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Simulating and predicting dynamics of quantum many-body systems is extremely
challenging, even for state-of-the-art computational methods, due to the spread of
entanglement across the system. However, in the long-wavelength limit, quantum
systems often admit a simplified description, which involves a small set of physical
observables and requires only a few parameters such as sound velocity or viscosity.
Unveiling the relationship between these hydrodynamic equations and the underlying
microscopic theory usually requires a great effort by condensed matter theorists. In
the present paper, we develop a new machine-learning framework for automated dis-
covery of effective equations from a limited set of available data, thus bypassing com-
plicated analytical derivations. The data can be generated from numerical simulations
or come from experimental quantum simulator platforms. Using integrable models,
where direct comparisons can be made, we reproduce previously known hydrodynamic
equations, strikingly discover novel equations and provide their derivation whenever
possible. We discover new hydrodynamic equations describing dynamics of interacting
systems, for which the derivation remains an outstanding challenge. Our approach
provides a new interpretable method to study properties of quantum materials and
quantum simulators in non-perturbative regimes.

The discovery of analytical formulations of physical
laws requires profound research intuition combined with
domain expertise and ingenuity, hence, ultimately rely-
ing on human talent and insight. Finding new ways to
automate scientists’ thinking process by leveraging ma-
chine learning methods could significantly accelerate re-
search progress. Machine learning algorithms are already
achieving superhuman performance across a broad range
of industrial applications and becoming widely utilized
in various domains of science [1]. However, the potential
of machine learning as a tool for automated derivation of
previously unknown mathematical models or equations
from numerical simulations or experimental data remains
almost untapped.

In the context of classical physics, machine learning
algorithms have been applied to extracting equations of
classical mechanics from experimental data [2], rediscov-
ering physical concepts and conservation laws [3–7], and
finding ordinary or partial differential equations describ-
ing dynamics of complex classical systems/fluids [8–11].
The focus of these works was to demonstrate capabilities
of learning algorithms rather than discovering previously
unknown equations.

Meanwhile, the power of symbolic-level discovery al-
gorithms has not been explored in the quantum setting,
namely in the context of quantum many-body trans-
port phenomena, where, as we show below, they can be
most fruitful and lead to new nontrivial analytical re-
sults. Understanding dynamics of many-particle quan-

∗ Currently at IBM Quantum, MIT-IBM Watson AI Lab, Cam-
bridge MA, 02139 US

tum systems represents a long-standing challenge, since
analytical techniques remain scarce and numerical meth-
ods have a limited evolution time horizon. While for
generic quantum evolution there is no way around the
curse of dimensionality of the Hilbert space, in many
physically relevant cases, the long-wavelength dynamics
of local observables can be described by a small set of
partial differential equations, of hydrodynamic nature,
respecting the fundamental conservation laws. Such solu-
tions are of immense importance, with applications rang-
ing from quantum critical matter in solids [12, 13] and
ultracold atoms [14, 15] to the quark-gluon plasma [16].
Prominent successful examples of hydrodynamic models
of many-body quantum systems include electron trans-
port in graphene, where electron-electron interactions re-
sult in a viscous electron flow [17–19], and a generalized
quantum hydrodynamics description of integrable sys-
tems [20–24]. Analytical derivation from first principles
of such hydrodynamic equations is a formidable task, es-
pecially in non-perturbative regimes.

In this work, we employ symbolic regression methods
to deduce partial differential equations (PDEs) governing
the evolution of physical observables in many-body quan-
tum systems. In addition to reproducing well-established
equations and finding semiclassical approximations of
exact equations, our algorithm discovered several new
PDEs, where the most striking results correspond to hy-
drodynamics in fermionic systems and in the Heisenberg
spin chain. The list of newly discovered equations, as
well as the schematic workflow of hydrodynamic PDE-
learning, are displayed in Fig. 1. The spatiotemporal
data for the evolution of physical observables is either
generated from numerical simulations or directly taken
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FIG. 1. Framework for data-driven discovery of PDEs in many-body quantum systems from real-time dynamics. Data for
the evolution of physical observables (e.g. particle density ρ and velocity v) is obtained either from numerical simulations or
directly from experimental measurements. A general ansatz for an unknown PDE is constructed by performing long-wavelength
expansion and considering leading order non-linear terms. Compact PDEs are recovered by utilizing a combinations of symbolic
regression algorithms. If a priori knowledge of underlying symmetries is available, the candidate terms are preselected on the
basis of global symmetries, e.g. parity (P ) or time-reversal (T ) symmetries. While scanning across values of the penalty
parameter λ0, we discover a frontier of PDEs with an increasing number of terms and a higher accuracy until we enter the
overfit regime. The list of previously unknown PDEs discovered with our algorithm is shown in the yellow box. Example of
the frontier of semiclassical hydrodynamic PDEs for a free fermion gas and newly discovered correction terms are presented in
the dashed blue box.

from experiment. Next, we form a library of candidate
terms from observables and their spatial derivatives. In
cases when a priori knowledge about global symmetries
of the system is available, we can significantly reduce the
size of the search space by considering only symmetry-
preserving terms. Finally, a symbolic sparse regression
problem is solved by searching through a large number
of combinations of terms in the PDE and reconstructing
the Pareto frontier—a sequence of the best matching hy-
drodynamic equations with progressively increasing com-
plexity.

Until now the applications of machine learning to
quantum problems were mostly restricted to black-
box-type neural-network models. The list of use
cases includes, among many others, identification of
phases of matter [25–27], neural-network wave function

ansatze [28–37], forecasting the dynamics of physical ob-
servables [38, 39], experimental data processing and de-
sign [40–45], and quantum computing and quantum to-
mography [46–49]. Nevertheless, these examples were ei-
ther limited to problems with a known solution, or the
solution provided by machine learning tools lacked inter-
pretability and, hence, provided only limited analytical
insight into the underlying physical system. Symbolic
regression-based methods offer a solution to these lim-
itations as they (1) are interpretable by construction,
(2) provide an additional insight to the physics of the
phenomena by recovering exact or approximate evolution
equations, (3) are robust to noise, (4) are data-efficient
with a single trajectory being sufficient in most cases,
and (5) have a low computational cost for training and
solving the evolution forward in time.
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Reconstruction of PDEs via sparse regression.—
Fundamental equations in physics usually have a com-
pact form and contain only a small number of relevant
terms, thus following Occam’s razor principle. Suppose
that we want to infer the PDE in the functional form

ut = F (u, ux, uxx, . . . , x, t), (1)

where u(t, x) = 〈O(t, x)〉 is a scalar observable corre-
sponding to a quantum operator O, and F is an un-
known function that we are trying to learn. A PDE in the
form of Eq. (1) is a natural ansatz in the long-wavelength
limit for the dynamics of many-body quantum systems
with smooth initial conditions. It is convenient to repre-
sent the function F as a linear combination of individual
terms, such that the terms could be nonlinear in u and
its spatial derivatives, e.g., uux, u2ux, (ux)2, uxuxx etc.,
which span the library of candidate terms. We convert
the PDE-learning problem to a sparse regression prob-
lem following the general method proposed in Refs. [8, 9].
The dataset is given as a matrix of observables on the dis-
cretized spatiotemporal grid u(ti, xj), which we further
vectorize to form a single vector: U = vec[u(ti, xj)]. The
library matrix Θ(U) is created by combining M columns
corresponding to candidate terms from F :

Θ(U) = [1 U Ux Uxx UUx . . .]. (2)

Thus the task of PDE learning is reduced to the identi-
fication of active terms in the library and extraction of
the values of the corresponding coefficients.

The PDE identification problem could be rewritten as
a minimization problem for the following objective func-
tion:

L(ξ) = ||Ut −Θ(U) · ξ||2 + λ0||ξ||0, (3)

ξbest = argminξL(ξ), (4)

where ξ ∈ CM is the vector of regression coefficients.
The objective function is given by the sum of an er-
ror term and an L0 penalty term (proportional to the
number of non-zero terms), which promotes sparse solu-
tions, i.e. parsimonious solutions with a small number of
nonzero terms. The presence of the L0 penalty in Eq. (3)
results in a non-convex optimization landscape, and the
optimization problem (3) is NP-hard in the general case
due to an exponential growth with M of the total num-
ber of linear combinations of terms [50, 51]. However,
the hydrodynamic nature of PDE ansatze, in conjunction
with symmetry-based analysis, leads to a rather limited
library, and the search remains within reach for most of
the problems considered. While the convex relaxation of
the optimization problem (3) with an L1 penalty instead
of the L0 penalty makes the problem tractable, such an
approach results in poor PDE reconstruction quality of
nonlinear equations when there are strong correlations
between columns of the matrix Θ [9]. The average-case
hardness of the optimization problem (3) over the set of
physically relevant PDEs remains an open question and
a subject for future research.

Naively, setting aside the sparsity requirement, the re-
gression problem could be simply solved via the least-
squares method. The least squares regression solution
will generally have no vanishing coefficients suggesting a
PDE containing all the terms presented in the library,
thus violating the assumption on model sparsity. In ad-
dition, the least-squares problem is usually poorly condi-
tioned in the presence of nearly-collinear terms [9]. Most
importantly, inactive nonlinear terms may induce a sig-
nificant bias in the values of coefficients corresponding
to the true terms. Thus naive least-squares regression,
when applied to nonlinear problems, will fail.

Development of new symbolic regression algorithms is
an active area of research, see e.g. [7, 9, 52–55]. Se-
quential Thresholding Ridge regression (STRidge) [9] is
among the state-of-the-art methods for symbolic PDE-
learning and is closely related to the SINDy (Sparse Iden-
tification of Nonlinear Dynamics) algorithm [8]. While
STRidge [9] has demonstrated strong performance for
certain PDE-learning tasks, we found that it is prone to
getting stuck in local optima when applied to challeng-
ing nonlinear problems. To overcome this difficulty, we
employ a rather straightforward BruteForce search algo-
rithm, that combines exhaustive combinatorial search for
relevant terms with linear regression. As a scalable alter-
native to BruteForce, we propose a novel CrossEntropy
algorithm. It is based, like BruteForce, on the minimiza-
tion of the objective function in Eq. (3) and relies on the
sampling-based cross-entropy method for combinatorial
optimization [56, 57]. We find that CrossEntropy and
BruteForce produce the most reliable results in our tests
and use them as primary PDE-reconstruction tools.
Interacting spins.—One of the paradigmatic examples

of many-body dynamics is the one-dimensional XXZ
spin model, which is of great interest for realizing mod-
els of quantum magnetism using quantum simulators,
such as ultracold atoms in optical lattices [58], Rydberg
atoms [59], cold polar molecules [60], superconducting
qubits [61] and trapped ions [62]. We focus on the ferro-
magnetic XXZ chain described by the Hamiltonian

HS = −
∑
i

[
Sxi S

x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1

]
+
∑
i

BiS
z
i ,

(5)
where ∆ is the anisotropy parameter, Bi are local mag-
netic fields, Sµ=x,y,z

i = σµi /2 is the spin operator, and σµi
are Pauli matrices associated with spin i. The ground
state phase diagram of the XXZ model without a mag-
netic field is controlled by the value of the anisotropy
parameter: ∆ < 1 corresponds to a U(1)-symmetric gap-
less phase, whereas, for ∆ > 1, the system is in a gapped
Ising phase. The spin dynamics in the general case can be
described by a system of interacting magnons, such that
the total magnetization is conserved. In spite of the fact
that the XXZ model (5) is integrable by Bethe ansatz, the
derivation of closed-form equations describing dynamics
of observables is a notoriously difficult task in many phys-
ically interesting cases [63]. Although our PDE-learning
methodology is applicable beyond integrable quantum



4

models, integrability helps benchmarking symbolic re-
gression algorithms against known analytical solutions.

In order to illustrate the methodology of PDE re-
construction, we start with the quench dynamics of a
wave packet in the single-magnon excitation sector of
the XXZ model. The initial state |ψ0〉 is prepared
by deforming a ferromagnetic product state: |ψ0〉 =∑
n f(n) |θn, φn〉n

∏
j 6=n |↓〉j , where |θi, φi〉 is a rotated

spin state at site i, parametrized by two Bloch angles
θi, φi, and f(n) corresponds to an envelope function,
such that the Bloch angles and the wave packet enve-
lope are smoothly varying across the spin chain. We
choose the physical observable of interest to be u(t, xi) =
1
2 (〈σxi (t)〉+ i〈σyi (t)〉). In the continuum limit, the com-
plex field u(t, x) satisfies (see Supplementary Material)

i∂tu+
1

2
∂2
xu+ (1−∆)u+B(x)u+O(∂4

xu) = 0, (6)

where B(x) is the continuous version of the magnetic
fields Bi. The gradient expansion in Eq. (6) stems from
the Taylor expansion of the tight-binding kinetic-energy
operator cos(i∂x) = 1 + ∂2

x/2 + ∂4
x/24 + . . .. Note that

Eq. (6) is valid for both ferromagnetic and antiferromag-
netic XXZ models as long as the initial state corresponds
to a superposition of a ferromagnetic product state and
a single spin flip.

In order to learn PDE (6), we construct a dataset by
exactly solving the Schrödinger equation for the Hamilto-
nian (5) in the single-magnon subspace, where the initial
state is prepared by imposing a Gaussian envelope profile
f(n). We limit our search to a set of ten candidate terms
as follows: ut = F (1, u, ∂nxu, u∂

n
xu), where n = 1, . . . , 4.

Applying our PDE-learning algorithm to a quench prob-
lem with Bi = 0 for all i and ∆ = 0.5, we arrive at the
following equation:

i∂tu+ 0.495uxx + 0.499u = 0. (7)

The inferred PDE (7) corresponds to a fixed nonzero
value of the penalty constant λ0 = 10−3, and when scan-
ning across the values of the penalty parameter our al-
gorithm finds a frontier of equations matching the ex-
act gradient expansion in (6). Although the analyti-
cal derivation of Eq. (6) is straightforward, we first dis-
covered it using the PDE-learning algorithm and then
retrospectively derived the equation. A reader inter-
ested in more examples of PDE-learning in the con-
text of single-magnon dynamics in the XXZ model—
examples featuring a confining potential B(x) and long-
range interactions—can find them in the Supplementary
Material.

