section II. In
particular, the three lines of Eq. (10) follow from Eq. (4),
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Eq. (6), and Eq. (8), respectively, while Eq. (11) comes from
Eq. (5). In Appendix A, we provide the details of the deriva-
tion of the bounds in Lemma 1. We now proceed to derive
the bounds on clustering of correlations in the steady states of
gapped, reversible Liouvillians.

A. Bound on covariance correlations

In this first section, we show how open-system Lieb-
Robinson bounds constrain the correlations in the steady state
of a Liouvillian L with dissipative gap λ.

The dissipative gap λ > 0 is defined as the magnitude of
the least-negative non-zero real part of an eigenvalue of L.
(Throughout this work, we shall also assume that the Liouvil-
lian is primitive, i.e. it has a unique steady state such that L
has one eigenvalue of zero.) In addition to the Lieb-Robinson
bounds, we will also appeal to certain “mixing bounds” which
describe how fast arbitrary initial states (or various correlation
functions) converge to the steady state.

For the mixing bounds, we need to impose “reversibility”
on the Liouvillian. We say that a Liouvillian L is s-reversible
if there exists some operator σ such that ΓsL† = LΓs is satis-
fied; the superoperator Γs is defined via Γs(f) = (σsfσ1−s+
σ1−sfσs)/2 and s ∈ [0, 1]. For s-reversible Liouvillians, it is
easy to see that σ is the steady state of L (since L†(I) = 0). A
sufficient condition for a Liouvillian to satisfy s-reversibility
(for all s) is if the dissipators Li satisfy a detailed-balance
condition (and the Hamiltonian is zero, H = 0), which is
naturally obeyed for systems coupled to a thermal bath [22].
(More explicitly, the detailed-balance condition is satisfied if
dissipators come in energy raising/lowering pairs with respect
to some effective Hamiltonian H̄—for example, if [H̄, L±] =
±ωL± and |L−|/|L+| = exp(2βω) where β−1 is an effective
temperature.)

Returning to the topic of correlations, we let ρ be a quan-
tum state defined on the lattice Λ. We are interested in the
covariance correlation between non-overlapping X,Y ∈ Λ:

Tρ(X : Y ) := sup‖f‖=‖g‖=1|Tr[(f ⊗ g)(ρXY − ρX ⊗ ρY )]|,
(12)

where f and g are Hermitian operators with f supported on
region X and g supported on region Y , and where ρX is the
reduced density matrix constructed from ρ by tracing over the
complement of X . Our goal is to bound this correlation func-
tion in terms of λ and the distance between X and Y .

We follow Theorem 9 in Ref. [22]. Let σ be the steady state
of the Liouvillian. From the right-hand side of Eq. (12), we
define

Covσ(f, g) :=
1

2
Tr[(fg + gf)σ]− Tr[fσ]Tr[gσ], (13)

which is equivalent to the term inside the sup (because f and
g commute). Now we use the bound (which follows directly
from the triangle inequality)

|Covσ(f, g)| ≤ |Covσ(ft, gt)|+ |Covσ(f, g)−Covσ(ft, gt)|.
(14)

Here ft and gt are the time-evolved versions of f and g under
L†. This step allows us to relate a static covariance to time-
dependent quantities; we will use dynamical bounds to con-
strain the form of the latter, then pick an optimal time which
maximally bounds the static covariance.

The first term on the right is constrained by the variance
bound for s-reversible, primitive Liouvillians (see Appendix
B)

|Covσ(ft, gt)| ≤ 4 ‖f‖ ‖g‖ e−2λt, (15)

where λ is the dissipative gap of L. Intuitively, this relation-
ship can be understood as follows: the operators ft, gt both
evolve (in time) toward an operator that is proportional to the
identity, so the covariance between them will eventually tend
to zero as a function of time. The rate at which this occurs is
set by the dissipative gap of the system.

To bound the second term, we use the relation Tr[σft] =
Tr[σf ], which holds for all observables f . This gives:

|Covσ(f, g)− Covσ(ft, gt)| (16)

=
1

2
(|Tr[(fg − ftgt)σ] + Tr[(gf − gtft)σ]|) (17)

=
1

2
(|Tr[((fg)t − ftgt)σ] + Tr[((gf)t − gtft)σ]|) (18)

≤ 1

2
(‖(fg)t − ftgt‖+ ‖(gf)t − gtft‖) (19)

≤ K ‖f‖ ‖g‖ C(r, t), (20)

where r := d(X,Y ). We obtain the inequality in the final line
using the open-system Lieb-Robinson bounds C(r, t) given in
Lemma 1. Specifically, we use the following Lemma, which
is itself a restatement of Corollary 7 in Ref. [22]:

Lemma 2 (Time-evolution of spatially separated observ-
ables). Take two operators A and B supported on X,Y ∈ Λ

respectively such that r := d(X,Y ), and let A(t) = eL
†tA

and B(t) = eL
†tB be their time-evolution under the adjoint

Liouvillian L†. We also define (AB)(t) = eL
†t(AB). Then

the following bound holds:

‖(AB)(t)−A(t)B(t)‖ ≤ K‖A‖‖B‖C(r, t), (21)

where C(r, t) is given by Lemma 1 and K is some constant
that depends on lattice parameters.

Lemma 2 bounds the difference between operators that
evolve together in the Heisenberg picture as opposed to evolv-
ing separately. Again we emphasize that A(t), B(t), and
(AB)(t) are not equivalent to Heisenberg-Langevin evolu-
tion, a fact that is at the core of this bound. We defer the short
proof of Lemma 2 to Appendix C and move on to proving the
bound on the covariance correlations.

Theorem 1 (Bounds on steady-state covariance correlations).
Consider Hermitian operators f, g which are supported on two
non-overlapping subsets X and Y of the d-dimensional cubic
lattice Λ, and let L be an s-reversible Liouvillian with station-
ary state σ and dissipative gap λ that satisfies the conditions
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in Eq. (2). Then there exists a constant c > 0 which only
depends on λ, v such that

Tσ(X : Y ) ≤


c
(
rα−d

) −2λ
v+2λ , α > d,

c
log(r)

α−d+1

rα−3d
, α > 3d,

c
log(r)

2

rα−3
, α > 3, d = 1.

