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We study the problem of implementing arbitrary permutations of qubits under interaction con-
straints in quantum systems that allow for arbitrarily fast local operations and classical commu-
nication (LOCC). In particular, we show examples of speedups over swap-based and more general
unitary routing methods by distributing entanglement and using LOCC to perform quantum tele-
portation. We further describe an example of an interaction graph for which teleportation gives a
logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits
on the speedup afforded by quantum teleportation—showing an O(

√
N logN) upper bound on the

separation in routing time for any interaction graph—and give tighter bounds for some common
classes of graphs.

I. INTRODUCTION

Common theoretical models of quantum computation
assume that 2-qubit gates can be performed between
arbitrary pairs of qubits. However, in practice, scal-
able quantum architectures have qubit connectivity con-
straints [1, 2], which forbid long-range gates. These con-
nectivity constraints are typically represented by a graph,
where vertices correspond to qubits, and edges indicate
pairs of qubits that can undergo 2-qubit gates. Circuits
that use all-to-all connectivity must be mapped to new
circuits that respect the architecture constraints speci-
fied by the graph. Such transformations can introduce
polynomial overhead in the circuit depth, so it is crucial
to find efficient transformations with low overhead.

A natural approach to mapping circuits to respect in-
teraction constraints is by permuting qubits using routing
protocols. Routing refers to the task of permuting pack-
ets of information, or tokens, on vertices of a graph. In
quantum routing, tokens are data qubits, to be permuted
on the graph specified by the architecture’s connectivity
constraints. Previous work has used swap gates to per-
form routing [3, 4], and routing protocols from a classical
setting using swap gates [5–7] can be naturally applied
to the problem of routing quantum data as well.

However, while routing can be performed using only
swap gates, it may be possible to obtain faster protocols
by using a wider range of quantum operations. Previ-
ous work has used Hamiltonian evolution [8, 9] to speed
up routing. However, these approaches rely on nearest-
neighbor quantum interactions, so the routing time is

∗ ddhruv@umd.edu

limited by Lieb-Robinson bounds [8, 10]. In this pa-
per, we study quantum routing in systems that allow
for ancilla qubits, fast local operations (including mea-
surements), and classical communication (LOCC). Since
they can perform fast classical communication across
long distances, these systems are not constrained by
Lieb-Robinson bounds. Furthermore, even without prior
shared entanglement, quantum teleportation can be per-
formed in constant depth by using entanglement swap-
ping [11] in a quantum repeater protocol [12], as shown in
Fig. 1. The ability to perform teleportation in constant
depth immediately gives routing speedups over swap-
based methods and even over previous unitary quan-
tum routing methods, since teleportation can be used
to quickly exchange distant pairs of qubits.

Our work on fast LOCC routing is motivated by pre-
vious work that uses LOCC to give low-depth implemen-
tations of specific unitaries, such as quantum fanout [13]
and preparation of a wide range of entangled states [14–
17]. In fact, previous work has shown routing speedups
by using ancillas [18] and by employing LOCC [19]. Using
teleportation, Rosenbaum has shown a protocol that im-
plements any permutation in constant depth [19]. How-
ever, Rosenbaum’s protocol uses Θ(N2) qubits to per-
form permutations on O(N) qubits, so that only a negli-
gible fraction of the qubits are data qubits. Engineering
qubits is difficult, so it is preferable to use as many of
them as possible as data qubits, to enable larger compu-
tations. Therefore, in this work we restrict routing pro-
tocols to use only O(1) ancillas per data qubit (so in par-
ticular, there are O(N) ancillas in total). Rosenbaum’s
protocol cannot be performed in this setting. Assuming
the availability of Θ(1) ancillas per data qubit is natural
in some quantum systems, such as in NV center qubits
[20], quantum dots [21], and trapped ions [22]. Since

ar
X

iv
:2

20
4.