Now we turn to nontrivial test cases where the ana-
lytical derivation of evolution PDEs is more challenging.
One such problem is the quench dynamics of onsite mag-
netization in the XXZ model for a domain-wall initial
state |ψ0〉 = | ↓ . . . ↓〉 ⊗ | ↑ . . . ↑〉. As it has been
analytically shown, the magnetization dynamics in the
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FIG. 2. Quench evolution of the onsite magnetization
u(t, x) = 〈Sz(t, x)〉 in XXZ model for the domain-wall initial
state: (a, b) ∆ = 0 (exact) and (c, d) ∆ = 0.5 (TEBD sim-
ulations). The solutions of the recovered PDE (9) are shown
with the red dashed line. The horizontal black dashed line at
time t0 in (a,c) separates the portion of the data t ≥ t0 that
was used for PDE-reconstruction. The four curves in panels
(b,d) correspond to the four evolution times labeled in (a,c).

continuum limit is governed by the following PDE [64]

ut + ζ0 sin

(
2π

P
u

)
ux = 0; u(t, xi) = 〈ψ(t)|Szi |ψ(t)〉,

(8)
for the values of the anisotropy parameter satisfying
∆ = cos (πQ/P ) with Q,P ∈ Z being coprime integers,

and ζ0 =
√

1−∆2/ sin(π/P ). Equation (8) could be
interpreted as the continuity equation representing con-
servation of total longitudinal magnetization. To learn
Eq. (8) with ∆ = 0, we map the XXZ Hamiltonian to
non-interacting fermions via the Jordan-Wigner trans-
formation, allowing us to simulate the dynamics exactly
for large system sizes. On the other hand, in the inter-
acting regime (∆ 6= 0), we apply the time evolving block
decimation (TEBD) algorithm to generate data for sys-
tems up to a few hundreds of lattice sites. Next, we
apply our PDE reconstruction method with the penalty
coefficient λ0 = 10−6 looking for an equation of the form
ut = F (∂nxu, u

n∂xu), n = 1 . . . 5. As a result, from data
shown in Fig. 2(a, c), we obtain

ut + a1uux + a2u
3ux + a3u

5ux = 0. (9)

First, we consider the non-interacting case, ∆→ 0, that
results in the values of extracted coefficients equal to a1 =
3.135, a2 = −5.056, and a3 = 1.92. These values can
be compared to corresponding values obtained from the
Taylor expansion of Eq. (8):

ut = − sin(πu)ux ≈ −πuux +
π3

3!
u3ux −

π5

5!
u5ux + . . . ,

(10)
which is in an excellent agreement with the values of co-
efficients ai in (9). Second, if we use TEBD data from
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(a) (b)

FIG. 3. Evolution of a high-temperature domain-wall state in
the XXZ model at the isotropic point, ∆ = 1. Comparison be-
tween tDMRG data for local magnetization u = µ−1〈Sz(t, x)〉
and the solution of the discovered PDE (11) denoted as
upde(t, x). tDMRG data is taken from Ref. [67].

Fig. 2(c) corresponding to ∆ = 0.5, we obtain a1 = 2.1,
a2 = −1.67, a3 = 0, matching the values of coefficients
from the Taylor expansion of the theoretically expected
PDE ut + sin (2π/3u)ux = 0, which follows from Eq. (8).
The proposed method not only discovers the relevant
terms in the PDEs, but also accurately identifies their
coefficients, and hence can be used as a method for pa-
rameter estimation in cases when the theoretical form of
the PDE is known.

Next, we focus on the problem where the analytical
form of the PDE remains unknown. Let us consider the
problem where the initial state is the high-temperature
domain wall state, which is qualitatively different from
the zero-temperature case discussed above. The initial
state is prepared by combining left and right reservoirs
(L and R) having opposite directions of the longitu-
dinal magnetic field, so that the density matrix reads
ρ(t = 0) = ρR ⊗ ρL, where the thermal state for the
right (left) subsystem is ρR(L) ∝ exp (±µ

∑
i∈R(L) σ

z
i ),

and µ� 1 is the inverse temperature of the initial Gibbs
state. For the mixed initial state, the spin dynamics is
ballistic in the gapless phase ∆ < 1, superdiffusive at the
isotropic point ∆ = 1, and diffusive in the gapped phase
∆ > 1 [65]. In contrast, for the zero-temperature initial
state, the dynamics is frozen in the gapped phase. Fol-
lowing Ref. [66], we define a rescaled longitudinal magne-
tization u(t, x) = 〈Sz(t, x)〉/µ. Using data from Ref. [67],
our algorithm rediscovered an effective diffusion equation
in the gapped phase, ut = D(∆)uxx, with the diffusion
constant being a function of the anisotropy parameter
∆; this form of the PDE agrees with the conclusions of
Ref. [66]. At the isotropic point ∆ = 1, we found the
following deterministic PDE that matches the data with
remarkable accuracy (see Fig. 3):

ut + auux = Duxx, a ≈ 0.24, D ≈ 1.90. (11)

The discovered Eq. (11) has the form of a viscous Burg-
ers’ equation and can be interpreted as a noise-averaged
stochastic Burgers’ equation, which is in turn equivalent
to a noise-averaged Kardar-Parisi-Zhang (KPZ) equation
for a field h(t, x) after a variable substitution u = hx (us-
ing the notation of Ref. [68]). Although KPZ scaling at
the critical point was empirically found in Ref. [67], the

microscopic derivation of dynamical equations of KPZ-
type remains an outstanding theoretical challenge.
Fermion hydrodynamics.—Another class of many-body

quantum systems exhibiting hydrodynamic behavior is
itinerant fermions. Let us first consider a system of free
fermions described by the tight-binding Hamiltonian

Hf = −J
∑
i

(c†i ci+1 + c†i+1ci)− µ
∑
i

c†i ci. (12)

The physical observables of interest are the parti-

cle density ρ(t, i) = 〈c†i ci〉 and velocity v(t, i) =

2J=〈c†i+1ci〉/ρ(t, i). We assume that the density of
fermions is small, so that the dispersion is well-
approximated by parabolic dispersion. In the semiclas-
sical approximation, the dynamics of free fermions with
quadratic dispersion εk = k2/2m is governed by the sys-
tem of hydrodynamic equations [22]:

ρt + (ρv)x = 0, vt + vvx = − 1

mρ
∂xP (ρ). (13)

The first equation is the continuity equation for the den-
sity and represents the conservation of the total num-
ber of fermions. The second equation (for the veloc-
ity) has the form of a classical Euler equation for a
barotropic compressible liquid flow, where the last term
is given by the “Pauli pressure” P (ρ) = π2ρ3/(3m). The
key assumption behind the hydrodynamic model (13) is
the semiclassical approximation |dλF (x)/dx| � 1, where
λF (x) = 2π/kF (x) is the local de Broglie wavelength and
kF (x) is the local Fermi-momentum. At the same time,
the relative amplitude of the density perturbation is not
required to be small for the validity of the hydrodynamic
model. To study fermion dynamics we prepare the ini-
tial state as the ground state of Hf + V (x), where V (x)
is a local Gaussian potential, and quench the potential
to zero at t > 0. By tuning the strength of the Gaus-
sian potential, we intentionally set the amplitude of the
hump in the density profile to be large in order to have
a higher sensitivity to nonlinear effects. Considering a
generic ansatz with candidate terms drawn from Table I,
we recover the following hydrodynamic PDEs for J = 0.5
(data are shown in Fig. 1):{

ρt + 1.006ρvx + 1.0007vρx = 0,

vt + 0.97vvx + 9.45ρρx = 0,
(14)

which is in good agreement with the expected semiclas-
sical equations (13) for m = 1/(2J) = 1 (note that
π2 ≈ 9.869). The recovered hydrodynamic model (14)
works surprisingly well up to the time tc of the formation
of the “gradient catastrophe” [69, 70], see Fig. 4(a). For
t ≥ tc, the hydrodynamic model (13) does not apply be-
cause the semiclassical approximation breaks down [69].
The deviation of the recovered coefficients in the second
line of Eq. (14) from theoretical values is due to higher-
order terms in the expansion of the tight-binding fermion
dispersion, while the continuity equation in the first line
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FIG. 4. Hydrodynamics in a non-interacting fermion gas:
comparison of the exact evolution of fermion density ρ(t, x)
in the tight-binding model and the solutions of the recovered
hydrodynamic system of PDEs [Eqs. (14, 16)]. (a) Nearest-
neighbor hopping only (J2 = 0), (b) fermion hydrodynamics
in the J1−J2 model at the critical (Lifshitz) point correspond-
ing to quartic dispersion εk = βk4/4. The evolution times are
(a) J1t = (0, 125, 250, 375) and (b) J1t = (0, 1250, 2500, 3750).
Number of lattice sites is L = 1000.

of Eq. (14) is basically exact. In addition to the iden-
tification of non-linear equations, our method is able to
recover linearized approximations of exact equations, by-
passing analytical derivations. If we create an initial state
with a small variation of the fermion density ρ = ρ0 +δρ,
where δρ/ρ0 � 1, our algorithm recovers a linearized
form of Euler equations, which could be reduced to the
wave equation δρtt − v2

F δρxx = 0, where vF = πρ0 is the
wave speed, which coincides with the Fermi velocity.

TABLE I. Candidate terms for the rhs of Euler equation
vt = G(·). The library of candidate terms is constructed
by considering an expansion in powers of fermion density,
fermion velocity, and their spatial derivatives: we include
terms up to quadratic order in v (vm with m ∈ [0, 1, 2])
and up to fifth order in ρ (ρn with n ∈ [0, 1, . . . , 5]), with
spatial derivatives up to the second order. Only symmetry-
allowed terms are selected, i.e. the last row, which contains
terms that have the following signature with respect to P -
and T -inversion transformations: (P, T ) = (−,+). Exploit-
ing global symmetries in the PDE search is one of our novel
contributions that leads to a significant reduction of the size of
the candidate-terms library, thus facilitating the optimization
problem.

Candidate terms P T Select
ρn, ρnv2, ρnρxx, ρnv2ρxx, ρnρ2x, ρnv2x + + ×

ρnvxx, ρnv, ρxvx - - ×
vx, ρvx, ρ2vx, . . . + - ×

ρnρx, ρnvvx, v2ρnρx, ρx/ρ, v2ρx/ρ - + X

Semiclassical equations of fermion hydrodynamics (13)
are derived within the assumption of a quadratic disper-
sion. Therefore, more accurate equations can be obtained
by accounting for higher order terms in the Taylor ex-
pansion of the tight-binding dispersion ε(k) ∝ cos k. To

the best of our knowledge, such corrections to the free-
fermion Euler equation were not previously considered.
With CrossEntropy and BruteForce algorithms, we were
able to discover new correction terms:

vt + vvx +
π2

m2
ρρx ≈ b1ρ3ρx + b2v

2ρρx + b3ρ
2vvx. (15)

Analytical derivation of the form of the correction terms
and of the values of the corresponding coefficients is non-
trivial (see Supplementary Material), while the algorithm
readily discovers them. The coefficients bi are positive,
and the terms on the rhs of Eq. (15) are in fact responsi-
ble for the shift of the values of extracted coefficients in
(14) relative to the Euler equation for free fermions with
a parabolic dispersion, given in Eq. (13). One should
note that the discovery of subtle nonlinear corrections is
possible only at the cost of increasing the precision of
the input data by refining the spatiotemporal grid of the
dataset.

For the next step, we extend the noninteracting tight-
binding model (12) by adding next-nearest neighbor
hopping terms to yield the so-called J1 − J2 model.
Fermion hydrodynamics in such a model has not been
previously studied. The dispersion of fermions reads
εk = −2J1 cos (k)− 2J2 cos (2k). In the long-wavelength
limit, we can perform expansion up to fourth order in k:

εk = ε0 + αk2

2 + βk4

4 + O(k6), where α = 2(J1 + 4J2),

β = −
(
J1
3 + 16

3 J2

)
. By tuning the ratio of the hop-

pings J2/J1, one can set the coefficient α in front of the
quadratic term to zero or even change the sign, while
keeping β positive. The critical point α = 0 is a Lifshitz
point where the Fermi surface changes the topology: a
single Fermi pocket at α > 0 splits into two pockets at
α < 0 [71]. By taking symmetry-allowed terms, i.e. the
last row of Table I, the PDE-learning algorithm discov-
ered the following equation for J1 = 0.5 and J2 = −0.125
(corresponding to the Lifshitz critical point α = 0):

vt + 4.98vvx + 225.7ρ5ρx ≈ 0. (16)

The hydrodynamic equation at the Lifshitz critical point
reads (see derivation in the Supplementary Material)

vt+5vvx − v2(log ρ)x + β2π6ρ5ρx ≈ 0, (17)

which, to the best of our knowledge, has not been pre-
viously reported. Eq. (17) is derived by performing an
expansion in v/vF , where vF ∝ βρ3 is the Fermi velocity,
and keeping only the leading terms. The PDE discov-
ery algorithm missed the term v2(log ρ)x. However, this
term is negligible in the regime of parameters considered,
and it does not affect the solution of the PDE, see Fig.
4(b). As in the case of the fermionic gas with quadratic
dispersion, the solution of the hydrodynamic PDE (17)
develops a gradient catastrophe instability at large evo-
lution times, that marks a breakdown of the semiclassical
approximation.

Now we turn to the problem of the interacting Fermi-
Hubbard model, adding to Eq. (12) fermion-fermion in-
teractions in the form Vint = U

∑
i nini+1+U2

∑
i nini+2,
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where U and U2 are the nearest-neighbor and next-
nearest-neighbor couplings, respectively. Next-nearest-
neighbor couplings break integrability of the Fermi-
Hubbard model, resulting in generic hydrodynamic be-
haviour. Similar to the case of non-interacting fermion
systems, we prepare the initial state as the ground state
of the Fermi-Hubbard model in the presence of an exter-
nal localized potential. By employing our PDE-learning
framework, we discover that fermion dynamics agrees
with the Navier-Stokes-like equation for the velocity in
the form

vt + vvx + κρρx = νvxx (18)

combined with the continuity equation for the fermion
density, where κ > 0 is the coefficient accounting for
the renormalization of the pressure term, and ν ≥ 0 is
an emergent effective viscosity originating from short-
range interactions. In Fig. 5(a,b), we compare solu-
tions of Eq. (18) with TEBD simulations. We find that
the extracted pressure term κ(U) in the model with
nearest-neighbor interactions (U2 = 0) depends uni-
versally on the coupling constant, showing agreement
with the Tomonaga-Luttinger theory [72] in the region
U/J . 1, see Fig. 5(c). Simultaneously, the role of vis-
cosity is more complicated and depends on the evolution
time. For short times, the system is well-described in
terms of an ideal Euler liquid, ν = 0, which means that
the algorithm does not favor the viscous term for the val-
ues of the penalty constant λ0 & 10−3 for evolution times
Jt . 10. In contrast, for longer times, the effect of viscos-
ity becomes comparable to other terms, and ν saturates
to a universal value at late times (see Supplementary Ma-
terial). Notably, a similar Navier-Stokes-like term was
recently discovered in interacting 1D fermionic systems
within the generalized hydrodynamics framework [73].

Analysis of experimental data.—Our methodology for
reconstructing PDEs can be directly applied to study
quantum hydrodynamic regimes in quench-type exper-
iments with systems including ultracold atoms, trapped
ions, and superconducting circuits. In an experimen-
tal setting, it is quite common that some physical ob-
servables cannot be directly measured. For example, in
ultracold-atom experiments, the evolution of atomic den-
sity is obtained via optical absorption measurements, but
the velocity field is not directly accessible. This limita-
tion can be overcome by leveraging the continuity equa-
tion that provides a relationship between density and ve-
locity. We reconstruct velocity field data v(t, x) from
density data ρ(t, x) by integrating the continuity equa-
tion:

v(t, x) = − 1

ρ(t, x)

∫ x

−∞
dx′∂tρ(t, x′). (19)

We test our PDE-learning algorithm using experimen-
tal data corresponding to the quench expansion of a 1D
gas of interacting bosons on an atom chip [74]. The
atoms were confined in a double-well potential and, af-
ter releasing the potential, the evolution of gas density

was measured. The system of bosons could be described
by a Lieb-Liniger interacting gas with a contact repul-
sion [75]. The original data has sufficient spatial resolu-
tion, but contains only a few time-points. We performed
additional data preprocessing (noise filtering and inter-
polation) to obtain the necessary resolution to approxi-
mate derivatives with sufficient precision, see details in
Supplementary Material.