(22)

Proof. From our previous analysis [see Eqs. (15) and (20)] on
the covariance correlation in Eq. (14), we have

|Covσ(f, g)| ≤ 4 ‖f‖ ‖g‖
(
e−2λt +

K

4
C(r, t)

)
. (23)

To obtain the tightest bound, we minimize with respect to t
the function

h(t) = e−λ
′t +K ′C(r, t), (24)

where λ′ = 2λ,K ′ = K/4.
We will perform this minimization exactly for the first case

in Eq. (22), for which C(r, t) is given by the first line of
Eq. (10); for the other cases, we instead use an approximation
to the optimal ansatz, which allows us to obtain an analytical
expression for the bound. Setting dh/dt = 0 in Eq. (24) leads
to a minimum at time

t̄ = −
(

1

λ′ + v

)
log

(
K ′v

λrα−d

)
. (25)

This implies a minimum:

h(t̄) =

(
K ′v

λ′rα−d

) λ′
λ′+v

+
K ′

rα−d

(
K ′v

λ′rα−d

) −v
λ′+v

≤ c
(
rα−d

) −2λ
v+2λ (26)

for some constant c which depends on λ, v,K. Taking the
supremum over f, g gives the bound on Tσ(X : Y ) for α > d
in the first line of Eq. (22).

For the other two cases, we use the ansatz t∗ = 1+log
(
rβ
)
.

Since the bound in the second line of Eq. (10) scales as
C(r, t) ∝ tα−d+1/rα−3d for all t, we have

h(t∗) = e−λ(1+log(rβ)) +K
(1 + log

(
rβ
)
)α−d+1

rα−3d

=
e−λ

rλβ
+K

(β log(r))α−d+1

rα−3d
+O

(
logα−d(r)

rα−3d

)
.

(27)

We choose β = (α − 3d)/λ, which is positive for α > 3d.
This gives the ultimate bound of

h(t∗) =
e−λ +K

(
α−3d
λ log r

)α−d+1

rα−3d
+O

(
logα−d(r)

rα−3d

)

= K

(
α− 3d

λ

)α−d+1
logα−d+1(r)

rα−3d

+O

(
logα−d(r)

rα−3d

)
, (28)

which proves the second line of Eq. (22). For the d = 1 case in
the last line of Eq. (22), the argument proceeds similarly, but
we obtain a slightly better scaling in the logarithmic factor.

Here we discuss the scaling of the bounds in Eq. (22), which
is depicted in Fig. 2. The effective exponent of the 1/r-scaling
of the bound for α > d is α′ ≡ (α− d) 2λ

v+2λ , as compared to
α̃ ≡ α − 3 for α > 3d (neglecting terms doubly logarithmic
in r). Since α′ decreases as a function of v, the former bound
becomes looser for larger v. In more detail, if we let x = v

λ ,
then α′ < α̃ for all α > (3x+4)d

x . In the limit of x → ∞,
α̃ is tighter for all α > 3d. Thus, for large enough α and
v, the power-law light-cone bounds [second line in Eq. (10),
which in turn comes from Eq. (6)] give asymptotically tighter
bounds on the clustering of covariance correlations than the
logarithmic light-cone bound [first line in Eq. (10), which in
turn comes from Eq. (4)].

FIG. 2. A log-log plot of the tails of the bounds on the various con-
nected correlation functions in Theorems 1, 2, and 3 for d = 1. We
include the exponentially decaying tail from the short-range interac-
tions case (red curve) for comparison. For the power-law decaying
bounds, we have different scaling exponents of the power-law tails
for the bound for α > 1 (blue curve) and the bound for α > 3 (green
curve). For a given choice of x = v

λ
, the relative positioning of the

curves holds for all α > 3x+4
x

. In the limit v � λ, the picture holds
for all α > 3.

B. Stability result and mutual information bound

In this section, we will use the aforementioned bounds to
constrain steady-state properties of open systems with power-
law interactions. In addition to the newly-derived Lieb-
Robinson bounds, we will appeal to a “mixing bound” which
provides an upper bound to how fast an arbitrary initial state
will converge to the steady state. The following mixing bound
was derived in Ref. [38], and generalizes the mixing bound of
classical Markov chains to quantum semigroups:

Lemma 3. Consider a primitive Liouvillian L that has a full-
rank steady state σ, and is 1

2 -reversible. Then an arbitrary
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initial state ρ will converge to σ at a rate bounded by

‖ρ(t)− σ‖1≤
√

2 log(‖σ−1‖)e−βt, (29)

where β is called the log-Sobolev constant associated with L.

Intuition can be gained by considering an “infinite-
temperature” steady state σ = I/dH where dH is the dimen-
sion of the Hilbert space. The mixing bound above states
that the coefficient in front of the exponential will scale as√

log(dH), i.e. it will increase with the dimension of the
Hilbert space. This is because the convergence toward the
unique steady state from an arbitrary initial state can be slow
if the dimension of the Hilbert space is large.

Theorem 2 (Effect of perturbations on reduced steady-state
density matrix). Let X,Y be two non-overlapping subsets of
a d-dimensional cubic lattice Λ. Let L1 be a primitive and
1
2 -reversible Liouvillian with log-Sobolev constant β, and let
L2 be a Liouvillian perturbation, acting trivially outside ofX .
Let ρ be the stationary state of L1, and let σ be the stationary
state of L1 + L2. Then,

‖ρY − σY ‖1≤


c log

(
‖ρ−1‖

) 1
2

(
1

rα−d

) 2β
v+2β

, α > d,

c log
(
‖ρ−1‖

) 1
2

log(r)
α−d+1

rα−3d
, α > 3d,

c log
(
‖ρ−1‖

) 1
2

log(r)
2

rα−3
, α > 3, d = 1,

(30)
where c is a constant and r is the distance between X and Y .

The theorem basically says that the effects of local pertur-
bations in the Liouvillian will not be felt significantly by the
steady state of the system at sufficiently distant locations. We
prove the theorem by first introducing a time-evolved state
to interpolate between the two steady states. This allows
us to use a combination of mixing-time and Lieb-Robinson
bounds to restrict the terms in this bound. Then we apply
the same minimization procedure used in Theorem 1 for the
covariance-correlations bound to arrive at the stated bounds in
Eq. (30) [each of which follow directly from the three cases in
Eq. (10)]. We defer the proof of this result, which is similar to
the proof of Theorem 1, to Appendix D.

We now prove a bound on the mutual information in the
steady state. The mutual information between two regions
A,B is defined as

Iρ(A : B) = S(ρAB ||ρA ⊗ ρB), (31)

where S(ρ||σ) = tr[ρ(log ρ− log σ)] is the relative entropy.
The following theorem holds.