04
18

5v
1 

 [
qu

an
t-

ph
] 

 8
 A

pr
 2

02
2

mailto:ddhruv@umd.edu


2

|ψ〉 • H

|0〉 H •

|0〉 • H

|0〉 H •

|0〉 • H

|0〉 H •

|0〉 X Z |ψ〉

FIG. 1. Constant-depth long-range teleportation protocol on
a path of 7 qubits. The X and Z gates are classically con-
trolled by the parities of the two sets of measurement results.
This protocol can be extended to paths of any length without
increasing the circuit depth.

systems with Θ(N2) ancillas allow for routing in depth
O(1), and routing in systems with no ancillas can require
depth Ω(N), systems with O(N) ancillas are also a natu-
ral regime in which to investigate the space-time trade-off
between the number of ancillas and the routing time. By
studying routing in this regime, we make progress on an
open question posed by Herbert [18], asking to what ex-
tent ancillas can be used to accelerate routing.

In this paper, we examine the advantage of quan-
tum teleportation over classical swap-based routing al-
gorithms. After introducing the models in Sec. II, we
discuss known upper and lower bounds on the routing
time for both swap-based and teleportation routing in
Sec. III. We also introduce an improved algorithm for
sparse routing (i.e, routing of a small subset of tokens)
with swaps and ancillas. In Sec. IV, we use teleportation
to speed up specific permutations. In Sec. V, we compare
teleportation routing to swap-based routing for arbitrary
permutations, and we give an example of a (logN)-factor
speedup over swap-based routing. In Sec. VI, we show an
O(
√
N logN) upper bound on the speedup of teleporta-

tion routing over swap-based routing for all graphs, and
show tighter bounds for some common classes of graphs.
Finally, we conclude in Sec. VII with a discussion of the
results and some open questions.

II. PRELIMINARIES

We consider architectures consisting of data qubits
connected according to a graph G (with vertex set V (G)
and edge set E(G)), where an edge (u, v) ∈ E(G) repre-
sents a connection between qubits u, v ∈ V (G). We con-
sider only connected graphs, i.e., graphs in which there
is a path from any vertex to any other vertex.

(a) (b)

FIG. 2. (a) A grid architecture with ancillas (blue) inter-
spersed between data qubits (black). The red ovals indicate
which ancilla corresponds to each data qubit. (b) An equiva-
lent architecture in our model.

We assume that 2-qubit gates can only be performed
between adjacent qubits. We work in discrete time,
where a 2-qubit gate between adjacent qubits requires
depth 1, and gates between disjoint pairs of qubits can
be applied in parallel, i.e., also in depth 1. Further, we al-
low a constant number of ancillary qubits per data qubit.
Gates between data qubits and their associated ancilla
qubits are considered to be as fast as single-qubit gates
(i.e, can be performed in depth 0). We note, however,
that all of our results still apply in the case where gates
between data and ancilla qubits take depth 1.

Ancillary qubits corresponding to different data qubits
are not directly connected. However, gates between an-
cillary qubits of neighboring vertices can be performed
in depth 1 by swapping ancillas with their corresponding
data qubits, performing the desired 2-qubit gate between
data qubits, and swapping again with the ancillas. This
model can be implemented in realistic quantum archi-
tectures with attached ancillas [20–22] as well as archi-
tectures with grid connectivity such as superconducting
qubits [1, 23]. For example, Fig. 2a shows an architec-
ture where ancillas are interspersed with data qubits on
a grid. This can be represented in our model as Fig. 2b.
Both models are equivalent and can simulate each other
with only constant depth overhead.

The task of routing involves permuting data qubits on
the graph. We use the notation

{(1, π(1)), (2, π(2)), . . . , (N, π(N))} (1)

to denote a permutation on N vertices, where π(i) is the
vertex to which we must move the ith qubit. We also
write

[N ] := {1, 2, . . . N}. (2)

We consider the following models of routing.

1. Swap routing: In this model, the only allowed gates
between adjacent qubits are swap gates.
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2. LOCC routing: In this model, we are allowed to
perform arbitrary 2-qubit gates on disjoint pairs
of qubits in a single time step. Further, in the
same time step, we are allowed to perform single-
qubit measurements (on data and ancilla qubits)
and adaptively apply arbitrary single-qubit gates.
We refer to this as fast measurement and feedback.
Gates in later time steps can be applied adaptively,
conditioned on all previous measurement results.