The PDE discovery algorithm finds the following equa-
tion

vt + vvx = −T (log ρ)x + ν vxx, (20)

where we used P -symmetric candidate terms from Ta-
ble I. The comparison between the experimental data
and the solution of the recovered PDE (20) are shown
in Fig. 6. The first term on the rhs of Eq. (20) has
the form of a thermal pressure of an ideal Bolzmann
gas, P (ρ) = Tρ with temperature T . Hence, we con-
clude that the experimentally realized Lieb-Liniger gas
behaves as an ideal thermal gas. The viscosity-type con-
tribution νvxx in Eq. (20) can be interpreted as an effec-
tive long-wavelength phenomenological term arising from
short-range interactions between bosons. The viscos-
ity term regularizes the gradient catastrophe instability,
commonly occurring in the nonlinear Euler-type equa-
tions of quantum hydrodynamics for ideal liquid flow [70].
Thus the viscosity term significantly extends the domain
of validity of conventional hydrodynamics and results in
a much better agreement with experimental data. Im-
portantly, the reconstructed PDE (20) is different from a
widely-used conventional hydrodynamic model, based on
the Gross-Pitaevskii equation, where the pressure term
P (ρ) ∝ ρ2 originates from the |ψ|4 interaction, rather
than from thermal effects [76]. Based on the values of
the extracted coefficient T , we estimate the temperature
of the boson gas: T ≈ 0.05µK. We would like to note
that the predictions of conventional and generalized hy-
drodynamics coincide at short times, whereas, at long
evolution times, the generalized hydrodynamics descrip-
tion should be more accurate. In the future, our PDE-
learning method could be extended to handle integro-
differential equations, thus providing a direct connection
to the generalized hydrodynamics framework for quan-
tum integrable systems [77].

Albeit the proposed PDE-learning method for the dis-
covery of hydrodynamic equations in many-body quan-
tum systems is very powerful, it has certain limita-
tions. The major problem is that closed-form PDEs
for the chosen set of physical observables might not
exist at all. A well-known example is the Bo-
goliubov–Born–Green–Kirkwood–Yvon chain of kinetic
equations for the n-point correlation functions. For
generic interacting quantum systems, when starting with
arbitrary initial states, this chain may continue indefi-
nitely, involving higher-order correlation functions [78].
In this case, one can still approximately close the ki-
netic chain of equations, and the PDE-learning frame-
work offers a new powerful tool to find such approximate
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(a) (b) (c)

FIG. 5. Hydrodynamics in the 1D Fermi-Hubbard model. (a, b) Comparison between TEBD simulations (crosses, U/J = 2,
U2/J = 2) and solutions of the discovered hydrodynamic PDE (18). Solid blue line shows the solution of the Euler-fluid PDE
(ν = 0), and solid red line corresponds to the solution of the viscous Navier-Stokes PDE (ν > 0). (c) Dependence of the
Pauli pressure renormalization parameter κ(U) on the fermion-fermion interaction strength U in the Fermi-Hubbard model
with nearest-neighbor interactions (U2 = 0); here κ0 ≡ κ(U = 0). Tomonaga-Luttinger (T-L) theory prediction [72] for κ(U) is
shown with the dashed black line.
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Atom chip data

FIG. 6. PDE-reconstruction from experimental data for the
expansion of an interacting boson gas on an atom chip from
a double-well potential [74]. Thick shadowed lines show ex-
perimental data for atom density (uniformly spaced within
the time interval [0, 45] ms), while solid lines correspond to
the solution of the inferred PDE (20) and the dashed lines
show the post-processed (smoothed) data used for training
our PDE-learning algorithm. We added vertical displacement
to density profiles at each time step for visualization purposes
(black horizontal dashes). The vertical scale for the density
is in arbitrary units.

closures. Although a number of works investigated the
closure of a hierarchical cumulant expansion in a similar
context, they were based on rather ad-hoc assumptions
on the properties of the quantum state [79–81], and as
a result are not applicable in non-perturbative regimes.
In contrast, the PDE-learning method proposed in the
current paper could be used to approximately solve the
closure problem for strongly-interacting systems, and we
reserve this for future work.

Conclusions and outlook.—In the present paper, we

developed a new framework for symbolic regression-
based PDE-learning and applied it to a variety of non-
equilibrium quantum problems. Our algorithm is able to
find analytical forms of dynamical PDEs directly from
raw data by discovering the long-wavelength limit of
exact or approximate semiclassical equations, thus cir-
cumventing their analytical derivation. First, we bench-
marked our method on problems where exact evolution
PDEs were known. Second, we discovered new PDEs
that we were then able to derive analytically. Third, we
discovered new PDEs whose analytical derivation is still
an open problem.

While we demonstrated our method in 1D, it applies in
any dimension. Our work thus opens up new avenues for
machine-assisted discovery of hydrodynamic-type equa-
tions in a wide range of many-body quantum systems, in-
cluding ultracold atoms [58, 59], trapped ions [62], super-
conducting circuits [61], critical phenomena in solids [82],
and hydrodynamics in graphene [17]. In particular, our
method can be used to find approximate solutions to the
closure problem for a hierarchy of quantum kinetic equa-
tions, discover conservation laws in many-body quantum
systems, and uncover PDEs in open systems with a com-
plex bath environment. Closed-form PDEs for physical
observables naturally arise in a semiclassical limit, such
as the large spin limit of the XXZ model. Thus the
PDE-learning framework can be fruitful for studying the
quantum-classical correspondence. The presented PDE-
learning approach is especially powerful in the case of
strongly interacting quantum systems, where theoretical
tools based on perturbative calculations are no longer
applicable. Symbolic PDE-learning approaches can serve
as a guide for theorists deriving effective long-wavelength
descriptions. Furthermore, experimentalists could utilize
this approach to find the best-matching hydrodynamic
model to describe the observed dynamics in a many-body
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quantum experiment or enhance parameter estimation
in case a theoretical PDE for the dynamics is already
known. Finally, it would be interesting to prove rigor-
ous classical and quantum complexity results on finding
hydrodynamic equations for any given Hamiltonian with
and without access to data.
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I. DETAILS OF SPARSE REGRESSION ALGORITHMS

In this Section of the Supplementary Material, we discuss algorithms for the optimization of the non-convex objective
function for the sparse regression problem:

L = ||Ut −Θ(U,Ux, . . .) · ξ||2 + λ0||ξ||0. (S1)

In Sections I A and I B, we provide additional details, including the pseudocode, of the brute-force algorithm and the
cross-entropy algorithm, respectively. In Sections I C and I D, we briefly discuss two other popular sparse-regression
methods: Sequential Thresholding and Ridge regression (STRidge) and least absolute shrinkage and selection operator
(LASSO) regression.

A. BruteForce algorithm

The brute-force algorithm (BruteForce) for PDE-learning consists of two stages (see Algorithm I A below): (i)
looping over all possible combinations of terms from the dictionary, (ii) for the selected terms, reconstruct coefficients
via linear regression and evaluate the objective function (S1). Finally, the algorithm returns coefficients that minimize
the objective function L. Although this algorithm has exponential complexity when increasing the number of candidate
terms, it could still be used in practice in a lot of cases. The largest problem instance we were able to solve with
BruteForce contained M = 20 candidate terms (see Table SI, Problems #9, #10).
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Algorithm 1 BruteForce algorithm for sparse selection of PDE terms

1: function BruteForceL0(Ut, D
n
xU, λ0)

2: for nonzero indexes ∈ all 2M combinations of M terms in the dictionary Θ do . Iterate over term combinations
3: Θ̃ = Θ[:, nonzero indexes] . Select columns in the dictionary matrix

4: ξ = (Θ̃†Θ̃)−1Θ̃†Ut . Perform linear regression to extract nonzero coefficients

5: L ← ||Ut − Θ̃(U,Dn
xU) · ξ||2 + λ0||ξ||0 . Evaluate objective function

6: if L < Lbest then . Objective function improved
7: Lbest ← L
8: ξbest ← ξ

9: return ξbest

B. CrossEntropy algorithm

As a scalable alternative to the BruteForce method, we propose a sampling-based algorithm which we call CrossEn-
tropy, see Algorithm 2. CrossEntropy is conceptually similar to BruteForce, but, instead of performing an exhaustive
search over 2M combinations of terms, it relies on the Cross-Entropy method (CEM) [56, 57] as a subroutine for
combinatorial optimization (term selection) of a “black-box” function L. CEM is a heuristic method that shows reli-
able practical performance for hard optimization problems (e.g. the travelling salesman problem), is computationally
efficient and is relatively simple in implementation. The CEM algorithm is analogous to a derivative-free evolutionary
algorithm with a Monte-Carlo-like update rule. The key steps in the algorithm are

• Initialize a weights vector ~W = (W1, . . . ,WM ) with zero values. The weights define the probability of a term
being present via the Bolzmann distribution (SoftMax policy).

• Create a population of weights vectors, independently update vector elements in the population by adding i.i.d.
Gaussian fluctuations.

• In order to estimate the value of the objective function L in each population, we perform a series of rollouts for
a given vector of SoftMax weights. In each rollout, the indexes of nonzero terms are sampled using the SoftMax
policy. The coefficients ξ of non-zero terms are recovered via linear regression and then used for the evaluation
of the objective function L.

• Select top performing (“elite”) candidates in the population (e.g. top 1%) according to the objective function
L.

• Update the current weights vector by taking element-wise mean of the elite weights array.

The largest problem we were able to solve with the CrossEntropy algorithm contained M = 45 terms (see Ta-
ble SI, Problems #11, #12). Typical values of hyperparameters we used in our PDE-learning experiments are:
number of rollouts = 100, batch size = 100, elite fraction = 1%.
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Algorithm 2 Sparse selection algorithm based on the Cross Entropy method for combinatorial optimization

1: function SoftMaxPolicy( ~W )
2: for i in 1, . . . ,M do
3: pi ← exp (Wi)/

∑M
j=1 exp (Wj) . Get term probabilities from weights vector ~W

4: indx[i] ∼ Bernoulli(pi) . Sample indices of nonzero terms from Bernoulli distribution

5: return indx . Return vector of indexes of nonzero terms
6: function EstimateBestLossAndCoefs( ~W,Ut, D

n
xU, num rollouts, λ0)

7: for rollout in 1, . . . , num rollouts do . Perform sampling of indexes of non-zero terms and estimate min loss for a
fixed vector of SoftMax weights

8: indx← SoftMaxPolicy( ~W )

9: Θ̃ = Θ[:, indx] . Select columns in the dictionary matrix

10: ξ[indxs] = (Θ̃†Θ̃)−1Θ̃†Ut . Perform linear regression to extract nonzero coefficients
11: ξ[∼ indx]← 0 . Assign zero values to the remaining coefficients

12: L ← ||Ut − Θ̃(U) · ξ||2 + λ0||ξ||0 . Compute current loss function
13: if L < Lbest then . Check if the objective function has improved
14: Lbest ← L
15: ξbest ← ξ

16: return Lbest, ξbest
17: function TrainCEM(elite frac, batch size, numrollouts)

18: ~Wpopul ← [batch size×M ] . Initialize array of weights for the CEM population
19: for iter in 1, . . . , niter do
20: for b in 1, . . . , batch size do

21: ~dW ∼ N (0, σW ) . Update weights in each batch by adding vector of i.i.d. Gaussian variables

22: ~Wpopul[b] = ~W + ~dW

23: Lpopul[b], ξ ← EstimateBestLossAndCoefs( ~Wpopul[b], numrollouts)

24: indxelite ← argsort(Lpopul)[: elite frac× batch size] . Select elite weights, e.g. 1% of top performing weights
samples from the population

25: ~Welite ← ~Wpopul[indxelite]

26: ~W ← mean( ~Welite)

27: σW ← std( ~Welite)

28: return ~W
29: function CrossEntropyL0(Ut, D

n
xU, λ0, elite frac = 0.01, numrollouts, batch size, niter)

30: ~W ← TrainCEM(elite frac, batch size, num rollouts)

31: Lbest, ξbest ← EstimateBestLossAndCoefs( ~W,Ut, D
n
xU, num rollouts, λ0)

32: return ξbest

C. Sequential Thresholding and Ridge regression (STRidge)

STRidge is a heuristic algorithm for the least-squares sparse regression problem in the presence of L0 and L2

penalty terms and is based on an annealing-like schedule for thresholding of non-zero regression coefficients. See
description and pseudocode in Ref. 9.

D. LASSO regression

A commonly used approach to promote sparsity is to consider convex relaxation of the original problem (S1) by using
L1 regularization instead of L0. This method is known as LASSO regression: L = ||Ut−Θ(U,Ux, . . .) · ξ||22 +λ1||ξ||1.
However, LASSO tends to have difficulty finding a sparse basis when the data matrix Θ has high correlations between
columns (which could be the case for nonlinear terms in Θ), which results in a poor PDE reconstruction quality [9].

E. Summary of PDE-reconstruction results for various sparse selection algorithms

In this subsection, we present a short summary (see table SI) of the PDE-learning problems considered in the main
text and the performance of three algorithms for term selection: BruteForce, STRidge, and CrossEntropy.
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TABLE SI. Performance of sparse selection algorithms on the problems considered in the main text. Successful reconstruction
of an entire sequence of PDEs is marked as (X), failure is marked as (×), and partial success—when only some PDEs depending
on the value of λ0 were correctly identified—is marked as (±). In the problem list column, “fermion hydro.” stands for “fermion
hydrodynamics”, while “extended lib.” refers to an extended library of candidate terms.

Problem BruteForce STRidge CrossEntropy Candidate Terms

1 Single magnon, B(x) = 0 X X X
1, ∂nxu, u∂nxu,
n ∈ [1, .., 4]

2 Single magnon, B(x) = B0(x− x0)2 X X X 1, ∂nxu, (x− x0)nu, n ∈ [1, .., 4]

3
Domain wall, XXZ (∆ = 0),

zero temperature
X X X ∂nxu, um∂xu n ∈ [1, .., 4], m ∈ [1, .., 5]

4
Domain wall, XXZ (∆ = 0),

zero temperature (extended lib.)
X × X

∂nxu, um∂xu, sin (2πu/P )ux
n ∈ [1, .., 4], m ∈ [1, .., 5], P ∈ [1, .., 10]

5
Domain wall, XXZ (∆/J = 0.5),

zero temperature
X ± X ∂nxu, um∂x, n ∈ [1, .., 4], m ∈ [1, .., 5]

6
Domain wall, XXZ (∆/J = 0.5),

zero temperature (extended lib.)
X ± X

∂nxu, um∂xu, sin (2πu/P )ux
n ∈ [1, .., 4], m ∈ [1, .., 5], P ∈ [1, .., 10]

7
Domain wall, XXZ (∆/J = 1),

high-temperature state
X X X

ut = −∂xJ (u),
J (u): un, un∂xu, un∂2

xu, n ∈ [1, .., 5]

8
Domain wall, XXZ (∆/J = 2),

high-temperature state
X X X

ut = −∂xJ (u),
J (u): un, un∂xu, un∂2

xu, n ∈ [1, .., 5]

9
Fermion hydro.,

U = 0 (J1 = 0.5, J2 = 0)
X × X Table SII (P, T ) = (−,+)

10
Fermion hydro.,

U = 0 (J1 = 0.5, J2 = −0.125)
X × X Table SII (P, T ) = (−,+)

11
Fermion hydro. (extended lib.),

U = 0 (J1 = 0.5, J2 = 0)
not tractable × X all terms from Table SII

12
Fermion hydro. (extended lib.),

U = 0 (J1 = 0.5, J2 = −0.125)
not tractable × X all terms from Table SII

13
Fermion hydro.,

U/J = 4 (J1 = 0.5, J2 = 0)
not tractable × X Table SII (P, T ) = (−, · )

II. PDE-LEARNING OF QUENCH DYNAMICS IN THE XXZ MODEL: ANALYTICAL DERIVATIONS
AND ADDITIONAL EXAMPLES

In this Section, we derive closed-form PDEs presented in the main text describing long-wavelength dynamics of
excitations in the low-energy sector of the XXZ model. We provide additional details of PDE-learning methodology
and discuss numerical schemes to calculate spatiotemporal derivatives from the data.