Theorem 3 (Clustering of mutual information). Let A,B be
two non-overlapping subsets of a d-dimensional cubic lattice
Λ. Let L be a primitive and 1

2 -reversible Liouvillian with log-
Sobolev constant β. Let ρ be the stationary state of L. Then
the mutual information between the two regions Iρ(A : B) is

bounded by

Iρ(A : B) ≤


c log

(
‖ρ−1‖

) 3
2

(
1

rα−d

) 2β
v+2β

, α > d,

c log
(
‖ρ−1‖

) 3
2

log(r)
α−d+1

rα−3d
, α > 3d,

c log
(
‖ρ−1‖

) 3
2

log(r)
2

rα−3
, α > 3, d = 1,

(32)
where c is a constant and r is the distance between A,B.

The significance of this result is that the mutual-information
correlations in the steady state of an open long-range system
decay as a power-law in the distance between regions. This
bound, which relies on the existence of the log-Sobolev con-
stant, is tighter than the naive bound that would result from
simply applying the bound on the covariance correlation in
Theorem 1 to Iρ(A : B).

Proof. We define the semi-group L̃ to be the terms in L that
act entirely within balls of radius r/2 centered around A and
B, and let σ be the steady state of L̃. Simple manipulations
imply:

Iρ(A : B) = −S(ρAB) + S(ρA) + S(ρB) (33)
≤ −S(ρAB)− tr[ρA log σA]− tr[ρB log σB ]

(34)

= S(ρAB ||σA ⊗ σB). (35)

where we have used S(ρ||σ) ≥ 0 to obtain the inequality. The
RHS further satisfies the inequality:

S(ρAB ||σA⊗σB) ≤ log
(
||ρ−1

AB ||
)
||ρAB−σA⊗σB ||1, (36)

which is a standard result (c.f. Eq. (36) in Ref. [22]). From
here, we can apply the bounds in Theorem 2, using L1 = L̃,
L2 = L − L̃, Y = A ∪B, and X = Λ \ Y .

IV. SUMMARY AND OUTLOOK

In this work, we have proven generalized Lieb-Robinson
bounds which constrain the dynamics of open, Markovian sys-
tems with power-law interactions and used them to constrain
correlations in the steady state.

We comment briefly on the tightness of the bounds derived
in this work. Intuitively, one might expect that the presence
of dissipation should lead to tighter Lieb-Robinson bounds
for open systems than for their closed counterparts, since the
presence of decoherence from a bath might limit the speed of
quantum information transfer. In this work, we have general-
ized the proof of Lieb-Robinson bounds from closed system
dynamics to Markovian evolution (a priori, such bounds need
not exist for Markovian dynamics). However, our bounds only
depend on interaction range and the dimension of the lattice.
Any bound that only depends on these two inputs cannot be
tighter than the corresponding closed-system Lieb-Robinson
bound, since the latter is a special case of former. As such,
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the saturating protocols for closed systems [17, 18] can be
used to saturate open Lieb-Robinson bounds such as those un-
covered in Lemma 1. In the future, it would be interesting
to add another degree of freedom into formulations of open
Lieb-Robinson bounds: the dissipative gap. (Some progress
has been made in showing that Lieb-Robinson velocities can
get tighter in dissipative systems [20].) In principle, it might
be possible to derive Lieb-Robinson bounds that reduce to
closed-system ones when the dissipative gap is zero, and get
tighter in the presence of non-zero dissipation. Then one can
develop protocols that saturate the dissipative-gap-dependent
bounds. Another question in this direction is whether the con-
ditional evolution generated via a non-Hermitian Hamiltonian
can also exhibit a dissipative-gap-dependent Lieb-Robinson
bound that reduces to the conventional one in the dissipation-
less limit.

Setting aside the idea of a Lieb-Robinson bound that de-
pends on the dissipative gap, there is still the question of gen-
eralizing the best-known closed-system bounds to Markovian
evolution. In particular, the recent Lieb-Robinson bounds in
Refs. [14] and [15] both provide opportunities for general-
ization to open systems. Such a result would likely require
a modification of the interaction-picture technique first de-
veloped in [39] and used in both subsequent works to open-
system dynamics. Generalizing these bounds would directly
lead to tighter bounds on operator spreading in Lemma 1 and
allow us to prove tighter bounds on correlation clustering in
steady states (Theorem 1 and Theorem 3)

Another way to probe the tightness of the steady-state cor-
relation bounds derived in this work would be to improve the
mixing bounds, which currently require the open system to be
in thermal equilibrium. It would be interesting to derive more
general mixing bounds which also apply to systems that are
out of thermal equilibrium.

One of the salient applications of Lieb-Robinson bounds is
in rigorous proofs on the stability of the spectral gap in topo-
logically ordered quantum matter. For example, Ref. [3] used
closed-system Lieb-Robinson bounds to show that spatially
local perturbations will not close energy gaps in the toric code,
thus leading to phase stability against arbitrary local noise.
Can we use a similar approach to show that local perturbations
will not close the dissipative gap in a topologically-ordered
open system? A robust qubit steady-state structure would be

useful toward the quest of passive quantum error correction
[40].

Lieb-Robinson bounds can be used to prove area-law entan-
glement scaling in the ground state of one-dimensional sys-
tems with local interactions [33]. This result helps to rigor-
ously justify the validity of the matrix-product state ansatz for
the ground state of such systems. For closed systems with
power-law interactions, Lieb-Robinson bounds can be used
to further extend area-law scaling to certain broad classes of
systems [34]. Do the results presented in this paper have sim-
ilar implications for area-law scaling of the steady state? This
would have direct implications for the matrix-product opera-
tor ansatz in modeling open systems.

Finally, the Lieb-Robinson-type bounds we proved apply
for the operator, or ∞-norm. However, there exists a hier-
archy of Lieb-Robinson-like bounds that have the potential
to be tighter for certain information processing tasks such as
scrambling and transferring a quantum state of a local subsys-
tem without knowledge of the initial state of the rest of the
system. These bounds can use other norms such as the Frobe-
nius norm defined by ‖O‖F =

√
Tr{O†O} [17, 41–43] or

apply to free-particle systems [10, 17]. It would be interesting
to generalize these bounds to open systems as well.
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Appendix A: Bounds on the error incurred by approximating time-evolved operators by local ones

Here we use the open-system Lieb-Robinson bounds described in Section II of the main text to derive the scalings in Lemma 1.
Recall that Ã(t) is the evolution of the operator A under the Liouvillian L̃, the restriction of the long-range Liouvillian L to
Br(X), the ball of radius r centered on X , for time t. We bound the difference between A(t), which is A evolved by the full
Liouvillian, and Ã(t) as follows: ∥∥∥A(t)− Ã(t)

∥∥∥ =

∥∥∥∥∫ t

0

d

ds

[
eL
†(t−s)eL̃

†sA
]

ds
∥∥∥∥ (A1)

=

∥∥∥∥∫ t

0

eL
†(t−s)(L† − L̃†)Ã(s) ds

∥∥∥∥ (A2)

≤
∫ t

0

∑
j:dist(j,X)>r

∑
i:dist(i,X)≤r

∥∥∥L†ijÃ(s)
∥∥∥ ds. (A3)

In order to bound
∥∥∥L†ijÃ(s)

∥∥∥, we turn to the open-system Lieb-Robinson bounds discussed in Section II. Each line of Eq. (10)
and Eq. (11) will correspond to plugging in one of those bounds. For ease of reference, we reproduce the scalings here:

C(r, t) ∝



eΘ(N1−α/d)t − 1

Θ
(
N1−α/d

) , α < d,

eΘ(log(N))t − 1

Θ(log(N))
, α = d.

evt

rα−d
, α > d,

tα−d+1

rα−3d
, α > 3d,

t2

rα−3
, α > 3, d = 1.