3. Teleportation routing: This model is a specializa-
tion of LOCC routing. The ability to perform fast
measurement and feedback allows us to perform
quantum teleportation, transporting a single qubit
to any vertex in constant depth. The entanglement
required for quantum teleportation is produced us-
ing an entanglement swapping protocol [11], as de-
picted in Fig. 1. In this model, a swap between the
ends of a path can be performed in constant depth
by teleporting the qubit at each end to the opposite
end, or by performing gate teleportation [24] of a
swap gate.

Note that the vertices along a teleportation path cannot
be involved in any other operations during a round of
teleportation. However, teleportation between multiple
pairs of qubits can be performed in parallel if there exist
paths for each pair that have no more than a constant
number of intersections per vertex, since we allow a con-
stant number of ancilla qubits per data qubit.

We are particularly interested in the routing time
rt(G, π), which is the minimum circuit depth to perform
the permutation π on the data qubits of G. The worst-
case routing time of a graph G is

rt(G) := max
π∈S|V (G)|

rt(G, π) (3)

where SN is the symmetric group, i.e., the group of all
permutations of N elements. We let rttele(G) denote the
routing time in the teleportation model, rtLOCC(G) de-
note the routing time in the LOCC model, and rtswap(G)
denote the routing time in the swap model.

III. BOUNDS ON ROUTING TIME

In this section, we discuss known bounds on the routing
time for both swap and LOCC routing.

A. Lower bounds

If a permutation can only be implemented by sending
a large number of tokens through a small number of ver-
tices, then any circuit for performing it must have high
depth, since each vertex can only hold one token at a
time. This gives a natural lower bound on the routing
time. To formalize this, we consider the vertex expan-
sion (or vertex isoperimetric number) c(G) of a graph G,
defined as follows.

Definition 3.1. The vertex expansion of a graph G is

c(G) := min
X⊆V (G)

|δX|
min{|X|, |X|} , (4)

where

X = V (G)−X (5)

is the complement of X, and

δX = {v ∈ X | ∃u ∈ X s.t. (u, v) ∈ E(G)} (6)

is the vertex boundary of X.

Note that c(G) ≤ 1:

min
X⊆V (G)

|δX|
min{|X|, |X|} (7)

= min
X⊆V (G)

( |δX|
min{|X|, |X|} ,

|δX|
min{|X|, |X|}

)
(8)

= min
X⊆V (G)

min(|δX|, |δX|)
min{|X|, |X|} (9)

≤ 1. (10)

In addition, for a connected graph, since |δX| ≥ 1 and
min{|X|, |X|} ≤ N

2 for any X, we have c(G) ≥ 2
N There-

fore, for connected graphs, c(G) ∈
[
2
N , 1

]
.

Any connected simple graph G satisfies the following.

Theorem 3.2 (Isoperimetric lower bound [8]).

rtLOCC(G) ≥ 2

c(G)
− 1. (11)

Since rtswap(G) ≥ rttele(G) ≥ rtLOCC(G), this lower
bound applies to swap- and teleportation-based routing
as well.

We can also lower bound the swap-based routing time
by the diameter of the graph (i.e, the maximum shortest-
path distance between any pair of vertices) since swap-
ping two vertices at distance d requires a swap circuit of
depth at least d.

Theorem 3.3 (Diameter lower bound).

rtswap(G) ≥ diam(G). (12)

Note that this bound does not apply to teleportation
or LOCC routing.

B. Upper bounds

On any graph, a classical swap algorithm can route on
an N -vertex tree in depth O(N) [7]. Recall that we only
consider connected graphs, so we can always route on a
spanning tree with swaps in depth O(N). We thus have
the following upper bounds.
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Theorem 3.4. For any N -vertex connected graph G,

rtswap(G) = O(N) (13)

This bound also implies that rttele(G) = O(N) and
rtLOCC(G) = O(N).

We can prove a tighter bound for sparse routing. Let
rtswap(G, k) denote the worst-case routing time on G over
permutations that move at most k tokens. Using re-
versals, [8] gives a routing algorithm that takes depth
O(diam(G) + k2). We improve this result, using swaps
with ancillas, to show the following.