We consider the following benchmarking cases: (i) single-magnon dynamics in the nearest-neighbor XXZ model
with/without an external magnetic field [Section II A], (ii) non-local PDEs for single-magnon dynamics in the long-
range XXZ model [Section II C], (iii) evolution of a domain-wall initial state corresponding to a zero temperature
product state and to a high-temperature Gibbs state [Section II D]. Cases (i) and (iii) were considered in the main
text, whereas, for case (ii), we introduce a new model—the long-range interacting XXZ spin chain—and show how
our PDE-learning method can be extended to systems with power-law-decaying interactions.
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A. Magnon dynamics in the nearest-neighbor XXZ model

In this subsection, we consider quench dynamics of the XXZ spin chain in the single-magnon excitation sector and
provide an analytical derivation of Eq. (6) from the main text.

The Hamiltonian of the XXZ model reads

H =
∑
i

[
J
(
Sxi S

x
i+1 + Syi S

y
i+1

)
+ ∆Szi S

z
i+1 +BiS

z
i

]
, (S2)

where Sµi = σµi /2 are spin operators, σµi are standard Pauli operators associated with the ith spin polarization,
and coefficients J , ∆, and B are real parameters. In our simulations we set periodic boundary conditions in the
Hamiltonian (S2).

The initial state |ψ0〉 is prepared as a wave packet in the single-magnon excitation sector over the ferromagnetic
product state:

|ψ0〉 =
∑
n

f(n)U(θn, φn) |↓〉n
∏
j 6=n

|↓〉j =
1√
πσ2

∑
n

e−(n−x0)2/σ2+ik0n|θn, φn〉n
∏
j 6=n

|↓〉j , (S3)

where f(n) is Gaussian wave-packet envelope function corresponding to momentum k0 and centered around coordinate
x0. Here U(θn, φn) is an SU(2) unitary rotation operator acting as

|θn, φn〉 = U(θn, φn) |↓〉n = cos (θn/2) |↑〉n + sin (θn/2)eiφn |↓〉n . (S4)

We introduce the following complex-valued function u(t, x). At the sites of the spin chain, xi ≡ ia, where a is the
lattice spacing, we set the value of the function to

u(t, xi) = 〈S+
i (t)〉 =

1

2
[〈σxi (t)〉+ i〈σyi (t)〉], (S5)

where S+
i = Sxi + iSyi = 1

2 (σxi + iσyi ) is the spin raising operator, O(t) = exp (iHt)O exp (−iHt) is the time-dependent
operator in the Heisenberg picture, and 〈O〉 ≡ 〈ψ0|O|ψ0〉 is the expectation value taken in the initial state.

To derive the equations of motion, we use the canonical commutation relations for the spin operators,

[S+
i (t), S−j (t)] = 2δijS

z
i (t), [S+

i (t), Szj (t)] = −δijS+
i (t). (S6)

Calculating the time derivative of the observable of interest in the Heisenberg representation, we obtain

i∂t〈S+
i (t)〉 = 〈[S+

i (t), H]〉 = J
(
〈S+
i−1(t)Szi (t)〉+ 〈S+

i+1(t)Szi (t)〉
)
−∆

(
〈S+
i (t)Szi+1(t)〉+ 〈S+

i (t)Szi−1(t)〉
)
−Bi〈S+

i (t)〉.
(S7)

The right-hand side of Eq. (S7) depends on two-point same-time correlation functions of the type 〈S+
i (t)Szj (t)〉.

Therefore, for a generic initial state, the time derivative could not be expressed via u(t, xi) only. However, in the
case of initial states in the form of Eq. (S3), i.e. a superposition of a zero-magnon state and a one-magnon state—

|ψ0〉 = |ψ0,m=0〉 + |ψ0,m=1〉 where |ψm=0〉 = |↓〉⊗L—the equation can be simplified. Projecting the r.h.s. terms in
Eq. (S7) onto the span of |ψ0,m=0〉 and |ψ0,m=1〉), we obtain

〈ψ0,m=1|S+
i (t)|ψ0,m=0〉 = u(t, xi), (S8)

〈S+
i (t)Szj (t)〉 = 〈ψ0,m=1|S+

i (t)Szj (t)|ψ0,m=0〉 =
1

2
u(t, xi). (S9)

As a result, we arrive at the following closed equation:

i∂tu(t, xi) =
J

2

(
u(t, xi+1) + u(t, xi−1)

)
−∆u(t, xi)−Biu(t, xi). (S10)

Due to the linearity of dynamical equations, there is no dependence on the choice of the envelope function f(n) for
the initial state [see Eq. (S3)].

We would like to note that the simple closed form of Eq. (S10) is due to the specific choice of observable u = 〈S+
i (t)〉.

Another natural choice of initial condition and observable is

|ψ0〉 =
∑
n

f(n)| ↑〉n
∏
j 6=n

| ↓〉j , ũ(t, i) = 〈Szi (t)〉. (S11)
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The initial state in Eq. (S11) has a conventional form of a single-magnon excitation, whereas Eq. (S3) corresponds
to a superposition of a single-magnon and a ferromagnetic ground state. However, in the former case, the onsite
z-magnetization alone does not contain enough information to predict its evolution at later times, hence, for this
choice of observable ũ(t, x), a simple self-contained PDE does not exist.

Now we consider the long-wavelength limit of Eq. (S10). We assume that u(t, x) is a smooth interpolation of integer-
valued points. We also consider B(x) as a smooth interpolation for the local magnetic field such that B(xi) = Bi.
The continuous form of Eq. (S10) reads

i∂tu = J cos (i∂x)u−∆u−B(x)u. (S12)

Next, we assume that the magnetic field and the observables of the spin system change slowly in space, with the
smallest-scale variations characterized by a length-scale λ � 1, implying that |∂nxu|, |∂nxB| ≤ O(λ−n). Then the
dynamics of the complex function u(t, x) can be approximated as

i∂tu =
J

2
∂2
xu+ (J −∆)u−B(x)u+O(λ−4). (S13)

Notably, Eq. (S13) has the form of the single-particle Schrödinger equation in an external potential generated by the
longitudinal magnetic field B(x). Although formally the derivation of Eq. (S13) does not require the magnetic field
profile B(x) to have small spatial gradients, such a condition could be important to guarantee smoothness of the
solution u(t, x) during the evolution.

FIG. S1. Propagation of a wave packet in the XXZ spin chain, with ∆/J = 0.5 (exact diagonalization). The initial state |ψ0〉 cor-

responds to a superposition of a single-magnon excitation and a ferromagnetic state: |ψ0〉 = A
∑
n e
−(n−x0)2/σ2

|+〉n
∏
j 6=n |↓〉j ,

where |+〉n = 1√
2
(|↑〉n + |↓〉n). Periodic boundary conditions are imposed. The parameters are: total number of lattice sites

L = 100, J = −1, σ = 5, and number of time steps Nt = 2000. Panels (a, b) correspond to <[u] = 〈Sx(t, x)〉, while panel
(c) corresponds to =[u] = 〈Sy(t, x)〉. Solid lines display the exact evolution, while dashed lines show the solution of the PDE
(S15). The evolution times in (b, c) are labeled in panel (a). (d) Difference between the exact solution and the solution of the
inferred PDE.

FIG. S2. Propagation of a wave packet in the XXZ spin chain, with ∆/J = 0.5, in the presence of a parabolic longitudinal
magnetic field Bi = B0 (i− x0)2 (exact diagonalization). The initial state is the same as in Fig. S1, periodic boundary conditions
are imposed, B0 = 5 × 10−4, and the number of time steps is Nt = 4000. Panels (a, b) correspond to the input data for our
algorithm: <[u] = 〈Sx(t, x)〉 and =[u] = 〈Sy(t, x)〉. (c) Difference between the exact solution and the solution of the recovered
PDE (S17).
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FIG. S3. Number of terms on the rhs of the reconstructed PDE ut = F (·), Eq. (S14), found with BruteForce algorithm vs
the L0 penalty constant λ0. (a) Quench dynamics in the XXZ model in the single-magnon sector, with ∆/J = 0.5, for (a)

B(x) = 0, see Fig. S1, and (b) inhomogeneous magnetic field B(x) = B0e
−(x−x0)2/σ2

. The “underfit” region corresponds to the
range of λ0, where the number of terms in the inferred PDE is underestimated, whereas in the “overfit” region our algorithm
finds spurious terms that are not present in the true PDE. Spatial derivatives were calculated using the spectral method [see
Section II B].

First, we consider dynamics of a single magnon in the XXZ model in the case of zero magnetic field, Bi = 0. For
instance, if we choose the following library of candidate terms,

ut = F (1, u, ux, uxx, uxxx, uxxxx, u
2, uux, uuxx, uuxxx, uuxxxx), (S14)

and, using the data shown in Fig. S1, we obtain the following PDE with the BruteForce algorithm for the case
∆/J = 0.5 and the penalty constant λ0 = 10−3:

iut + 0.4999uxx + 0.4997u = 0. (S15)

The temporal and spatial derivatives in Eq. (S15) were computed from data using the second-order finite-difference
scheme, see details in Sec. II B. We included nonlinear terms up to the second order in u to the candidate terms
dictionary (S14) in order to perform a consistency check of the sparse selection algorithm.

Now we consider single-magnon dynamics in the presence of an external longitudinal magnetic field. We impose
a parabolic magnetic field Bi = B0(xi − x0)2, where x0 = L/2. Post-quench dynamics is confined by the trapping
potential, and the evolution of the observable u(t, x) is shown in Fig. S2. Recovering the PDE from the following
ansatz,

ut = F (u, ux, uxx, uxxx, uxxxx, x̄, x̄
2, x̄3, x̄4, x̄u, x̄2u, x̄3u, x̄4u), x̄ = x− x0, (S16)

using data corresponding to Fig. S2 (∆/J = 0.5, B0 = 5 · 10−4) with the BruteForce, CrossEntropy, and STRidge
algorithms, we obtain

iut = −0.4998uxx − 0.4999u+ 4.998 · 10−4 (x− x0)
2
u. (S17)

The extracted PDE in Eq. (S17) matches with high precision the expected Eq. (S13). In Eq. (S17), we again used
the finite-difference approximation of the derivatives, see Sec. II B. The frontiers of reconstructed PDEs as a function
of penalty parameter λ0 corresponding to the cases of single-magnon dynamics with/without the confining magnetic
field are shown in Fig. S3.

B. Numerical schemes for the approximation of derivatives

In this subsection, we discuss approximation schemes for computing derivatives from data and comment on how
these numerical schemes affect recovered PDEs.

For the purposes of reconstructing Eq. (S15), we employed the standard second-order finite difference scheme when
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calculating temporal ∂tu and spatial ∂nxu derivatives from data:

ut(t, x) =
u(t+ dt, x)− u(t− dt, x)

2dt
+O(dt2), (S18)

ux(t, x) =
u(t, x+ dx)− u(t, x− dx)

2dx
+O(dx2), (S19)

uxx(t, x) =
u(t, x+ dx) + u(t, x− dx)− 2u(t, x)

dx2
+O(dx2). (S20)

One can notice that the coefficients in the inferred PDE in Eq. (S15) are very close to the exact theoretical values. Such
high precision of the recovered coefficients could be surprising at first glance, given that the PDE in Eq. (S13) contains
corrections with higher-order spatial derivatives. In fact, when using the second-order finite difference scheme (S20),
the finite difference discretization of PDE (S13) coincides with the exact differential-difference equation (S10). The
reconstruction error of the coefficients, when considering the second-order finite difference scheme, could be estimated
as δξ ∼ O(dt2 + dx2).

The spectral (Fourier) method for the calculation of spatial derivatives ux and uxx could be used as an alternative
method to the finite difference schemes (S19, S20) when periodic boundary conditions are imposed:

∂nxu(t, x) = iFFT [(iq)nû(t, q)] , û

(
t, qm =

2πm

L

)
= FFT(u) =

L−1∑
j=0

eiqmju(t, xj), (S21)

where FFT (iFFT) denotes Fast Fourier Transform (inverse Fast Fourier Transform). Taylor expansion of the “kinetic

term“ cos q = 1− q2

2! + q4

4! + . . . in Eq. (S12) results in the following correction to the evolution PDE:

iut ≈
J

2
uxx +

J

24
uxxxx + (J −∆)u−B(x)u. (S22)

Applying the spectral method for the calculation of spatial derivatives from data [shown in Fig. S1] resulted in the
following reconstructed PDE (parameters of the XXZ model are J = −1, ∆/J = 0.5, B(x) = 0):

iut + 0.495uxx + 0.5u = 0. (S23)

The STRidge algorithm turned out to be insensitive to the forth-order derivative term uxxxx and missed it during
reconstruction. Performing a full search over all possible combinations of M = 10 terms in F (·) and scanning across
a range of values for the L0 penalty factor λ0, we were able to recover, at λ0 = 10−4, the expected form of the PDE
that includes the forth-order derivative term:

iut + 0.4996uxx + 0.041uxxxx + 0.499 = 0, (S24)

where we again used the spectral method to compute spatial derivatives from data. As displayed in Fig. S3, as
we decrease the strength of the L0 penalty term, we obtain a “staircase” of PDEs, which reproduces the gradient
expansion of the exact PDE (S12). Note, that each additional term in the inferred PDE persists over a finite range of
λ0 values. By increasing the precision of the input dataset (refining the spatiotemporal grid), it is possible in principle
to recover higher-order derivative terms originating from the tight-binding dispersion ∝ cos (i∂x).

Generally, the reconstructed PDE could be slightly sensitive to the choice of the numerical scheme used for the
calculation of temporal and spatial derivatives, as shown in the examples above. However, such dependence will mostly
appear in the high-order gradient terms. It is worth noting that finite difference schemes could be used to recover
differential-difference equations instead of PDEs [e.g. Eq. (S10)] even when the envelope function is not smooth and
the continuous approximation is not valid.

C. Magnon dynamics in the long-range XXZ model

In this subsection, we consider the one-dimensional XXZ model with power-law-decaying spin-spin interactions,

H = −
∑
i>j

1

|i− j|α
(
J
(
Sxi S

x
j + Syi S

y
j

)
+ ∆Szi S

z
j

)
, (S25)

where α is a power-law exponent, and spin operators are defined as in Eq. (S2). We will assume that α > 1, so that
the Hamiltonian (S25) has a well-defined thermodynamic limit.



20

The phase diagram for the model in Eq. (S25) for J = 1 was obtained in Ref. 83. Depending on the value of ∆, the
ground state of the model (S25) can be in (i) the ferromagnetic phase for ∆ > 1, or (ii) the antiferromagnetic phase
for large α-dependent values ∆ < 0, or (iii) the XY phase (Tomonaga-Luttinger liquid) with algebraically decaying
correlations (and characterized by the conformal charge c = 1), or (iv) the continuous symmetry breaking phase
for intermediate values of ∆ and small power-law exponents α. The continuous symmetry breaking phase, which is
generally forbidden by the Mermin-Wagner theorem in the case of low dimensional systems with local interactions,
arises as a consequence of the long-range interactions. The phase boundary between the ferromagnetic phase and
either the XY or the continuous symmetry breaking phase corresponds to a first-order phase transition. Here, we will
be considering only excitations in the ferromagnetic phase.