(A4)

The calculations will be similar for each bound, so we will only demonstrate the result of inserting the power-law light cone
bound from Eq. (6) into Eq. (A3):∥∥∥A(t)− Ã(t)

∥∥∥ ≤ C ‖A‖ ∫ t

0

ds
∑

j:dist(j,X)>r

∑
i:d(i,X)≤r

∥∥∥L†ij∥∥∥ sα−d

dist(i,X)α−2d
(A5)

≤ C ‖A‖
∫ t

0

ds
∑

j:dist(j,X)>r

∑
i:dist(i,X)≤r

1

dist(i, j)α
sα−d

dist(i,X)α−2d
(A6)

≤ C ′ ‖A‖
∫ t

0

ds
∑

j:dist(j,X)>r

sα−d

dist(j,X)α−2d
(A7)

≤ C ′′ ‖A‖ t
α−d+1

rα−3d
. (A8)

This yields the expression in the fourth line of Eq. (A4). Performing the same operations for the other bounds gives the other
terms in Eq. (A4): the first and second lines come from Eq. (5); the third line comes from Eq. (4), and the last line comes from
Eq. (8).

Appendix B: Variance bound for reversible Liouvillians

Here we provide a derivation of the covariance bound used in Eq. (15). We show that s-reversibility is important for this
bound to hold. We define the variance of an observable f in the steady state σ as Var[f ] = Tr[f2σ]− Tr[fσ]2, which is real and
positive. We wish to find a bound for Var[ft] for the time-evolved observable ft = eL

†tf .
The Liouvillian is a non-Hermitian superoperator, which means that each eigenvalue has right and left eigenoperators:

L(ri) = λiri, L†(li) = λ∗i li. (B1)
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From the structure of the adjoint Liouvillian (L†), it is clear that L†(I) = 0, where I is the identity operator. This implies that
one of the eigenvalues λ0 is zero, and the corresponding right eigenoperator σ is called the steady state and satisfies L(σ) = 0

and eLt(σ) = σ. The eigenoperators are “bi-orthonormal” via the Hilbert-Schmidt inner product: Tr[l†i rj ] = Tr[r†i lj ] = δij .
We define the superoperator Γs(f) = (σsfσ1−s +σ1−sfσs)/2 where s ∈ [0, 1] and σ is a full-rank, Hermitian operator with

positive eigenvalues. We say that a Liouvillian is s-reversible for some s ∈ [0, 1] if ΓsL† = LΓs. By acting both sides on the
operator I, we see that σ is the steady state, i.e. that L(σ) = 0. Imposing reversibility implies that the spectrum must be real
because the Liouvillian is pseudo-Hermitian with a positive-definite metric [44].

The dynamics preserves Hermiticity of a density matrix, which implies that L(f†) = [L(f)]†, and the same for the adjoint:
L†(f†) = [L†(f)]†, where f is an arbitrary operator. This implies that (right and left) eigenoperators with real eigenvalues must
be Hermitian. For s-reversible Liouvillians, the entire spectrum is real, which implies that all eigenoperators are Hermitian.

Ref. [22] derives a bound for the time-evolved variance in a s-reversible system:

Var[ft] ≤ e−2λ1tVar[f(t = 0)], (B2)

where {−λi} is the real, non-positive spectrum of L, sorted from smallest to largest magnitude with λ0 = 0, λ1 > 0. (λ = λ1,
i.e. the dissipative gap.) Here we derive this bound using the properties of the eigenoperators of L.

Consider a general Hermitian operator which we write in terms of left eigenoperators

f =
∑
j

cj lj ⇒ ft =
∑
j

cje
−λjtlj , (B3)

where cj are real because f is Hermitian. Noting that Tr[ljσ] = 0 for j 6= 0, we find

Var[ft] = Tr


∑
j 6=0

cje
−λjtlj

2

σ

 =
∑
j 6=0

c2je
−2λjt, (B4)

where in the last equality we have used Tr[lirj ] = Tr[liΓs(lj)] = δij . From this, it is easy to see that λi>1 ≥ λ1 implies the
bound Eq. (B2). For the more general case of a complex spectrum, it is not clear how to repeat the derivation above. We therefore
find that s-reversibility is sufficient for the bound to hold. (It is unclear whether s-reversibility is necessary for the bound.)

Given the bound Eq. (B2), one can repeat the steps outlined in Eqs. [49-55] in Ref. [22] to obtain the bound used in Eq. (15)
of the main text. For completeness, we include these steps below:

|Covσ(ft, gt)| ≤
√

Var(ft)Var(gt) (B5)

≤ e−2tλ1
√

Var(f)Var(g). (B6)

The inequality in (B5) is due to Holder’s inequality. The variance can be bounded by√
Var(f) =

√
Tr[σ(f − Tr[σf ])2] (B7)

≤
√
‖(f − Tr[σf ])2‖ (B8)

≤ ‖f − Tr[σf ]‖ (B9)
≤ ‖f‖+|Tr[σf ]| (B10)
≤ 2‖f‖. (B11)

Putting together (B6) and (B11) leads to the desired bound (where λ = λ1, i.e. the dissipative gap):

|Covσ(ft, gt)| ≤ 4 ‖f‖ ‖g‖ e−2λt, (B12)

which matches Eq. (15) in the main text.

Appendix C: Bound on the difference between two operators evolving separately versus evolving together

In this section, we provide the proof of the bound in Lemma 2. We restate the lemma here for convenience:

Lemma 2. Take two operators A and B supported on single sites X,Y ∈ Λ respectively such that r := d(X,Y ), and let A(t) =

eL
†tA and B(t) = eL

†tB be their time-evolution under the Liouvillian superoperator L†. We also define (AB)(t) = eL
†t(AB).