Theorem 3.5 (Sparse routing). For any N -vertex con-
nected simple graph G and k ∈ [N ],

rtswap(G, k) = O(diam(G) + k). (14)

Proof sketch. Call all tokens v with π(v) 6= v marked.
There are k marked tokens. There are three main steps
in our algorithm:

1. Hide all unmarked tokens in the ancillas by per-
forming swaps. Route the k marked tokens to span
a tree subgraph in time O(diam(G)).

2. Permute the k tokens on the tree subgraph, using
the procedure from [7], in time O(k).

3. Reverse the first step, thereby moving the k tokens
from the subgraph to the appropriate target loca-
tions in time O(diam(G)). Restore the unmarked
tokens from the ancillas.

See Appendix A for the full proof.

IV. FASTER PERMUTATIONS WITH
TELEPORTATION

The ability to perform teleportation immediately sug-
gests possibilities for speedups over swap-based routing.
Swap-based routing must obey the diameter lower bound
(Theorem 3.3), so permutations that involve long-range
swaps (e.g., between diametrically separated pairs of ver-
tices) should be sped up by teleportation.

We define the teleportation advantage for a specific per-
mutation to quantify this speedup:

adv(G, π) :=
rtswap(G, π)

rttele(G, π)
. (15)

We now consider the following permutation on the
path graph PN : πdiam = {(1, N), (2, 2), . . . , (N − 1, N −
1), (N, 1)} (see Fig. 3a).

By the diameter lower bound, this permutation takes
depth Ω(N) with swaps. However, with teleportation it
takes depth O(1), showing that adv(PN , πdiam) = O(N).

This further generalizes to permutations that require
multiple long-range swaps. For example, consider a rain-
bow permutation παrainbow, as depicted in Fig. 3b. This

. . .

(a) Diameter-length permutation πdiam (shown by the red
double-sided arrow) on the path graph PN (shown in black).

NαN/2

. . .

(b) Rainbow permutation παrainbow (shown by red
double-sided arrows) on the path graph PN (shown in

black).

FIG. 3. Permutations on a 1D lattice

FIG. 4. Permutation πlwheel (shown by red double-sided ar-
rows) that exchanges l pairs of vertices on the wheel graph
WN+1 (shown in black).

permutation involves performing Nα swaps across a 1D
lattice for some α ∈ [0, 1]. With swaps, this takes depth
Θ(N) by the diameter bound, but with teleportation it
takes depth Nα, by a procedure that simply teleports
each pair into place sequentially. This gives a polyno-
mial advantage: adv(PN , π

α
rainbow) = O(N1−α).

These permutations allow speedups bounded by the
diameter of the graph. Any single teleportation step can
be simulated by swaps in depth O(diam(G)), by sim-
ply swapping along the shortest path between the initial
qubit and the final destination. Intuitively, one might
therefore expect that teleportation routing could achieve
at most a diameter-factor speedup. However, there exist
some graphs and permutations for which we can obtain
even larger speedups. Teleportation speedups are not
limited by the graph diameter since teleportation proto-
cols can utilize multiple longer paths together to avoid
intersections.

To illustrate this, consider the example of a wheel
graph WN+1, as shown in Fig. 4. The (N + 1)-vertex
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wheel graph, with central vertex N + 1, has edges

E(WN+1) = {(u, v) | u− v = 1 (mod N) or v = N + 1}.
(16)

The diameter of WN+1 is 2. On this graph, consider the
permutation (shown in red in Fig. 4)

πlwheel := {(1, N/l), (N/l + 1, 2N/l), . . . ,

(N −N/l + 1, N)} (17)

that exchanges l pairs of vertices spaced along the “rim”
of the wheel (assume l | N). For swap-based algorithms,
this can be done in depth min{3l, N/l−1} by routing the
qubits sequentially through the central vertex or routing
them in parallel along the “rim”, whichever is faster.