The exact form of evolution equations for the observable u(t, xi) = 〈S+
i (t)〉 has the form

i∂tu(t, xi) = −J
2

∑
j 6=i

1

|i− j|α
u(t, xj) +

∆

2
u(t, xi)

∑
j 6=i

1

|i− j|α
. (S26)

In the continuous limit, the evolution PDE reads [84]

iut = JD(i∂x)u+ cu, D(q̂) :=

∞∑
n=1

1− cos (q̂n)

nα
, (S27)

where the constant c = (∆−J)
∑∞
n=1 n

−α = (∆−J)ζ(α), where ζ(α) is the Riemann zeta function. It is convenient to
formulate the PDE-learning problem in the time-momentum (t, q) representation instead of the (t, x) representation
by considering the Fourier components

û(t, q) :=

L−1∑
j=0

u(t, xj)e
−iqxj . (S28)

Then, the equation of the Fourier component has the form

iût = JD(q)û(t, q) + cû(t, q), (S29)

where the operator D(q) for non-integer α has the long-wavelength expansion

D(q) = Mα − Γ(1− α) cos
[π

2
(α− 1)

]
|q|α−1 +

1

2!
ζ(α− 2)q2 − 1

4!
ζ(α− 4)q4 +O(q6), (S30)

where

Mα =

{
(−1)n+1

(2n)! q2n log |q|, α = 2n+ 1, n ∈ Z, n ≥ 1,

0, other α > 1.
(S31)

In the case of integer α, new additional logarithmic terms will appear ∼ |q|α−1 log |q| (for odd integer α = 3, 5, . . .) in
the expression in Eq. (S30). Indeed, logarithmic terms at odd integer values of α appear when accounting for the singu-

larity of the zeta function ζ(1+ε) = 1
ε +γE+O(ε) and the Gamma function Γ(−n+ε) = (−1)n

n!

(
1
ε + ψ1(n+ 1) +O(ε)

)
,

where ψ1(z) = Γ′(z)/Γ(z) is the digamma function, ψ1(n) =
∑n−1
k=1

1
k − γE . Considering α = 2n + 1 + ε and taking

the limit ε→ 0 gives the following contribution (−1)n+1

(2n)! q2n log |q| that comes from the singular 1
ε terms.

We define the candidate terms library as

∂tû = F (û, q2û, q4û, |q|µû, log |q|û, q2 log |q|û, q4 log |q|û), (S32)

where µ is a free parameter subject to tuning. Next, we sequentially perform optimization of the L2 +L0 loss function
using a three-step procedure: (1) perform sparse selection of the most relevant candidate terms (e.g. brute force search
with an L0 penalty term or STRidge algorithm), (2) get coefficients for each term in the library via least-squares
regression, (3) run several steps of optimization (using the Powell line search algorithm) to find the best value for the
parameter β. Steps (1), (2), and (3) are repeated in a loop.

The above-described algorithm, for the case α = 3, ∆/J = 0.9, J = −1 and initial conditions corresponding to
Fig. (S4), results in the following reconstructed equation:

iut(t, x) +

∫ ∞
−∞

dq

∫ ∞
−∞

dx′
(

0.752 |q|2.02 + 0.505 q2 log |q|
)
eiq(x−x

′)u(t, x′)− 0.12u(t, x) = 0, (S33)
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FIG. S4. Magnon wave packet propagation in the long range XXZ model (L = 400, ∆/J = 0.9), exact vs reconstructed
evolution: (a, b) α = 3, (c, d) α = 2.5. Panels (a,c) display the real part <[u(t, x)] of the input dataset, while panels (b,d)
show the difference between the exact solution and the recovered non-local PDEs (S33, S35).

which is in good agreement with the theoretically predicted equation up to a O(q4û) correction term:

iut(t, x) +

∫ ∞
−∞

dq

∫ ∞
−∞

dx′
(3

4
q2 +

1

2
q2 log |q|

)
eiq(x−x

′)u(t, x′)− 0.1ζ(3)u(t, x) = 0, (S34)

where ζ(3) ≈ 1.202... Equations (S33, S34) are written in the integro-differential form since we performed conversion
from the momentum representation to the coordinate representation in Eq. (S32).

In the case of non-integer α = 2.5, ∆/J = 0.9, J = −1, the reconstruction results in the equation

iut + 1.68

∫ ∞
−∞

dq

∫ ∞
−∞

dx′|q|1.505eiq(x−x
′)u(t, x′) + 0.72uxx(t, x)− 0.134u(t, x) = 0, (S35)

that should be compared to the theoretically expected one from Eq. (S30):

iut +
1√
2

Γ

(
−3

2

)∫ ∞
−∞

dq

∫ ∞
−∞

dx′|q|3/2eiq(x−x
′)u(t, x′)− 1

2
ζ

(
1

2

)
uxx(t, x) + 0.1ζ(5/2)u(t, x), (S36)

where 1√
2
Γ
(
− 3

2

)
≈ 1.671..., 1

2ζ
(

1
2

)
≈ −0.7301..., and ζ(5/2) ≈ 1.341...

As an additional application of the reconstruction algorithm, from the inferred PDEs (S35, S33) for the observable
u(t, x), one can extract physical parameters of the long-range XXZ model, including the power-law exponent α, by
comparing coefficients of the reconstructed PDE with the theoretical values. Hydrodynamic behavior in a trapped-ion
quantum simulator was recently measured experimentally [85].

D. Dynamics of a domain-wall initial state in the XXZ spin chain

In the main text, we showed how the PDE-learning approach allows one to recover evolution equations of a domain-
wall initial state in the XXZ spin chain with nearest-neighbor couplings. In the present subsection, we provide
additional details regarding our results for both the zero-temperature and the high-temperature initial states. We
also elaborate on previously known theoretical results.

The conservation of total magnetization along the z axis implies the continuity equation of the form

∂tu+ ∂xJ z(u) = 0, u(t, x) ≡ 〈Sz(t, x)〉. (S37)
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(a) (b)

FIG. S5. (a) Evolution of a domain-wall initial state in the 1D XX model, ∆ = 0 (exact). (b) Difference between the exact
evolution of u(t, x) = 〈Sz(t, x)〉 and the solution of the inferred PDE, Eq. (S42). Total number of sites is L = 2000. Dashed
line shows the starting time used for PDE reconstruction.

The exact solution for the “domain-wall” initial state |ψ0〉 = |↓〉⊗L/2 |↑〉⊗L/2 in the thermodynamic limit L → ∞ is
given by [64]

〈Sz〉 =
1

2π/P
arcsin

(
ζ

ζ0

)
, (S38)

J z =
1

2π/P
ζ0

[√
1− ζ2

ζ2
0

− cos
( π
P

)]
, (S39)

where ζ = x/t is the lightcone coordinate. Here the coefficients are given by γ = arccos (∆/J), ζ0 = sin (γ)/ sin
(
π
P

)
,

and γ = πQ/P , where Q and P are coprime integers. Formally, the derivation of Eqs. (S38, S39) is restricted to the
specific values of the anisotropy parameter, such that Q/P = 1

π arccos (∆/J) ∈ Q is a rational number. However,

if 1
π arccos (∆/J) is an irrational number, the ratio Q/P can be tuned to approximate the irrational number with a

desired precision. The overall sign in the expression for the current (S39) assumes the specific choice of boundary
conditions at infinity: 〈Sz〉 → ±1/2 for x→ ±∞. The evolution PDE could be simplified to the form

ut + ζ0 sin

(
2π

P
u

)
ux = 0. (S40)

Using data obtained from numerical simulations of the dynamics of the XXZ spin chain, we perform PDE recon-
struction. Specifying, using the library of terms

ut = F (ux, uxx, uxxx, uxxxx, uux, u
2ux, u

3ux, u
4ux, u

5ux) (S41)

and the data presented in Fig. S5—obtained from numerical computation of the exact evolution for the case of the
XX spin chain (∆ = 0—we obtain the following PDEs:

ut+3.12uux − 4.49u3ux = 0, (λ0 = 10−4) (S42)

ut+3.135uux − 5.056u3ux + 1.92u5ux = 0, (λ0 = 10−6). (S43)

The functional form (S41) is consistent with spin-current conservation (S37). Coefficients in Eq. (S40) are quite close
to the theoretically expected ones, obtained via Taylor expansion of the sin(·) term up to the 5th order: ut + πu −
π3

3! u
3ux + π5

5! u
5ux ≈ 0.

For the XXZ model with ∆/J = 2, we get (P,Q) = (3, 1), ζ0 = 1, and the corresponding PDE in the limit t→∞
reads

ut + sin

(
2π

3
u

)
ux = 0. (S44)

PDE reconstruction from TEBD data shown in Fig. S6 gives the following equation:

ut + auux − bu3ux = 0, (S45)
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(a) (b)

FIG. S6. (a) Evolution of a domain wall initial state in the XXZ model, ∆/J = 0.5 (TEBD). (b) Difference between exact
evolution of magnetization and the solution of the inferred PDE, Eq. (S45). The total number of sites is L = 200. Original
TEBD data u(t, x) was smoothed along the x dimension by applying the Savitsky-Golay filter. The MPS bond dimension was
χ = 200.

where a ≈ 2.1, b ≈ 1.67. Knowing parameters (a, b) of the PDE allows one to extract the Hamiltonian parameter
∆/J = cos γ directly from data:

ut ≈ −ζ0
(

2π

P

)
uux +

ζ0
3!

(
2π

P

)3

u3ux. (S46)

Comparing Eqs. (S45) and (S46), we obtain

P = 2π

√
a

6b
≈ 2.9, ζ0 =

aP

2π
≈ 0.96, ∆/J =

√
1− ζ2

0 sin2
( π
P

)
≈ 0.52. (S47)

Motivated by the theoretically expected form of the evolution equations (S38) and (S39), we could also try to search
for a PDE of the form

ut = F

(
ux, uxx, uux, u

2ux, u
3ux, u

4ux, u
5ux, sin

(
2π

P1
u

)
ux, sin

(
2π

P2
u

)
ux, . . .

)
, (S48)

where Pi are integers. The goal of such a test is to see if the PDE-learning algorithm would be able to identify
a concise form of the equation and find the correct value of ∆. We set the integer parameter to be in the range
Pi ∈ {1, 2, . . . , 10}. The BruteForce and CrossEntropy algorithms were able to recover the theoretically expected
equation from M = 19 terms:

ut + 0.994 sin

(
2π

3
u

)
ux = 0, (λ0 = 10−3), (S49)

which immediately gives ∆/J ≈ 0.5. The algorithm finds a sparse solution and favors a compact form with the
sin (·) term on the rhs, as opposed to the truncated Taylor expansion for the same expression. Interestingly, the
STRidge algorithm was not able to find the correct solution for any value of the penalty parameter λ0. This shows
that STRidge, although reliable in most test cases, sometimes fails.

The example considered above corresponds to the spreading of the domain-wall initial state in the gapless phase
of the XXZ model at zero temperature. Interestingly, in the gapped phase, ∆/J > 1, equations (S38, S39) are not
valid: domain-wall evolution in the XXZ model freezes and the domain-wall spreading stops. As a result, the PDE
reconstruction is problematic in this case. On the other hand, for high-temperature mixed initial states, the spin
dynamics is qualitatively different. The initial high-temperature state is prepared by combining two reservoirs with
the opposite direction of the longitudinal magnetic field,

ρ(t = 0) =
exp (µ

∑
i∈L σ

z
i )

ZL
⊗

exp (−µ
∑
j∈R σ

z
j )

ZR
, (S50)

where 0 < µ� 1.
Using tDMRG data from Ref. 66, we perform PDE reconstruction for ∆/J = 2 and ∆/J = 1. In the gapped phase

(∆/J = 2) presented in Fig. S7, using ansatz

ut = F (ux, uxx, uxxx, uxxxx, uux, u
2ux, u

3ux, u
4ux, u

5ux), (S51)
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FIG. S7. Evolution of a high-temperature domain-wall initial state in the XXZ spin chain in the gapped phase ∆/J = 2. (a)
Data (high-precision tDMRG) is reproduced from Ref. 66. The density matrix of the initial state is given by Eq. (S50). The
dashed horizontal line, t0, separates the portion of the data t ≥ t0 used for PDE-learning. (b) Difference between tDMRG data
and the solution of the recovered PDE (S52). (c) Comparison between spatial derivatives ∂xu(t, x), where u(t, x) corresponds
to data or to the solution of the PDE at the maximum evolution time, tf = 200.

we obtain the following equation for the rescaled magnetization u = µ−1〈Sz〉:

ut= Duxx, D ≈ 0.64, (S52)

which agrees with the self-similar scaling law in the gapped phase, u(t, x) = f(x/
√
t), observed numerically in Ref. 66.

The value of the diffusion coefficient is close to the theoretically predicted value D = 0.76 at infinite temperature for
∆/J = 2. [86] In Fig. S7, we compare the tDMRG data and the solution of the reconstructed PDE, Eq. (S52); the
agreement is excellent.

In spite of a number of recent papers on the topic [73, 86, 87], the full theoretical explanation of the properties of
spin dynamics at the isotropic point ∆/J = 1 is still lacking. A superdiffusion behaviour at large times t � 1 was
empirically observed in Ref. 66, u(x, t) ∝ f(x/tη), with an anomalous scaling exponent η ≈ 2/3. Moreover, it was
shown in Ref. 67 that the shape of the profile of the magnetization f(y = x/tη) asymptotically approaches the KPZ
scaling function, thus revealing a connection between the KPZ equation and the effective dynamics of magnetization
in the Heisenberg model. Following our PDE reconstruction methodology, we are interested in finding a closed-form
evolution equation for u(t, x), where the rhs ut = F (·) does not have an explicit time dependence. Using BruteForce,
STRidge, and CrossEntropy algorithms (the list of candidate terms is shown in Table SII), we found the following
equation that describes data with high precision:

ut+auux = Duxx, a ≈ 0.24, D ≈ 1.90 (λ0 = 10−2), (S53)

which is known as Burgers’ equation. A similar diffusion-type term was recently predicted in Ref. 73 for integrable
1D models based on a generalized hydrodynamics approach.

It is natural to interpret the discovered equation (S53) as a noise-averaged stochastic Burgers’ equation:

ut + auux = Duxx + ∂xη(x, t), (S54)

where η(x, t) represents uncorrelated Gaussian noise, 〈η(x, t)〉 = 0. The stochastic Burgers’ equation is closely related
to the 1D KPZ equation

ht +
a

2
(hx)2 = Dhxx + η(x, t) (S55)

via the substitution u(t, x) = hx(t, x). Therefore, our equation (S53) also demonstrates a connection between mag-
netization dynamics in the Heisenberg model and the KPZ physics. Interestingly, we found that the solution of the
Burgers’ equation (S53) obeys a KPZ-type scaling law u(x/t2/3) for late evolution times, see Fig. S8. Although the
KPZ scaling for the inferred deterministic equation (S53) is exhibited numerically with high accuracy, we were not
able to prove analytically whether or not the solution of Burgers’ equation (S53) with the initial condition given by
data admits asymptotic scaling u(x/t2/3) at t→∞.
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FIG. S8. KPZ-scaling relation u = u(x/t2/3) of the solution of the inferred deterministic PDE (S53) for the magnetization
dynamics in the high-temperature Heisenberg model (∆/J = 1) at late evolution times. The KPZ scaling law has been observed
numerically [67] and is anticipated theoretically. [86] The initial condition for the evolution of the PDE corresponds to tDMRG
data at time t0 = 50 (dashed horizontal line in Fig. S7). T = 200 is the total evolution time [max(t)] in the tDMRG data. We
observe that the scaling relation for the solution of the PDE still holds for times t ∈ [T, 3T ], which is beyond the time range
presented in the dataset t ∈ [0, T ].