Then the following bound holds:

‖(AB)(t)−A(t)B(t)‖ ≤ K ′‖A‖‖B‖C(r, t), (C1)
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where C(r, t) is given by the Lieb-Robinson-type bound corresponding to the system in question (see Lemma 1) and K ′ is some
constant that depends on lattice parameters.

Proof. We define the semi-group L̃† to be the terms in L† that act entirely within balls of radius r/2 centered around X and Y .
Then, let Ã(t) be the time-evolved version of A under L̃† and likewise for B̃(t). By definition, this implies that Ã(t)B̃(t) =

(ÃB)(t). We then get

‖(AB)(t)−A(t)B(t)‖ ≤ ‖(AB)(t)− (ÃB)(t)‖+ ‖A(t)B(t)− Ã(t)B̃(t)‖. (C2)

The first term on the RHS of Eq. (C2) may be bounded by the Lieb-Robinson bound stated in Lemma 1 (for an operator that is
initially supported on two sites instead of one). The second term can be bounded by

‖A(t)B(t)− Ã(t)B̃(t)‖ ≤ ‖A(t)(B(t)− B̃(t))‖+ ‖(A(t)− Ã(t))B̃(t)‖ (C3)

≤ ‖A‖‖B(t)− B̃(t)‖+ ‖A(t)− Ã(t)‖‖B‖, (C4)

using ‖A(t)‖ ≤ ‖A‖ and the submultiplicativity of the operator norm. Using the Lieb-Robinson bound again, we get

‖(AB)(t)−A(t)B(t)‖ ≤ 2K‖A‖‖B‖C(r, t), (C5)

which is the same as Eq. (21) in the main text.

Appendix D: Effect of perturbations on reduced steady-state density matrix

In this section, we provide the proof of Theorem 2. The argument hews closely to that of Lemma 11 in Ref. [22], but uses the
Lieb-Robinson bounds for open long-range systems given in the main text.

Theorem 2. Let X,Y be two non-overlapping subsets of a d-dimensional cubic lattice Λ. Let L be a primitive and s-reversible
Liouvillian with log-Sobolev constant β, and letQ be a local Liouvillian perturbation, acting trivially outside of X . Let ρ be the
stationary state of L, and let σ be the stationary state of L+Q. Then,

‖ρY − σY ‖1≤


c log

(
‖ρ−1‖

) 1
2
(

1
rα−d

) 2β
v+2β , α > d,

c log
(
‖ρ−1‖

) 1
2 log(r)α−d+1

rα−3d , α > 3d,

c log
(
‖ρ−1‖

) 1
2 log(r)2

rα−3 , α > 3,

(D1)

where c is some constant, and r is the distance between X and Y .

Proof. We use the following definition of the trace norm:

1

2
‖ρ− σ‖1= max

0≤A≤I
tr[A(ρ− σ)], (D2)

for positive semi-definite A. This implies

‖ρY − σY ‖1= 2 tr[(AY ⊗ IY c)(ρ− σ)], (D3)

where AY = trY c [argmax0≤A≤I tr[A(ρ− σ)]]. We use the triangle inequality

tr[(AY ⊗ IY c)(ρ− σ)] = tr
[
(AY ⊗ IY c)

[
(eLt − e(L+Q)t)(φ) + (σ − e(L+Q)t(φ)) + (eLt(φ)− ρ)

]]
(D4)

≤ tr
[
(AY ⊗ IY c)(eLt − e(L+Q)t)(φ)

]
+

1

2
‖trY c [σ − e(L+Q)t(φ)]‖1+

1

2
‖trY c [eLt(φ)− ρ]‖1, (D5)

where φ is an arbitrary state. Note that we have introduced two time-evolved operators in this step. We will now use a combina-
tion of mixing bounds and Lieb-Robinson bounds to restrict the RHS. The last term is bounded via the log-Sobolev bound:

1

2
‖trY c [eLt(φ)− ρ]‖1≤

(
1

2
log
(
‖ρ−1‖

)) 1
2

e−βt. (D6)
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This is basically an upper bound on how fast an arbitrary initial state must converge towards the steady state. The second term
in Eq. (D4) can be bounded using a combination of Lieb-Robinson bounds and the log-Sobolev bound:

1

2
‖trY c [σ − e(L+Q)t(φ)]‖1 = tr

[
AY e

(L+Q)t(σ − φ)
]

(D7)

= tr
[
e(L†+Q†)t(AY )(σ − φ)

]
(D8)

≤ tr
[
(e(L†+Q†)t − eL

†t)(AY )(σ − φ)
]

+ tr
[
eL
†t(AY )(σ − φ)

]
. (D9)

The last term can again be bounded via the log-Sobolev bound:

tr
[
eL
†t(AY )(σ − φ)

]
≤ 1

2
‖eLt(σ − φ)‖1≤

(
2 log

(
‖ρ−1‖

)) 1
2 e−βt. (D10)

The first term can be bounded via the Lieb-Robinson bound:

tr
[
(e(L†+Q†)t − eL

†t)(AY )(σ − φ)
]
≤ tr

[
(e(L†+Q†)t − eL

†t)(AY )
]
‖σ − φ‖1 (D11)

≤ 2 tr
[
(e(L†+Q†)t − eL

†t)(AY )
]

(D12)

≤ 2 tr
[
(e(L†+Q†)t − eL

†
Xc
t)(AY )

]
+ 2 tr

[
(eL

†
Xc
t − eL

†t)(AY )
]

(D13)

≤ K‖AY ‖C(r, t), (D14)

where LXc is the Liouvillian restricted to terms that do not intersect X . K is an arbitrary constant, and C(r, t) is the Lieb-
Robinson bound stated in Lemma 1.

The first term in Eq. (D4) can be bounded using the Lieb-Robinson approach above. Gathering all the bounds together leads
to

‖ρY − σY ‖1≤ K1

(
log
(
‖ρ−1‖

)) 1
2 e−βt +K2 C(r, t) (D15)

for arbitrary constants K1,K2. We wish to pick a time t that minimizes the RHS. We now note that the RHS has the same
functional form as the function that we needed to minimize for the covariance correlation bound. Repeating the minimization
procedure outlined in Theorem 1, we arrive at the stated bounds in Eq. (30) of the main text.