This is optimal up to constant factors, by the following
reasoning. If there exists a data token that does not pass
through the central node, the routing time must be at
least N/l− 1, which is the travel distance along the rim.
On the other hand, if every data token passes through
the central node, then there must be at least 2l steps in
the algorithm. Therefore

rtswap(WN+1, π
l
wheel) ≥ min{2l, N/l − 1}. (18)

However, in the teleportation routing model, this per-
mutation can be performed in constant depth by per-
forming l teleportations in parallel along non-intersecting
paths on the wheel rim. Therefore,

rttele(WN+1, π
l
wheel) = O(1). (19)

Setting l =
√
N/2, we obtain a maximum teleportation

advantage adv(WN+1, π
l
wheel) = Θ(

√
N) for this class of

permutations, even though diam(WN+1) = O(1). Tele-
portation therefore enables super-diametric speedups.

V. TELEPORTATION ADVANTAGE

While πdiam, παrainbow, and πlwheel allow for teleporta-
tion speedups, they are not the worst-case permutations
on their respective graphs. For example, consider the
full reflection on the line graph, i.e., a rainbow permuta-
tion with α = 1. This permutation requires depth Θ(N)
for both swap- and teleportation-based routing. Simi-
larly, on the wheel graph with an even number of vertices,
the permutation π with π(i) = i + bN/2c mod N for all
i ∈ [N ] requires depth Θ(N) for both types of routing
as well. Thus, although these graphs have teleportation
speedups for specific permutations, there is no separation
between their swap and teleportation routing numbers.

To compare the relative strength of the teleportation
routing model to the swap-based routing model for all
permutations, we aim to understand how much teleporta-
tion improves worst-case permutations. We measure the
relative strength of the teleportation model by the sepa-
ration in teleportation and swap-based routing numbers,

. . .

. . .

. . .

K1

K2

K4

K2i

K2n−1

...

FIG. 5. The graph L(n). The black lines show edges between
layers, while blue lines show edges within a layer (colored for
visibility).

which we define as the worst-case teleportation advan-
tage:

adv(G) :=
rtswap(G)

rttele(G)
. (20)

Note that this is not the worst-case ratio of routing num-
bers for a single specific permutation, i.e., adv(G) is
not necessarily the same as maxπ adv(G, π). (Indeed,
as discussed above, these two quantities differ for the
path and wheel graphs.) Instead, adv(G) can be thought
of as the speedup teleportation provides for the general
task of routing on a particular graph in the worst case,
rather than for implementing a specific permutation. It
also allows us to compare different graphs: teleportation
routing offers greater worst-case guaranteed speedups on
graphs with higher adv(G).

It is not immediately obvious that we should expect
adv to be greater than 1 for any graph. However, we
now describe a graph that does offer a worst-case speedup
for teleportation. This graph, which we denote by L(n)
(with N = 2n − 1 vertices), has adv(L(n)) = n =
log2(N + 1). The graph L(n) (depicted in Fig. 5) has

V (L(n)) = {(r, i) | r ∈ [n], i ∈ [2r−1]} (21)

and

E(L(n)) = {((r, i1), (r, i2)) |
r ∈ [n], i1 < i2 ∈ [2r−1]}

∪ {((r1, i1), (r2, i2)) |
r2 − r1 = 1, i1, i2 ∈ [2r−1]}.

(22)

In words, L(n) is a ladder formed by arranging complete
graphs K2k for k ∈ {0, 1, . . . , n− 1} in horizontal layers,
and then connecting every vertex in a given layer with
every vertex one layer above or below. The total number
of vertices in this graph is

N =

n−1∑
k=0

2k = 2n − 1. (23)
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The diameter of L(n) is exactly n− 1 = log2(N + 1)− 1.
Theorem 3.3 then implies

rtswap(L(n)) = Ω(log(N)). (24)

With teleportation, we show that routing can be per-
formed in depth O(1). The key idea behind the telepor-
tation protocol is that every layer of L(n) has one more
node than all the layers above it together. This allows
us to identify a unique node in each layer correspond-
ing to any node from a higher layer. We can then route
tokens by simply teleporting along the path formed by
the unique nodes from each layer, corresponding to the
source vertex of the token to be routed.

This teleportation routing procedure establishes the
following.

Proposition 5.1. rttele(L(n)) = O(1).

Proof. For any permutation π ∈ S2n−1, we construct a
set of paths {P (u, π(u)) | u ∈ V (L(n))} between every
node and its destination such that each vertex of the
graph belongs to at most four paths in the set.