III. PDE-LEARNING OF HYDRODYNAMIC EQUATIONS IN FERMIONIC SYSTEMS: ADDITIONAL
DETAILS

In this Section of the Supplementary Material, we provide details of PDE-learning in fermionic systems: the 1D
non-interacting fermion gas and the strongly interacting Fermi-Hubbard model. In Section III A, we give a quick
overview of the analytical derivation of hydrodynamic equations describing dynamics in the free fermion gas in the
semiclassical approximation. In Section III B, we derive correction terms to the hydrodynamic equations for the
free fermion gas—terms that stem from the non-parabolic (tight-binding) dispersion—both analytically and using our
PDE-learning algorithm. In Section III C, we consider hydrodynamics of the non-interacting fermion gas in the vicinity
of a Lifshitz critical point. The salient feature of the Lifshitz critical point is the quartic fermion dispersion at small
momenta, which results in an unusual hydrodynamic equation. In Section III D we derive expression for the particle
current and velocity a tight-binding model with additional next-nearest-neighbour hopping terms. In Section III E, we
discuss the global symmetry properties of the hydrodynamic equations and show how leveraging of these symmetries
significantly reduces the size of the search space of candidate PDEs. In Section III F, we propose a method to perform
PDE-reconstruction from partial observations, when only data for fermion density evolution (but not velocity) is
available. In Section III G, we derive a single second-order-in-time PDE that describes the evolution of density in a
gas of free fermions. In Section III H, we provide supplementary details on PDE-learning of hydrodynamics in the
spinless Fermi-Hubbard model and summarize our findings from the main text. In particular, we discuss in more
detail the connection between the discovered effective Euler equation and the Tomonaga-Luttinger theory. Finally, in
Section III I, we discuss the emergent Navier-Stokes equation and the role of the discovered viscosity term.

A. PDE-learning of bosonization equations: Semiclassical regime of hydrodynamics of non-interacting
fermions

In this subsection, we provide details of the derivations of semiclassical hydrodynamic equations for a free-fermion
gas.

We consider a 1D non-interacting gas of spinless fermions on a lattice described by the tight-binding Hamiltonian

H = −J
∑
i

(c†i ci+1 + c†i+1ci) +
∑
i

Vic
†
i ci, (S56)

where ci (c†i ) are fermion annihilation (creation) operators at lattice site i, J is the hopping parameter, and Vi is
the external potential. The energy dispersion of free fermions in the low-density limit could be well-approximated

as parabolic: εk/2J = − cos (k) ≈ −1 + k2

2 + O(k4). The dynamics of the fermion gas with parabolic dispersion

H =
∑
k
k2

2mc
†
kck in the Wentzel–Kramers–Brillouin (WKB) approximation could be described by hydrodynamic
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equations [22]:

ρt + (vρ)x = 0, (S57)

vt + vvx = − 1

mρ
∂xP (ρ)− ∂xV (x), P (ρ) =

π2

3m
ρ3. (S58)

Eq. (S57) is the continuity equation, which describes the conservation of the total number of fermions. Eq. (S58) is
the Euler equation describing barotropic compressible fluid flow. Here P (ρ) is the Pauli pressure that could be derived
from the textbook thermodynamic relation P (ρ) = ρ∂ρε(ρ)− ε(ρ), where ε(ρ) is the specific energy of the fermion gas
(energy per unit volume):

ρ(x) =

∫ kF

−kF

dk

2π
=
kF (x)

π
, ε(ρ) =

∫ kF

−kF

dk

2π

k2

2m
=
k3
F (x)

6πm
=
π2ρ3

6m
, (S59)

where kF (x) is the local Fermi momentum. The system of hydrodynamic equations (S57, S58) can be diagonalized
by introducing two Riemann invariants kR,L = mv±πρ corresponding to the local momenta of right- and left-movers:

∂tkR +
kR
m
∂xkR = 0, ∂tkL +

kL
m
∂xkL = 0, (S60)

where the effective velocity of the right (left) movers is given by the group velocity of right (left) moving fermions
vgr(x) = ∂kεk = kR,L(x)/m. Eqs. (S60) are known as the Riemann-Hopf equations (or the inviscid Burgers’ equations).
The Riemann-Hopf equations (S60) form a shock-wave singularity at finite time tc, which is also known as the “gradient
catastrophe”. The semiclassical hydrodynamic equations remain valid only for evolution times t ≤ tc. The collapse
time tc depends on the density profile of the initial state: a larger amplitude of the density hump corresponds to
a shorter tc due to higher non-linearity. The value of tc can be computed by solving the Riemann-Hopf Eqs. (S60)
separately for left- and right-moving modes using the method of characteristics, see e.g. Ref. 70. For example, for
a given initial condition kR(t = 0, x) = f(x), the collapse time tc corresponds to the minimal (over all choices of ξ)
positive value of the expression tc = − m

f ′(ξ) , which is tc = − m
min f ′(ξ) (assuming that f ′(ξ) takes negative values). For

the equilibrium initial state (zero initial velocity), the local Fermi momenta of right- and left-movers are proportional
to the local fermion density, kR,L(t = 0, x) = ±πρ0(x). Thus, the singularity formation time is inversely proportional
to the amplitude of the density hump in the initial state, tc = −mπ [min(∂xρ0(x))]−1, where ρ0(x) is the initial density
profile.

After the formation of the shock wave, the fermion density profile ρ(t, x) develops quantum ripples, which are
not captured by semiclassical equations [69]. However, at t > tc the envelope of the density profile, after averaging
over quantum oscillations, can still can be computed from semiclassical equations by using specialized PDE solvers
(e.g. Riemann solvers [88]), which allow one to propagate solutions beyond the shock-wave formation time.

It is instructive to provide an alternative derivation of the hydrodynamic system (S57, S58), which will be straight-
forward to generalize to other dispersion relations. Taking the transport equation (S60) as a starting point, we can
cast it in the form of hydrodynamic equations for the fermion density ρ and the velocity v by expressing ρ and v in
terms of the local Fermi momenta of the left- and right-moving modes: ρ = ρ(kR, kL), v = v(kR, kL). The fermion
density and the current read

ρ =

∫ kR

kL

dk

2π
=
kR − kL

2π
, j ≡ ρv =

∫ kR

kL

dk

2π
∂kε(k) =

1

2π
(ε(kR)− ε(kL)) . (S61)

Substituting the parabolic dispersion ε(k) = k2/2m into Eq. (S61), solving for the momenta of the left- and right-
moving modes in terms of the fermion density and velocity, kR,L(ρ, v) = mv±πρ, and substituting into the transport
equation (S60), we obtain

∂t (mv ± πρ) +
1

m
(mv ± πρ) ∂x (mv ± πρ) = 0. (S62)

By adding and subtracting the (±) equations in (S62), we obtain the continuity and Euler equations, Eqs. (S57, S58).
Now let us consider the quench dynamics where the initial state is prepared by applying a smooth localized potential,

e.g.

V (x) = V0e
−(x−x0)2/σ2

, (S63)
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and then setting the potential to zero at t > 0. The initial density profile in the Thomas-Fermi approximation reads

ρTF (t = 0, x) =
1

π

√
2(E − V (x)), E =

k2
F (∞)

2m
, (S64)

which can be explicitly obtained from Eq. (S58) when setting v → 0 and integrating the rhs over x.
Our goal is to reconstruct hydrodynamic equations describing the evolution of ρ(t, x) and v(t, x) directly from data

obtained via numerical simulations. We search for hydrodynamic equations of the form

ρt = F (1, ρ, ρx, ρxx, v, vx, vxx, ρvx, vρx, vvx, ρρx, . . .), (S65)

vt = G(1, ρ, ρx, ρxx, v, vx, vxx, ρvx, vρx, vvx, ρρx, . . .). (S66)

From data for the fermion density and velocity presented in Fig. S9, we reconstruct the system of hydrodynamic
PDEs. Both the BruteForce algorithm and the STRidge algorithm result in

ρt+1.006ρvx + 1.0007vρx = 0, (S67)

vt+0.97vvx + 9.45ρρx = 0, (S68)

which is very close to the expected Eqs. (S57, S58). In Fig. S9, we also compare the data and the solution of the
inferred system of PDEs (S67, S68).

Interestingly, in the case of a small amplitude of the initial density hump, δρ/ρ0 � 1, our PDE reconstruction
algorithm recovers the correct form of linearized Euler equations:{

ρt + ρ0vx ≈ 0,

vt + π2ρ0ρx ≈ 0.
(S69)

These equations, in turn, imply the wave equation ρtt = v2
F ρxx, with the wave speed equal to the Fermi velocity,

vF = πρ0. For example, for the data presented in Fig. (S10), the BruteForce algorithm yields

ρt ≈ −0.109vx, vt ≈ −1.036ρx, (S70)

which is in perfect agreement with the linearized system (S69) for ρ0 ≈ 0.1.

(a) (b)

(d)(c)

FIG. S9. Hydrodynamics in the 1D free-fermion system. (a,c) Exact evolution of fermion density ρ(t, x) and velocity v(t, x) in
the tight-binding model. (b, d) The difference between the data and the solutions of recovered hydrodynamic PDEs (S67, S68).

Parameters of simulations: number of lattice sites L = 1000, filling factor ν = 0.1, and initial potential V (x) = V0e
−(x−x0)2/σ2

with V0/J = −0.2, σ = 0.2L. Periodic boundary conditions were imposed. The data for the density and velocity is the same
as in Fig. 1 of the main text.
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(a) (b)

FIG. S10. Regime of linearized hydrodynamics (δρ/ρ0 � 1) in non-interacting fermion gas: data for the evolution of (a) fermion
density and (b) fermion velocity. PDE reconstruction results in the system of linearized hydrodynamic equations (S70). The
linearized system is equivalent to the wave equation ρtt−v2F ρxx = 0, with the wave speed given by the Fermi velocity vF = πρ0.
The amplitude of the external potential is V0/J = −0.02.

B. Corrections to hydrodynamic equations due to the tight-binding dispersion

In this subsection, we consider how hydrodynamic equations (S57) and (S58) are modified due to corrections

generated by subleading terms in the expansion of the dispersion relation εk = −2J cos (k) = 2J
(
−1 + k2

2 −
k4

4! + . . .
)

and analytically derive these correction terms, which we discovered with our PDE-learning algorithm [see main text].
Following the steps from Section III A, we first express the momenta of left- and right-movers via fermion density

and velocity:

kR − kL
2

= πρ,
kR + kL

2
= sin−1

[
π ρmv

sinπρ

]
, (S71)

where m = 1/(2J). Since we are interested in finding corrections stemming from the deviation of the tight-binding
dispersion from the parabolic dispersion in the limit kR,L � 1, we assume that the fermions occupy the bottom of
the band, ρ � 1. Furthermore, given that, to the leading order (i.e. in parabolic approximation), the momenta of
right- and left- movers are kR,L = mv ± πρ, the condition kR,L � 1 also implies that the fermion velocity should be
small, mv � 1.

Solving for kR,L(ρ, v) from Eq. (S71), we expand the solution in powers of ρ and v. Keeping the terms ∝ vn1ρn2

with n1 + n2 ≤ 5, we obtain:

kR,L = ±πρ+ sin−1

[
πρmv

sinπρ

]
= ±πρ+mv +

(mv)3

6
+

3m5

40
v5 +

π2

6
mvρ2 +

π2m3

12
v3ρ2 +

7π4

360
mvρ4 + . . . . (S72)

Dynamical equations for the momenta of the left- and right-movers read

∂tkR +
1

m
sin (kR) ∂xkR = 0, (S73)

∂tkL +
1

m
sin (kL) ∂xkL = 0. (S74)

First, taking the difference of Eqs. (S73, S74) and using the definition of particle current (S61),

ρv = − 1

2mπ
(cos kR − cos kL) , (S75)

one can recover the exact continuity equation ρt+ (ρv)x = 0, which remains valid to all orders in perturbation theory.
Second, multiplying both sides of Eqs. (S73, S74) by sin (kR,L), respectively, we obtain

−∂t cos (kα) +
1

m
∂x

(
kα
2
− 1

4
sin (2kα)

)
= 0, α = R,L. (S76)

Subtracting the two Eqs. (S76) for right- and left- movers and using (S75), we arrive at the dynamical equation for
the density of momentum:

(ρv)t = − 1

2πm2
∂x

(
kR − kL

2
− sin (2kR)− sin (2kL)

4

)
=

− 1

2πm2
∂x

(
2m2πv2ρ+

2π3

3
ρ3 − 2π3

3
m2v2ρ3 − 2π5

15
ρ5 + . . .

)
= 0, (S77)
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where we performed Taylor expansion of sin (·) up to the fifth order. Substituting ρt = −(ρv)x from the continuity
equation, we obtain a modified Euler equation with additional correction terms:

vt + vvx +
π2

m2
ρρx =

2π2

3
ρ2vvx + π2v2ρρx +

π4

3m2
ρ3ρx + . . . . (S78)

If we set ρ0 ≈ 0.1 and m = 1 (J = 0.5), which corresponds to the parameter regime used in Fig. S9, the signs and
the magnitude of the corrections are in full agreement with the PDE (S68) extracted from direct simulations, as we
will now discuss. One can perform dimensional analysis of equation (S78) by noticing that, for our choice of units
(we set the lattice spacing to unity), we have [v] = J , [ρ] = 1, [x] = 1, [t] = J−1. We performed a BruteForce search
of corrections to the rhs of the Euler equation by considering the symmetry allowed terms, (P, T ) = (−,+), from
Table SII:

vt + vvx + π2ρρx = f(ρ2ρx, ρ
3ρx, . . . , ρ

5ρx, ρvvx, ρ
2vvx, v

2ρx, v
2ρρx, . . . , (log ρ)x, v

2(log ρ)x). (S79)

We found the following corrections using data shown in Fig. S9(a,c) [the dataset has the spatiotemporal resolution
Nt, Nx = (103, 103)]:

vt + vvx + π2ρρx ≈ 1.003
2π2

3
ρ2vvx + 1.18π2v2ρρx + 0.967

π4

3
ρ3ρx, (λ0 = 10−5), (S80)

which are in excellent agreement with the analytical result, Eq. (S78). Moreover, starting from the generic ansatz
vt = G(·), our algorithm was able to recover the entire series of terms, including the leading terms (vvx, ρρx) and the
subleading corrections (ρ2vvx, v2ρρx, ρ3ρx):

vt = −1.008 vvx − 0.9993π2ρρx = 1.10
2π2

3
ρ2vvx + 1.05π2v2ρρx + 0.96

π4

3
ρ3ρx, (λ0 = 10−6). (S81)

The high spatiotemporal resolution of the data results in a high accuracy of the reconstructed coefficients of the
hydrodynamic equation (S81).

C. Fermion hydrodynamics at the Lifshitz transition

In this subsection, we provide the analytical derivation of semiclassical hydrodynamic equations in a fermion gas
with quartic dispersion and present additional details of PDE-learning.

Now we extend the tight-binding model (S56) by adding next-nearest-neighbor hopping terms:

H = −J1

∑
i

(c†i ci+1 + c†i+1ci)− J2

∑
i

(c†i ci+2 + c†i+2ci). (S82)

Fermion dispersion is εk = −2J1 cos (k)− 2J2 cos (2k). In the long-wavelength limit, we can perform an expansion up
to the fourth order in k:

εk = ε0 +
αk2

2
+
βk4

4
+O(k6), (S83)

where α = 2(J1 + 4J2) and β = −
(
J1
3 + 16

3 J2

)
.