Appendix E: Generalization of the Tran et al. bound to open long-range systems

Here we provide the derivation of the open-systems Lieb-Robinson bound in Eq. (6). We use the generalization of the
Hastings & Koma bound to open systems, as described in [23]. Let KY ∈ LY be a Liouvillian with support contained in Y and
τ(t) ≡ eL†t be the backwards time-evolution operator. The corresponding superoperator bound is

C(r, t) ≡ ‖KY (τ(t)A)‖ ≤ C‖KY ‖∞ ‖A‖ |X||Y |
evt − 1

rα
, (E1)

If the supports of operators KY and A are not constant, then summing Eq. (E1) over the sites in those supports gives a bound of

C(r, t) ≤ ‖KY ‖∞ ‖A‖φ(Y )
evt

rα−d−1
, (E2)

where φ(Y ) denotes the boundary of Y . For simplicity, we will later write this bound in the form

C(r, t) ≤ ‖KY ‖∞ ‖A‖φ(Y )f(r, t). (E3)

To derive the open-systems Lieb-Robinson bound in Eq. (6), we follow the proof in Tran et al. [8]. We first divide up the
time interval [0, t] into M timesteps of size ∆t ≡ t/M and let ti = it/M for i = 0, . . . ,M . For brevity, we denote by
τi ≡ τ(tM−i, tM−i+1) the time-evolution operator from time tM−i to tM−i+1. We can decompose the evolution of A by τ(t)
into M timesteps:

τ(t)A = τMτM−1 . . . τ1A. (E4)
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We then approximate the evolution by τ1 by a truncated operator A1 such that

‖τ1A−A1‖ = ε1, (E5)

where A1 is supported on sites at most a distance ` from the support of A. We repeat the above approximation for the other time
intervals to get

‖τ2A1 −A2‖ = ε2, (E6)
‖τ3A2 −A3‖ = ε3, (E7)
. . .

‖τMAM−1 −AM‖ = εM . (E8)

At the end of this process, we have approximated τ(t)A by an operator AM supported on sites located a distance of M` from
the support of A. We bound the error of this approximation using the triangle inequality:

‖τM . . . τ1A−AM‖ ≤ ε1 + · · ·+ εM . (E9)

By choosing M` slightly less than r, we guarantee that the support of AM does not overlap with X , which implies that
KY (AM ) = 0 and therefore that the commutator

C(r, t) = ‖KY (τA)‖ ≤ ‖KY (τA−AM )‖+ ‖KY (AM )‖ = ‖KY (τA−AM )‖ (E10)

is at most the error of the approximation: ε ≡ ε1 + · · ·+ εM . To find a bound on ε1, we trace out the part of τ1A that lies outside
of A`(Y ), the ball of radius ` around the support of A:

A1 ≡
1

Tr
(
IA`(Y )c

) TrA`(Y )c(τ1A)⊗ IA`(Y )c =

∫
A`(Y )c

dµ(W )W (τ1A)W †, (E11)

where Sc denotes the complement of the set S and the trace is rewritten as an integral over Haar unitaries W supported on
A`(Y )c, and µ(W ) denotes the Haar measure.

Now the error from approximating τ1A with A1 is given by

ε1 = ‖τ1A−A1‖ =

∥∥∥∥∥τ1A−
∫
A`(Y )c

dµ(W )W (τ1A)W †

∥∥∥∥∥ (E12)

=

∥∥∥∥∥
∫
A`(Y )c

dµ(W )
[
τ1A−W (τ1A)W †

]∥∥∥∥∥ (E13)

≤
∫
A`(Y )c

dµ(W ) ‖[τ1A,W ]‖ . (E14)

Plugging this into Eq. (E14) gives

ε1 = ‖τ1A−A1‖ ≤
∫
A`(Y )c

dµ(W ) ‖A‖φ(Y )f(`,∆t) = |A|φ(Y )f(`,∆t), (E15)

where ∆t = t/M is the size of each timestep. Applying this to all of the errors yields

εj ≤ |A|φ(Xj)f(`,∆t), (E16)

where Xj is the support of Aj . Thus the new bound is

C(r, t) ≤ 2‖KY ‖∞ε ≤ 2M‖KY ‖∞|A|φmaxf(`,∆t) (E17)

= 2‖KY ‖∞|A|
t

∆t
φmaxf(`,∆t), (E18)

where φmax = maxj φ(Xj), and we replaced M with t/∆t. Without loss of generality, we may set ∆t = 1. Using the form of
f(r, t) given in Eq. (E2), this yields the bound

C(r, t) ≤ C‖KY ‖∞ ‖A‖ tφmax
ev(

r
t

)α−d−1
(E19)

≤ C‖KY ‖∞ ‖A‖
tα−d

rα−2d
, (E20)

which matches Eq. (6) in the main text.
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Appendix F: Generalization of the Chen & Lucas bound to open long-range systems

In this section, we provide the proof of the bound in Eq. (8), which generalizes the closed-system Lieb-Robinson bound from
[13] to open systems. In the process, we improve the tail of the bound from 1/r to 1/rα−2−o(1). Our goal is to prove that, for an
operator A ∈ B(X) supported on X , for KY ∈ LY a superoperator supported on Y , and for backward time-evolution operator
eL
†t, we have ∥∥∥KY (eL

†tA)
∥∥∥ ≤ C ‖KY ‖∞ ‖A‖

t

rα−2
. (F1)

To do that, we use a trivial bound ∥∥∥KY (eL
†tA)

∥∥∥ ≤ 2 ‖KY ‖∞
∥∥∥PY eL†tA∥∥∥ , (F2)

where PY is the projector onto operators supported on sites at distance Y and beyond. We will now represent the operator
A by its vectorized form |A), so that PY acting on A can be viewed as a superoperator acting on the vectorized operator:
PY (A) = PY |A). Also, from here on out, we will represent L† by L for notational convenience.

The quantity that we wish to bound is
∥∥PY eLt |A)

∥∥, which can be expanded in a series

∥∥PY eLt |A)
∥∥ =

∞∑
n=0

tn

n!
Ln |A) =

∞∑
n=0

tn

n!

∑
β1,β2,...,βn

Lβn . . .Lβ2
Lβ1
|A) , (F3)

where the βi correspond either to single-site terms or two-body couplings, which we will refer to as “jumps.”

1. More definitions

We need a few more definitions before we can proceed. Consider a sequence of jumps β = (βn, . . . , β1). First, we denote
by ν(β) the number of jumps in β and νq(β) the number of order-q jumps in β. By “order-q” jumps, we mean jumps that are
of length at least 2q−1 and less than 2q . For example, ν1(β) is the number of nearest-neighbor jumps in β. ν2(β) counts the
number of jumps of length 2, 3. Given a jump β, dist(β, y) is the minimum distance from the support of β to y. The distance
between a sequence of jumps β to y is the minimum distance between each jump and y. We also define a number Nq for each q
as follows:

Nq = d µ
2qγ

r

2q
e, (F4)

where γ ∈ (0, 1) is a parameter to be chosen later, and where µ < 2 is a constant chosen to be small enough that
∞∑
q=1

(Nq − 1)2q ≤ µr
∞∑
q=1

2−qγ < r. (F5)

We list the other definitions below (see Fig. 3 for a diagram):

• Given a sequence of jumps β, we define its q-forward subsequence according to Definition 1.