Label every vertex in the graph with an n-bit address
as follows. To every node in the subgraph K2i (corre-
sponding to layer i + 1 of the ladder), assign a unique
integer u in the range [2i, 2i+1 − 1]. (Since the layer is
a complete graph, the order within a layer is arbitrary.)
Equivalently, we may refer to node u by its binary repre-
sentation b(u), which is an (i+1)-bit string with a leading
1, i.e., of the form b(u) = (1 . . .).

For any vertex u ∈ V , define r(u, i) to be the vertex
whose address is (10i−1b(u)), i.e., the address of u ap-
pended to a leading 1 i places to the left. Note that
r(u, i + 1) is adjacent to r(u, i) and lies in the layer im-
mediately below r(u, i). Define r(u, 0) = u.

Now, given two vertices u, v separated by a distance d,
define a canonical path P (u, v) = P (v, u) as the sequence
of the following nodes: (u, r(u, 1), . . . , r(u, d − 1), v),
where we assume u < v without loss of generality. If
d = 1, then P (u, v) = (u, v). We now show that for
any permutation π ∈ S2n−1, the set of canonical paths
{P (u, π(u)) | u ∈ V (L(n))} intersects any vertex at most
four times.

Fix an arbitrary vertex v. By construction, v lies
in P (v, π(v)) and P (v, π−1(v)). Now suppose a path
P (u, π(u)) passes through v /∈ {u, π(u)}. Then either
u < v < π(u) or π(u) < v < u. Without loss of general-
ity, we assume the former. Since P (u, π(u)) is canonical,
b(v) = (10ib(u)) for some i ≥ 0. Suppose a different path
P (u′, π(u′)) also intersects v. Then there are two cases
to consider: u′ < π(u′) and u′ > π(u′). In the first case,

b(v) = (10i
′
b(u′)). This is only possible when i = i′ and

u = u′, which implies that P (u′, π(u′)) = P (u, π(u)) (giv-
ing one intersecting path at v). In the second case, the
same reasoning implies that u = π(u′). In this case, there
are two intersecting paths P (u, π(u)) and P (π−1(u), u) at
v. Therefore, in addition to P (v, π(v)) and P (v, π−1(v)),
at most two other paths can intersect at v, giving a total
of at most four paths.

Finally, construct one Bell pair for every edge in every
canonical path P (u, π(u)), using distinct local ancillas for
every pair. The number of Bell pairs shared at any vertex
is at most 6 = O(1), requiring 6 local ancillas per vertex.
Using the standard repeater protocol (Fig. 1) along each
canonical path, one can then carry out simultaneous tele-
portation of all data qubits to their destination vertices
v 7→ π(v) in constant depth. Therefore, any permutation
of the qubits can be implemented in depth O(1).

VI. BOUNDING THE TELEPORTATION
ADVANTAGE

In the previous section, we described a graph with log-
arithmic teleportation advantage. In this section, we ex-
amine limits on the teleportation advantage. In order
to understand the power of teleportation in general, we
specifically aim to bound the maximum teleportation ad-
vantage

adv∗ := max
G

adv(G) (25)

over all graphs with a fixed number of vertices. This
quantity measures the maximum speedup teleportation
can provide on worst-case permutations for any graph.
We also show tighter bounds on the advantage for some
common classes of graphs.

We immediately have an upper bound on adv from
Theorem 3.4. Since any teleportation algorithm must
have depth Ω(1), and a swap algorithm can implement
any permutation in depth O(N), we have

adv∗ = O(N). (26)

We now show a tighter bound.

A. Advantage for general graphs

Combining Theorem 3.2 and Theorem 3.3, we have

Lemma 6.1. rtswap(G) ≥ max{ 2
c(G) ,diam(G)}.

We now consider the relationship between diam(G)
and 1

c(G) . Intuitively, increasing the diameter while keep-

ing |V (G)| constant ‘stretches’ the graph, tightening bot-
tlenecks. This causes c(G) to decrease. Similarly, elim-
inating bottlenecks in the graph requires adding more
edges across cuts, thereby increasing the connectivity of
the graph and reducing the diameter. We thus expect
that graphs with higher diameter will have higher 1

c(G) ,

and graphs with small 1
c(G) will have small diameter. We

can express this relation more precisely as follows.