(a) (b)

FIG. S11. Fermion hydrodynamics at the Lifshitz critical point (J2/J1 = −0.25), which is characterized by the quartic

dispersion, εk ≈ βk4

4
. Panel (a) displays exact simulations of evolution of fermion density, while panel (b) shows the difference

between the data and the solution of the recovered PDE (16). The initial state corresponds to the ground state in the Gaussian-
shaped potential Eq. (S63), with amplitude V0/J = −4 · 10−3 and width σ = 0.1L. At large times t & 6 · 103, a shock wave
starts to form, and the semiclassical hydrodynamic approximation breaks down.
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The hydrodynamic equation for the generalized dispersion with quadratic and quartic terms (S83) can be derived
in analogy with Eq. (S60), considering separately right- and left-movers:

∂tkR + (αkR + βk3
R)∂xkR = 0, ∂tkL + (αkL + βk3

L)∂xkL = 0. (S84)

To derive the hydrodynamic equations, we proceed by analogy with Section III A. The expressions for the fermion
density and current read:

ρ(t, x) =

∫ kR

kL

dk

2π
=
kR − kL

2π
, ρ(t, x)v(t, x) =

∫ kR

kL

(αk + βk3)
dk

2π
=

α

4π
(k2
R − k2

L) +
β

8π
(k4
R − k4

L). (S85)

From Eq. (S85) and Eq. (S84), we obtain the exact continuity equation:

ρt + (ρv)x = 0. (S86)

To express kR,L in terms of ρ and v, we need to solve the following system of equations:

ρ =
kR − kL

2π
, v =

1

2

[
α+

β

2
(k2
R + k2

L)

]
(kR + kL). (S87)

Unfortunately, in order to express kR,L in terms of hydrodynamic variables (ρ, v), one has to solve a qubic equation
(S87). To simplify the problem, we consider the limit α → 0, corresponding to the quartic dispersion εk = βk4/4.
Solving Eq. (S87) for kR,L and expanding the solution as a Taylor series in powers of v/vF , we obtain

kR,L = ±πρ+
v

βπ2ρ2
+O(v3/v3

F ). (S88)

Here vF = ∂kεk|k=kF = βπ3ρ3 is the Fermi velocity of a Fermi gas with quartic dispersion. Substituting Eq. (S88)
into Eq. (S84) and keeping terms up to the second-order in v, we obtain

vt+5vvx − v2 ρx
ρ

+ β2π6ρ5ρx = 0. (S89)

The initial density profile could be derived in the Thomas-Fermi approximation by imposing a condition that the
Fermi energy is constant:

ρTF (t = 0, x) =
1

π

[
4

β
(E − V (x))

] 1
4

. (S90)

We perform PDE reconstruction of the equation using the following dictionary of candidate terms:

vt = G(ρ, ρx, ρρx, ρ
2ρx, . . . , ρ

5ρx, ρxx, v, vx, vxx, vvx, v
2ρx, (log ρ)x, v

2(log ρ)x, . . .), (S91)

which contains terms up to order v2. In order to constrain the search space, we remove terms that do not satisfy the
P - and T -inversion symmetry constraint (P, T ) = (−,+). Performing such preselection, we composed the dictionary
G(·) consisting of M = 20 candidate terms marked with a check in Table SII. The PDE recovered from data presented
in Fig. S11(a) using the BruteForce and the CrossEntropy algorithms reads

vt ≈ −4.98vvx − 225.7ρ5ρx, (J1 = 0.5, J2 = −0.125, β = 0.5). (S92)

The term ∼ v2ρx/ρ is missing in the recovered Eq. (S92); however, this term turns out to be negligible in the regime of
parameters considered here. In Fig. S11(b), we compare the solution of the inferred PDE (S92) with the original data.
We find that adding the L2 regularization term λ2 to the loss function L = ||Ut−Θ · ξ||2 +λ0||ξ||0 +λ2||ξ||22 stabilizes
the regression problem in the presence of highly nonlinear terms. Without L2 regularization, we obtain extremely
large values of the regression coefficients ξ. On the other hand, even very small value for the penalty constant, such
as λ2 = 10−12, suffices. Interestingly, the STRidge algorithm was not able to identify a correct PDE.

D. Fermion current and velocity in lattice simulations

In this subsection we derive the expression for the particle current and velocity for the 1D tight-binding Hamiltonian
with/without interactions.
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Let us consider a subsystem cut between the lattice sites i = i0 − 1 and i = i0. The current between these two
parts is defined via the particle number conservation, i.e.

j := −
〈
dNL
dt

〉
= −i 〈[H,NL]〉 (S93)

where NL =
∑
i<i0

c†i ci is the number of particles to the left from the cut, H is the system’s Hamiltonian, and

〈. . .〉 is the expectation value. We consider the tight-binding Hamiltonian (S82) with the nearest-neighbour and
next-nearest-neighbour hopping terms. The particle current can be expressed as

j(t, i0) = −i
∑
i<i0,n

J1

〈[
c†ncn+1, c

†
i ci

]〉
+ J1

〈[
c†n+1cn, c

†
i ci

]〉
+ J2

〈[
c†ncn+2, c

†
i ci

]〉
+ J2

〈[
c†n+2cn, c

†
i ci

]〉
. (S94)

The expectation value of the commutator reads

∑
i<i0

〈[
c†acb, c

†
i ci

]〉
=
∑
i<i0

(δib − δia)
〈
c†acb

〉
=

 −
〈
c†acb

〉
, a < i0, b ≥ i0,〈

c†acb
〉
, b < i0, a ≥ i0,

0, otherwise.
(S95)

Thus, the current at the cut between the sites i− 1 and i has the following form

j(t, i) = iJ1 [Gi,i−1(t)− Gi−1,i(t)] + iJ2 [Gi,i−2(t)− Gi−2,i(t)] + iJ2 [Gi+1,i−1(t)− Gi−1,i+1(t)] , (S96)

where Gab(t) :=
〈
c†b(t)ca(t)

〉
is the single-particle density matrix. The fermion velocity is related to the particle current

as v(t, i) = j(t, i)/ρ(t, i), where ρ(t, i) =
〈
c†i ci

〉
is the on-site fermion density. We employ the expression (S96) to

construct datasets for the fermion velocity field for the PDE-learning algorithm both in the main text and throughout
Section III of the Supplementary Material. Note, that the expression for the current (S96) remains unchanged in the
presence of the Fermi-Hubbard-type interactions, e.g. Vint = U

∑
i nini+1, since the interaction term Vint commutes

with the fermion number operator ni = c†i ci, and therefore does not contribute to the particle current in (S93). We
use this fact later in Sections III H and III I when performing PDE-learning of hydrodynamics of interacting fermions.

E. Global symmetries and term preselection

Prior knowledge of global symmetries, such as invariance with respect to time-reversal (T )/spatial-inversion (P )
transformations, provides a powerful method to significantly reduce the number of candidate terms in the dictionary.
The transformation properties of the fermionic density and velocity are:

P (ρ) = 1, T (ρ) = 1, P (v) = −1, T (v) = −1. (S97)

The summary of the preselection procedure for fermionic systems obeying P - and T -inversion symmetries is presented
in Table SII.

TABLE SII. Example of candidate terms for the rhs of the Euler equation vt = G(·), Eq. (S91). Selected terms (see last
column) have the following signature with respect to P - and T -inversion: (P, T ) = (−,+).

Terms P T Select
const, ρ, ρ2, ρ3, . . ., ρ5, v2 + + ×

ρx, ρρx, . . . ρ5ρx - + X
ρxx, ρρxx, ρ2ρxx, . . ., v2ρxx + + ×

v2ρ, v2ρxx + + ×
ρxvx, vxx, ρvxx, ρ2vxx - - ×

ρ2x, v2x + + ×
v, ρv, ρ2v, ρ3v - - ×
vx, ρvx, ρ2vx + - ×

vvx, ρvvx, ρ2vvx, . . ., ρ5vvx - + X
v2ρx, v2ρρx, . . ., v2ρ5ρx, (log ρ)x, v2(log ρ)x - + X
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F. Learning of hydrodynamic PDEs from partial observations

In an experimental setting, it is quite common that only some physical observables can be directly measured. In this
subsection, we propose two approaches for PDE-learning of hydrodynamic equations from partial observations, when
only data for the evolution of density (but not velocity) is available. Such a situtation is common in ultracold-atom
experiments, since it is relatively easy to measure the density of the atomic cloud via optical absorption, but it is
hard to directly measure the velocity field of the atomic cloud in situ.

The evolution of density between different time snapshots could be considered as a “movie” that contains information
about particle velocity at each spatial point. The velocity field can then be extracted by integrating the continuity
equation, Eq. (S57):

v(t, x) = − 1

ρ(t, x)
∂t

[∫ x

−∞
dy ρ(t, y)

]
. (S98)

The right-hand side of Eq. (S98) can be directly evaluated from the data at spatiotemporal points of interest. After
the extraction of the velocity field v(t, x), we can proceed with the standard PDE-reconstruction procedure of the
hydrodynamic equation for the velocity, described in Section III A. Applying the method described above to the ρ(t, x)
data shown in Fig. S9, we reconstruct the Euler equation from the library of candidate terms vt = G(·), Eq. (S66),
using the BruteForce, CrossEntropy, and STRidge algorithms (all three algorithms leading to the same result),

vt + 0.97vvx + 9.42ρρx = 0, (S99)

which is in good agreement with the theoretically expected equation (S58) and nearly identical to Eq. (S68), where
both density and velocity data were used for PDE learning.

The method presented above efficiently solves the problem of reconstructing the Euler equation for the velocity
vt = G(·) from partial observations (only from the density data ρ(t, x)). However, this method has a few drawbacks. (i)
The velocity reconstruction procedure via Eq. (S98) introduces additional numerical errors due to the finite-difference
computation of the time-derivative ∂t[. . .]. (ii) The situation worsens in the regions when the density approaches
zero, ρ → 0, resulting in a vanishing denominator in Eq. (S98), that amplifies numerical errors. (iii) The velocity
reconstruction trick (S98) works only if the continuity equation is valid. In problems where the total number of
particles is not conserved (e.g. in the presence of three-body loss in cold-atom experiments), the continuity equation
is no longer exact and has to be modified with appropriate loss terms.

Problem (ii) can be partially alleviated by the considering hydrodynamic equation for the particle current,

(ρv)t + (ρv2)x = −∂xP (ρ), (S100)

so that the we search for an unknown equation of the form (ρv)t = G(·). We utilized this method in the main text
for extracting PDEs from experimental data (boson gas expansion on an atom chip).

In addition, we propose a modified PDE learning method to address problems (ii) and (iii). We assume that

ρt= F (ξ1; ρ, v, ρx, ρxx, vx, vxx, . . .), (S101)

vt= G(ξ2; ρ, v, ρx, ρxx, vx, vxx, . . .), (S102)

where ξ1,2 are the coefficients that parametrize functions F and G. We define the objective function as

L(ξ1,2; ρ∗, λ0) =
∑
tk,xi

|ρ∗(tk, xi)− PDESolve(tk, xi, ρ0, v0, F (ξ1; ·), G(ξ2; ·), BC|+ λ0||ξ2||0, (S103)

where ρ0 and v0 are the initial conditions at t = 0, BC represents a set of boundary conditions, and ρ∗(tk, xi) are
the data points for the density evaluated at the spatiotemporal grid {tk, xi}. PDESolve(. . .) denotes a PDE solver
that takes initial and boundary conditions and the coefficients ξ1,2 parametrizing the unknown function f(ξ1,2; ·) and
outputs a solution ρpde at the grid points {tk, xi}. We assume that we know the initial conditions for the velocity [in
quench experiments with ultracold atoms, one usually has v(t = 0, x) = 0]. The goal is to find a set of coefficients
ξ1,2 that minimize the objective function:

ξ1,2 = arg min
ξ1,2

(L(ξ1,2; ρ∗, λ0)). (S104)

Optimization of Eq. (S104) is more computationally costly compared to the sparse-regression methods discussed in
Sec. I. The former approach requires (i) discrete optimization to find optimal combinations of non-zero terms, (ii)
continuous optimization to find optimal values of PDE coefficients ξ1,2 (e.g. by gradient-descent algorithm), (iii)
solution of the PDE forward in time for each optimization step in order to evaluate the current value of the objective
function (S103). Computational cost of this algorithm can be significantly improved by combining PDE solvers and
reverse mode automatic differentiation [89].
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G. Could the evolution of the density of non-interacting fermions be described by a single PDE?

In this subsection, we address the following question: is it possible to rewrite the coupled system of hydrodynamics
equations describing fermion dynamics, {

ρt + (ρv)x = 0,

vt + vvx + π2ρρx = 0,
(S105)

as a single closed form PDE for the fermion density? The answer is positive, although surprisingly we did not find
such an equation in the literature. We introduce an auxiliary variable w as:

ρv = −wt, (S106)

ρ = wx, (S107)

so that the continuity equation is automatically satisfied. Solving Eq. (S107), we obtain w(t, x) =
∫ x

0
dx′ ρ(t, x′)+g(t),

where it is easy to show that g(t) = const due to fixed boundary conditions at x → ±∞. The physical meaning of
w(t, x) is the number of fermions to the left of coordinate x. Expressing velocity from Eqs. (S106, S107) as v = −wt/wx
and substituting the result into the Euler equation (S105), we obtain

− ∂t
(
wt
wx

)
+
wt
wx

(
wt
wx

)
x

+ π2wxwxx = 0. (S108)

The resulting PDE (S108) is second-order in time and depends only on the fermion density ρ(t, x) via w. Unfortunately,
Eq. (S108) has no transparent physical interpretation, to our knowledge. Although PDE-learning methodology allows
one to reconstruct a second-order-in-time equation wtt = F (wt, wx, wtx, . . .), such an equation would be hard to
interpret, compared to a conventional hydrodynamic system of equations for the density and the velocity.

H. Hydrodynamics of interacting fermions: emergent Euler and Navier-Stokes equations

While in previous subsections we considered hydrodynamics in a non-interacting fermion gas, here we focus on the
case of interacting fermions described by the 1D spinless Fermi-Hubbard model:

H = −J
∑
i

(c†i ci+1 + c†i+1ci) + U
∑
i

nini+1 − µ
∑
i

c†i ci, (S109)

where U is the interaction constant, and µ is the chemical potential of the fermion gas.
We perform a search of hydrodynamic-type equations for the fermion density and velocity using the following form

of hydrodynamic equations: {
ρt + (ρv)x = 0,

vt + vvx = G(ρx, ρxx, vx, vxx, . . .),
(S110)

where the function G(·) is unknown. We use a truncated library of terms corresponding to Table SII, where the
terms are preselected based on the P -parity transformation, P = −1. Using the BruteForce search algorithm (with
λ0 = 10−2), we found the following Euler equation,

vt + vvx + κ(U)ρρx = 0, (S111)

describing the dynamics of interacting fermions. We now provide the summary of our analysis, consolidate some of
the statements from the main text, and expand on the connection between the discovered Euler/Navier-Stokes fluid
models and the Tomonaga-Luttinger theory:

• In the limit of vanishing interaction strength U → 0, the coefficient κ approaches the value κ ≈ π2/m2 = 4J2π2,
in agreement with the free-fermion theory for quadratic dispersion. At the same time, minor deviations from
the predicted theoretical value κ(U = 0) ≈ 4J2π2 are primarily due to the lattice dispersion corrections, as
discussed in Sec. III B.
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• In the limit of small density perturbations, δρ � ρ0, the viscosity term in Eq. (S111) can be neglected, and

the density dynamics takes the form
[
∂2
t − v2

eff(U)∂2
x

]
ρ(t, x) = 0, where veff(U) =

√
κ(U) is a renormalized

quasiparticle velocity. This equation can be derived independently in the framework of the Tomonaga-Luttinger
(T-L) theory[90], which predicts the renormalized velocity of the form

veff(U) = vF0

√
1 +

U

2πvF0
, (S112)

where vF0 = πρ0 is the Fermi velocity in the non-interacting limit. Hence, given the relation between effective
velocity and κ(U), the value of κ(U) in this regime must be close to κ(U) = κ(0)

[
1 + U/(2π2ρ0)

]
. Indeed, we

find a quantitative agreement between extracted values of κ(U) and the T-L prediction for interaction strengths
in the region U/J . 1. However, in the strongly interacting regime, U/J � 1, the observed values of κ
significantly deviate from the T-L theory (see Fig. 5 in the main text). Notably, the effective hydrodynamic
model (S111) works even beyond the linearized regime for relatively large density perturbations in both weakly-
and strongly-interacting limits.