Definition 1. Given a sequence of jumps β = (βn, . . . , β1), its q-forward subsequence λ(q) is constructed as followed:

– Set λ(q) = {} to be an empty sequence and define dist({}, y) = dist(x, y).
– For j = 1, . . . ,m:

* If dist(βj , y) < dist(λ(q), y) and βj is an order-q jump, add βj to λ(q).

We denote byF the map from β to its set of q-forward subsequences Λ = {λ(q) : q = 1, . . . , r}. This map is many-to-one.

• If the q-forward subsequence λ(q) has at least Nq jumps, we construct the irreducible q-forward subsequence λ′(q) by
taking exactly the first Nq jumps in λ(q). Otherwise, we say that there is no irreducible q-forward subsequences.

• We denote the map from Λ = {λ(q)} to the set of irreducible q-forward subsequences Λ′ = {λ′(q)} by T . Note that |Λ′|
can be less than |Λ| because the length of λ(q) may be less than Nq for some q.

• From a set Λ′ = {λ′(q1), . . . ,λ′(qk)} of irreducible q-forward subsequences, we define I(Λ′) = {β : T (F(β)) ⊇ Λ′} to
be the set of sequences β that has Λ′ in its set of irreducible q-forward subsequences.
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A sequence of jumps

β Λ = {λ(q)}

q-forward
subsequences

Λ′ = {λ′(q)}

irreducible q-forward
subsequences

F T

I

FIG. 3. A summary of the definitions regarding sequences and subsequences.

2. Proof

Lemma 3 below guarantees that, for each sequence β that contributes to Eq. (F3), there exists at least one irreducible q-forward
subsequence λ′(q) for some q.

Lemma 3. For each sequence β, if PY Lβ |A) 6= 0, then there exists at least one q-forward subsequence such that νq(λ(q)) ≥ Nq .

The proof of this lemma is straightforward. If there exists no such q, then ν`(λ(q)) ≤ Nq − 1 for all q. By the construction of
λ:

r ≤
r∑
q=1

νq(λ
(q))2q ≤

r∑
q=1

(Nq − 1)2q < r, (F6)

which is a contradiction.
In the following, we use the notation χq to denote whether β has an irreducible q-forward subsequence:

χqLβ |A) =

{
Lβ |A) if ∃λ′(q) ∈ T (F(β))),

0 otherwise.
(F7)

We can rewrite the series expansion of Eq. (F3) as

PY eLt |A) = PY
∞∑
n=0

tn

n!

∑
β

Lβ |A) (F8)

= PY

[
1−

∞∏
q=1

(1− χq)

] ∞∑
n=0

tn

n!

∑
β

Lβ |A) , (F9)

where Lemma 3 ensures that 1 −
∏
`(1 − χ`) = 1 for all sequences that contribute to Eq. (F3). Expanding the product over `,

we will get terms of the form

S(q1, . . . , qk) = (−1)k+1PY χq1χq2 . . . χqk
∞∑
n=0

tn

n!

∑
β

Lβ |A) (F10)

= (−1)k+1PY
∞∑
n=0

tn

n!

∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
β∈I({λ′(q1),...,λ′(qk)})

length(β)=n

Lβ |A) , (F11)

for some distinct integers q1, . . . , qk. In the last line, we sum over all possible irreducible q-forward subsequences λ(q), for q =
q1, . . . , qk, then sum over all sequences β which contains {λ′(q1), . . . ,λ′(qk)} in its set of irreducible q-forward subsequences.

We will now upper-bound ‖S(q1, . . . , qk)‖. First, let λ′ be a sequence consisting of all jumps in λ′(q1), . . . ,λ′(qk) such that
the set of irreducible `-forward subsequences of λ′ is exactly {λ′(q1), . . . ,λ′(qk)}. From λ′, we construct β:

β =
(
βm+1,jm+1

, . . . , βm+1,1λ
′
m, . . . , λ2β2,j2 , . . . , β2,1, λ

′
1, β1,j1 , . . . , β1,1

)
, (F12)

where (λ′m, . . . , λ
′
1) = λ′, j1, . . . , jm+1 are nonnegative integers, βi,j ∈ Γi, and the sets Γi are constructed recursively for

i = 1, . . . ,m+ 1 as follows:
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• Γ1 = {(x′, y′) : dist((x′, y′), y) < dist(x, y) if (x′, y′) is an order-q jump, where q = q1, . . . , qk}.

• Set cq = r for all q = q1, . . . , qk. Each cq will remember the distance from y to the last length-q jump. For the sake of the
proof, let cq =∞ for all other q.

• For i = 2 to m:

– Γi = {(x′, y′) : dist((x′, y′), y) < cq(x′,y′).

– Update cq = dist(λ′i, y), where q is the order of the jump λ′i.

• Γm+1 = {(x′, y′)} is the set of all possible jumps.

The point of this construction is that each sequence β appears exactly once. We can then rewrite

S(q1, . . . , qk) = (−1)k+1PY
∞∑
n=0

tn

n!

∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
β∈I({λ′(q1),...,λ′(qk)})

length(β)=n

Lβ |A) , (F13)

= (−1)k+1PY
∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
λ′

∞∑
jm+1=0

· · ·
∞∑
j1=0

tm+
∑m
l=1 jl

(m+
∑m
l=1 jl)!

Ljm+1

Γm+1
Lλm+1

. . .Lλ1
Lj1Γ1
|A) , (F14)

= (−1)k+1PY
∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
λ′

∫
∆m(t)

dt1 . . . dtme
L
jm+1
Γm+1

(t−tm)Lλm+1 . . .Lλ1e
Lj1Γ1

t1 |A) , (F15)

where ∆m(t) is the simplex defined by 0 ≤ t1 ≤ · · · ≤ tm ≤ t. Now, we use the triangle inequality:

‖S(q1, . . . , qk)‖ ≤ 3

2

∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
λ′

tm

m!

1

q
αNq1
1

. . .
1

q
αNqk
k

(F16)

≤ 3

2

(
r2q

Nq1

)
. . .

(
r2q

Nqk

)(
m

Nq1 , . . . , Nqk

)
tm

m!

1

2αq1Nq1
. . .

1

2αqkNqk
(F17)

=
3

2

∏
i=1,...,k

[(
r2qi
Nqi

)
tNqi

Nqi !