• Although the linearization of the discovered Euler equation (S111) is equivalent to the T-L theory, to the best
of our knowledge, the non-linear term κ(U)ρρx cannot be explicitly derived from the T-L theory.

• Larger perturbations and longer-time evolution would have notable features that cannot be captured by a
renormalized κ(U). Lowering the penalty constant λ0 and extending the library of candidate terms, we found
that the deviations are well-captured by the equation

vt + vvx + κρρx = νvxx. (S113)

Comparison between TEBD data and the solution of the Navier-Stokes model (S113) is shown in Fig. S12.
The viscosity term on the right-hand side significantly improves agreement with TEBD data at long evolution
times. Despite the fact that the viscosity term violates time-reversal invariance of the effective Navier-Stokes
model, it does not conflict with unitary dynamics, due to the presence of relaxation processes. Short-range
interactions result in the entropy flow from small-scale fluid cells to large-scale structures, by analogy with
classical hydrodynamics. More accurate analysis shows that the universal value of viscosity emerges only in
late-time dynamics, see Sec. III I. Notably, viscosity effects are beyond linear T-L theory.

• We verified that both Euler and Navier-Stokes PDEs (S111, S113) remain accurate for various initial states, see
Fig. S13.

(a) (b) (c)

FIG. S12. (a, b) TEBD data for the evolution of fermion density and velocity in the spinless Fermi-Hubbard model (S109). (c)
Difference between the solution of the reconstructed hydrodynamic PDE (“Navier-Stokes model”, Eq. (S113)) and the TEBD
data (U/J = 4). In our simulations, we fixed the value of the chemical potential at µ/J = −2.
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data (TEBD)
Navier-Stokes fluid (PDE)
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FIG. S13. Hydrodynamics in the Fermi-Hubbard model (S109) in the strongly interacting regime, U/J = 4. (a, b) Evolution
of fermion density ρ(t, x) and velocity v(t, x) for an asymmetric double peak initial density profile. This plot demonstrates that
the discovered Euler and Navier-Stokes equations (S111, S113) remain valid for various initial conditions.

I. Analysis of an emergent Navier-Stokes equation and the viscosity coefficient

In this subsection, we discuss an emergent viscosity term in the hydrodynamics of the 1D Fermi-Hubbard model in
more detail and point out limitations of our analysis.

In order to break integrability of the spinless Fermi-Hubbard model and consider a more generic case, we intro-
duce next-nearest-neighbor fermion-fermion interactions: H = Hf + Vint. Here Hf is a tight-binding Hamiltonian
and fermion-fermion interaction has the form Vint = U

∑
i nini+1 + U2

∑
i nini+2. Parameters U and U2 are the

nearest-neighbor and the next-nearest-neighbor couplings, respectively. Remarkably, the hydrodynamic equation
(S111) remains valid in the presence of next-nearest-neighbor interactions: see comparison between TEBD data and
the solution of the PDE in Fig. S14. In this case, the pressure renormalization coefficient becomes a function of both
coupling parameters: κ(U,U2). Hence the hydrodynamic model (S111) is applicable to a wide range of models of
interacting fermions (e.g. the Fermi-Hubbard model with nearest-neighbor interactions, next-nearest-neighbor inter-
actions, etc..). Discovered Eq. (S111) for an ideal Euler fluid works well for short evolution times. However, we found
that for longer evolution times, the viscous Navier-Stokes model (S113) becomes more accurate.

0 50 100
x

0.22

0.23

(t= tf,x)

0 50 100
x

0.025

0.000

0.025

v(t= tf,x)

(a) (b)

(d)(c)

FIG. S14. Fermion hydrodynamics in the Fermi-Hubbard model with nearest-neighbor interaction strength U and next-nearest-
neighbor interaction strength U2. Panels (a, c) show data for fermion density, and panels (b, d) show data for the velocity at
the final evolution time, tf = 60. Parameters of the Fermi-Hubbard Hamiltonian are (a, b) U/J = 4, U2/J = 0, (c, d) U/J = 2,
U2/J = −1. The blue and red solid lines correspond to the discovered Euler-like equation (S111) and Navier-Stokes-like
equation (S113), respectively.
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The viscosity term in Eq. (S113) discovered by our algorithm has an important qualitative role: it prevents the
formation of the gradient catastrophe. We found that the viscosity coefficient obtained from TEBD data ν could
drift with time, see Fig. S15. We extract the time dependence of the viscosity coefficient by performing our PDE-
reconstruction within a sliding temporal window [t, t+0.2T ], where T is the total evolution time. At the beginning of
the evolution, the effect of the viscosity term is negligible, and the effective dynamics is well-described by the inviscid
Euler equation. The viscosity coefficient extracted from TEBD data is close to zero at the start of the evolution and
grows with evolution time approaching a fixed value ν ∼ J at long evolution times, t → ∞. We checked that the
asymptotic value for the viscosity coefficient remains stable to variations of the initial state (changing the amplitude
of the external potential), see Fig. S15. Generally, the value of the viscosity coefficient will depend on the values of
interaction constants U and U2. In the non-interacting limit U,U2 → 0, the viscosity coefficient must vanish, ν → 0.
In our simulations, the magnitude of the effective viscosity term νvxx is much smaller compared to the dominant
pressure term κρρx, which affects the precision of the extracted value of ν. The saturation of the viscosity coefficient
ν(t→∞, U, U2)→ const can be interpreted as an onset of local equilibration in the interacting fermion gas.

FIG. S15. Time dependence of the extracted viscosity coefficient ν(U,U2, t) in the extended Fermi-Hubbard model with nearest-
neighbor interactions (U/J = U2/J = 2). Viscosity is extracted within the sliding time window [tstart, tstart + 0.2T ], where T
is the total evolution time. We present data for five initial conditions corresponding to diferent values of the amplitude of the
Gaussian potential V0. At large evolution times, the viscosity coefficient saturates to a constant value ν(t→∞, U, U2) ∼ J .

IV. DETAILS OF NUMERICAL SIMULATIONS

In the present Section, we provide additional details of numerical simulations for data generation. In Section IV A,
we analyze the errors in the coefficients of recovered PDEs and the dependence of the errors on the spatiotemporal
resolution of the input data.

Simulations of dynamics in the 1D XX spin chain and the non-interacting fermion chain were performed by exact

diagonalization of the single-particle density matrix, Gij(t) = 〈c†i (t)cj(t)〉. In the cases where single-magnon dynamics
in the XXZ spin chain was considered, we exactly solved the Schrödinger equation in the single-magnon sector of the
full Hamiltonian and computed the observables.

TEBD simulations for the dynamics of the domain-wall initial state in the XXZ model and for the dynamics in
the interacting Fermi-Hubbard model were performed with the TenPy package [91]. The matrix-product-state (MPS)
bond dimension was set to χ = 200. We checked that an increase of the MPS bond dimension to χ = 300 resulted in
a small change in the values of the recovered coefficients of the hydrodynamic PDEs (< 0.1%).

A. Error analysis

In this subsection, we would like to comment on the sources of error in our PDE-reconstruction procedure.
The primary sources of error encountered in PDE-learning from numerical simulations are (i) errors in numerical

schemes for the evaluation of high-order derivatives from data, (ii) numerical errors in the dataset (e.g. truncation
errors in TEBD simulations), (iii) physical-model errors originating from higher-order corrections to the approxi-
mate PDE: corrections beyond the hydrodynamic approximation, high-order terms in gradient expansion, etc... A
substantial amount of noise in the data can confuse the sparse regression algorithm, thereby introducing spurious
terms and/or shifting the values of the extracted coefficients. Of course, experimental data is usually more noisy as
compared to numerical simulations, thus affecting the reliability of the recovered equations.
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Below we discuss the role of the spatiotemporal resolution on the quality of PDE reconstruction, see Table SIII.
We found that leading semiclassical terms are robustly identified with our method, even for very “pixelated” data,
see Fig. S16.

TABLE SIII. Dependence of PDE reconstruction performance on the spatiotemporal resolution (Nt, Nx) of the dataset for the
quench problem in the non-interacting fermion gas [see Sections III A and III B]. While changing the resolution of the dataset,
we keep the spatiotemporal extent (T,L) fixed. The candidate terms in the Euler equation vt = G(·) are preselected based
on (P, T ) symmetry, resulting in M = 20 terms, see Table SII. The leading WKB terms vt + vvx + π2ρρx + . . . = 0 were
correctly identified by the BruteForce algorithm for the entire range of (Nt, Nx) presented. When decreasing the number of
spatiotemporal points some of the correction terms originating from the tigh-binding dispersion were misidentified, the number
of misidentified terms (b1ρ

3ρx, b2v
2ρρx, b3ρ

2vvx) is shown in the entries of the table.

Statistical uncertainty in the values of regression coefficients could be estimated if the covariance matrix of the
error term ε = y − Aξ is known, Σ = E[ε εT ]. However, for a given dataset, the residual term ε is a fixed vector, and
therefore its covariance is not known. As an alternative approach to estimating the statistical error in ξ, we randomly
select a subset of rows of the regression vector and the regression matrix: we split data in 10 batches of equal size each
containing 10% of the data points. Next we find the regression vector ξ for each batch and estimate the uncertainty
in the regression coefficients as an element-wise standard deviation of the values of ξ across batches. The resulting
statistical error, as well as the empirical error |ξ− ξtrue| (deviation of recovered coefficients from the exact theoretical
values), is shown in Fig. S17, where ξtrue are the theoretically expected coefficients. Comparing left and right panels
of Fig. S17, we see that the statistical error remains significantly lower compared to the empirical error. Therefore,
the uncertainties in the values of the regression coefficients are primarily systematic and generated by noise in the
numerically calculated derivatives, as well as by the mutual bias from higher-order nonlinear terms.

Additionally, we analyze the dependence of the reconstruction error on the choice of the upper cutoff of the evolution
time tf in the dataset, see Fig. S18.

(a) (b)

FIG. S16. Fermion hydrodynamics (non-interacting fermions): PDE-learning from low resolution data for (a) density and (b)
velocity. When significantly decreasing data resolution to (Nt, Nx) = (10, 10), our algorithm was still able to identify the correct
form of the hydrodynamic PDE, although the error in the values of the coefficients became significant: ρt+1.39 ρvx+1.14 vρx = 0
(λ0 = 10−5), and vt + 1.94 vvx + 10.3ρρx = 0 (λ0 = 10−4).
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(a) (b)

FIG. S17. Dependence of the empirical error |ξ − ξtrue| on the dataset temporal resolution Nt in recovered coefficients for the
vvx and ρρx terms in the PDE vt = ξvvxvvx + ξρρxρρx. Here ξtrue = (ξvvx , ξρρx) = −(1, π2) corresponds to the theoretical
values of the coefficients for the leading WKB terms. Scattered points show empirical error in the coefficients (a) ξvvx and
(b) ξρρx for individual random batches of subsampled data. This plot illustrates that the uncertainty in the reconstruction of
coefficients in nonlinear PDEs is primarily systematic, since the spread of the error distribution in batches is much smaller than
the mean error for a fixed value of Nt ∈ [25, 1000]. The number of spatial points was fixed at Nx = 1000. The input dataset
corresponds to Fig. S9.
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FIG. S18. (a) Dependence of the reconstruction error of the coefficients of the leading WKB terms, vt = ξvvxvvx + ξρρxρρx, on
the choice of the training time window. The reconstruction error is defined as |ξ − ξtrue|. (b) Input data for the evolution of
fermion density, ρ(t, x). The solid horizontal black lines in (b) show the upper cutoff tf of the training window t ∈ [0, tf ]. At
large values tf ∼ T , the reconstruction error ξvvx and ξρρx grows due to high spatial gradients of the density and the velocity
(the “gradient catastrophe”). The gradient catastrophe is a well-known feature of the semiclassical description of fermionic
dynamics [69].

V. DETAILS OF PDE-LEARNING FROM EXPERIMENTAL DATA: INTERACTING BOSONS ON AN
ATOM CHIP

In this Section, we provide details of PDE-learning from experimental data, including details of data post-
processing/interpolation.

We process the experimental data as follows. The data from Ref. 74 contains density profiles of the atomic cloud.
The spatiotemporal resolution of the original data is [565×7]. The seven experimental snapshots at different evolution
times correspond to the time range t ∈ [0, 85] ms. The total length of the 1D atomic cloud is L ∼ 103µm. The original
post-processed experimental data contains high-frequency spatial noise resulting in negative values of the measured
density ρ(t, x). In order to reconstruct continuous equations, we remove the spatial noise and increase the time
resolution. We first remove the high-frequency component of the spatial noise by applying a Gaussian filter with the
variance parameter σx/L = 2.5×10−2 for each of the seven snapshots. Next, to suppress the remaining low-frequency
noise, we apply the Savitsky-Gollay [92] filter with a sliding window of length 41 and a polynomial of order 2. Finally,
we perform cubic 2D interpolation of the resulting data in order to increase resolution along the temporal dimension,
which results in the final dataset with spatiotemporal dimensions [200× 200]. The data for the particle velocity was
reconstructed by leveraging the continuity equation, Eq. (S98)—the result is shown in Fig. S19(b).

The interpolation process may impact the precision of the learning process. For example, the interpolated particle
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FIG. S19. (a, b) Post-processed experimental data [from Ref. 74] for (a) density ρ(t, x) and (b) particle current j(t, x) = ρv
corresponding to boson cloud expansion on an atom chip from a double well potential. Here tmax = 85ms is the maximum
evolution time in the experimental dataset. The particle-current data was reconstructed from the density data ρ(t, x) by
utilizing the continuity equation. (c) Atom cloud density (in arbitrary units): original unprocessed data (thick fading line),
post-processed data (dashed line), and the solution of the inferred PDE (solid line, Eq. (20) in the main text). The individual
density profiles at different times were shifted vertically relative to each for visualization purposes (black horizontal lines
correspond to the origin of the vertical axis). The seven density profiles in (c) correspond to evolution times labeled in (a).

velocities at the start of the quench (i.e. t = 0) are non-zero, see Fig. S19 (middle panel). In contrast, based on
the experimental quench protocol, we expect zero particle velocity immediately after the quench of the confining
double-well potential. This mismatch is a byproduct of insufficient temporal resolution of the original data. This
issue, however, has a limited adverse impact since the inferred velocities at the initial times are not too large. Also,
while solving the inferred PDE forward, Fig. S19 (c), we plugged ρ(t = 0, x) = ρdata(0, x) and v(t = 0, x) = 0 as the
initial conditions.
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