1

2αqiNqi

]
, (F18)

where in the last two lines we use the fact that m = Nq1 + · · ·+Nqk . Plugging this bound into Eq. (F9), we have

∥∥PY eLt |A)
∥∥ ≤ −1 +

∏
q

[
1 +

3

2

(
r2q

Nq

)
tNq

Nq!

1

qαNq

]
. (F19)

Now we use 1 + x ≤ ex to bound

∥∥PY eLt |A)
∥∥ ≤ −1 + exp

[
3

2

∑
q

(
r2q

Nq

)
tNq

Nq!

1

qαNq

]
. (F20)

Let q∗ be the largest integer such that 2q∗(γ+1) ≤ (µr)1−γ . Note that µr/2q(γ+1) > 1 for all q ≤ q∗. We divide the sum in
Eq. (F20) into two parts:

∑
q

(
r2q

Nq

)
tNq

Nq!

1

2αqNq
≤
q∗−1∑
q=1

(
r2q

Nq

)
tNq

Nq!

1

2αqNq︸ ︷︷ ︸
=S1

+

r∑
q=q∗

rt

2(α−1)q︸ ︷︷ ︸
=S2

. (F21)

First, we estimate S2:

S2 ≤
1

1− 2−α
rt

2q∗(α−1)
≤ 1

1− 2−α
µ(1−α)/(γ+1)︸ ︷︷ ︸
=c3

t

r
α−1
γ+1−1

. (F22)
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Next, we estimate S1. Note that Nq ≥ µr
2q(γ+1) for all q:

S1 ≤
q∗−1∑
q=1

(
e2rt

N2
q 2(α−1)q

)Nq
(F23)

≤
q∗∑
q=1

(
e2t

µ2r
2q(2γ+3−α)

)Nq
, (F24)

where we have used the Stirling’s approximation x! > xxe−x. When q → 1, Nq ∝ r. The corresponding term in S1 decays
with r at least exponentially as (t/r)r. On the other hand, when q → q∗, Nq → 1 and the corresponding term in S1 is instead
suppressed by 2q(2γ+3−α) for all α > 3 + 2γ. This limit analysis suggests that we should use two different bounds on S1 for
small q and large q. For that, we define

q0 ≡ b
1

1 + γ
log2(µrκ)c ≤ 1

1 + γ
log2(µrκ) (F25)

and divide up S1 into two sums over q ≤ q0 and q0 < q ≤ q∗:

S1 ≤
q0−1∑
q=1

(
e2t

µ2r
2q(2γ+3−α)

)Nq
︸ ︷︷ ︸

=S1a

+

q∗∑
q=q0

(
e2t

µ2r
2q(2γ+3−α)

)Nq
︸ ︷︷ ︸

=S1b

. (F26)

First, we take the sum over q ≤ q0. We assume that α > 2γ + 3 and t ≤ µ2r/e2, so that the inner summand satisfies(
e2t

µ2r
2q(2γ+3−α)

)
≤ 1 (F27)

for all q ≤ q0. Because Nq decreases with q, we upper bound

S1a =

q0∑
q=1

(
e2t

µ2r
2q(2γ+3−α)

)Nq
≤
(
e2t

µ2r

)Nq0 q0∑
q=1

2q(2γ+3−α)Nq (F28)

.

(
e2t

µ2r

) µr

2q0(γ+1)

(F29)

≤
(
e2t

µ2r

)r1−κ

(F30)

≤ t

r
e−r

1−κ
, (F31)

where in the last line we further assume t ≤ µ2r/e2. This gives the sum over q ≤ q0 in the term S1. To bound the sum over
q0 < q ≤ q∗, we note that Nq−1 ≥ Nq + 1 for all q < q∗. To prove this, suppose Nq−1 = Nq . That means

µr

2(q−1)(γ+1)
< Nq−1 = Nq ≤

µr

2q(γ+1)
+ 1 (F32)

⇔1 > (2γ+1 − 1)
µr

2q(γ+1)
>

µr

2q(γ+1)
, (F33)

which contradicts with µr/2q(γ+1) > 1 for all q < q∗. Therefore, Nq−1 ≥ Nq + 1 for all q < q∗. Since Nq∗ = 1, it follows that
Nq∗−n ≥ n+ 1 > n for all n ≥ 1. We make the substitution n = q∗ − q to obtain

S1b =

q∗∑
q=q0

(
e2t

µ2r
2q(2γ+3−α)

)Nq
≤
q∗−q0∑
n=1

(
e2t

µ2r
2(q∗−n)(2γ+3−α)

)n
, (F34)

(F35)

again assuming that α > 3 + 2γ and e2t/(µ2r) < 1. Now, using the fact that q∗ − n ≥ q0, we have

2(q∗−n)(2γ+3−α) ≤ 2q0(2γ+3−α) ≤ rκ(2γ+3−α). (F36)
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Plugging this into the sum yields

q∗−q0∑
n=1

(
e2t

µ2r
2(q∗−n)(2γ+3−α)

)n
≤
q∗−q0∑
n=1

(
e2t

µ2r
rκ(2γ+3−α)

)n
(F37)

=
e2t

µ2r1−κ(2γ+3−α)

q∗−q0−1∑
n=0

(
e2t

µ2r1−κ(2γ+3−α)

)n
(F38)

≤ e2t

µ2r1−κ(2γ+3−α)

1

1− e2t
µ2r1−κ(2γ+3−α)

(F39)

≤ 2
e2

µ2︸︷︷︸
=c2

t

r1−κ(2γ+3−α)
, (F40)

assuming that e2t
µ2r1−κ(2γ+3−α) ≤ 1

2 . Combining everything, we have

S1 + S2 ≤ c1
(
t

r
e−r

1−κ
)

+ c2
t

r1−κ(2γ+3−α)
+ c3

t

r
α−1
1+γ −1

. (F41)

We make the simplification that κ = 1− γ, so that

1− κ(2γ + 3− α) = 1− (1− γ)(α− 3− 2γ) = α− 2−2γ − γα+ 3γ + 2γ2︸ ︷︷ ︸
=o(1)

. (F42)

In addition, for all γ > 0, there exists a constant cγ that may depend on α such that

e−r
γ

≤ cγ
1

rα−3
(F43)

for all r > 0. Therefore,

t

r
e−r

γ

≤ cγ
t

rα−2
. (F44)

Substituting Eqs. (F44) and (F42) into Eq. (F41) and letting c = c1cγ + c2 + c3, we have the desired bound:∥∥PY eLt |A)
∥∥ ≤ c t

rα−2−o(1)
, (F45)

which is exactly Eq. (8) in the main text.
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