Lemma 6.2. For any connected simple graph G,

diam(G) ≤ 2
log N

2

log (1 + c(G))
+ 2. (27)
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Proof. See Appendix B.

One might expect graphs with large diameter to al-
low large speedups, since the diameter lower bound only
applies to swap routing. However, as illustrated by
Lemma 6.2, graphs with large diameter also have tight
bottlenecks, and therefore, by Theorem 3.2, are not likely
to permit large speedups.

We now show our main results bounding the advan-
tage. Our main technical result bounds the advantage in
terms of the diameter of the graph. We note that this
bound also applies to the separation between swaps and
teleportation routing for any permutation, and not just
the worst-case separation.

Lemma 6.3. adv(G) = O(
√
N + diam(G)).

Proof. We construct a swap-based protocol that can sim-
ulate a single round of teleportation in depth O(

√
N +

diam(G)), thereby upper bounding the teleportation ad-
vantage.

A single round of a teleportation protocol performs
teleportation along a set of paths. These paths must
intersect no more than a constant number of times per
vertex, since there are only a constant number of ancillas
per vertex.

For all paths from the teleportation protocol of length
at most

√
N , we swap along the paths in parallel. Since

each vertex only has a constant number of paths going
through it, a qubit can move through every vertex in
constant depth. Therefore, these swaps can be performed
in depth O(

√
N).

On an N -vertex graph, there are O(N/l) paths of
length at least l. Therefore, since each long path cor-
responds to a single token, after routing along all paths
of length at most

√
N , we have O(

√
N) tokens left to

route. By Theorem 3.5, this can be done in depth
O(
√
N + diam(G)).

We can thus simulate each teleportation round in
depth O(

√
N+diam(G)), which completes the proof.

Combining our results, we now have a bound on the
advantage for any graph.

Theorem 6.4. adv∗ = O(
√
N logN).

Proof. First, combining Theorem 3.4 and Theorem 3.2,
we have

adv(G) = O(N · c(G)). (28)

Combining this bound with the bound from Lemma 6.3,
we have

adv(G) ≤ min
{
O(N · c(G)), O(

√
N + diam(G))

}
.

(29)
We know that c(G) > 0. Using the fact that log(x) ≥
1− 1/x for x > 0, we have

1

log(1 + c(G))
≤ 1

c(G)
+ 1 = O

(
1

c(G)

)
, (30)

where in the last equality we used c(G) ≤ 1. Applying
this to Lemma 6.2 and Eq. (29), we have

adv(G) ≤ min

{
O(N · c(G)), O

(√
N +

log(N)

c(G)

)}
.

(31)
Recall the definition of the maximum teleportation ad-
vantage from Eq. (25):

adv∗ := max
G

adv(G). (32)

Therefore,

adv∗ ≤ max
G

min

{
O(N · c(G)),

O

(√
N +

log(N)

c(G)

)}
.

(33)

As c(G) varies, the two bounds in the minimum vary in-
versely. The first bound, from Eq. (28), is monotonically
increasing in c(G) for c(G) ∈ (0, 1]. The second bound is

monotonically decreasing in c(G) for c(G) ∈
(

0, logN√
N

]
.

Note that when c(G) ∼ 1/N (recall that c(G) ≥ 2/N),

the first bound is smaller, while when c(G) ∼ logN√
N

, the

second bound is smaller. The largest minimum of the
two bounds is thus obtained when they are equal.

The minimum of the two bounds is thus maximized
when c(G) =

√
(logN)/N . Note that even if a graph

with c(G) =
√

(logN)/N does not exist, any other value
of c(G) will result in a smaller right-hand side of Eq. (31).

With c(G) =
√

(logN)/N , we obtain

adv∗ = O
(√

N logN
)

(34)

as claimed.

This bound applies to any graph, and is thus indepen-
dent of the diameter of the graph. Therefore, this re-
sult shows that in graphs with diameter ω(

√
N logN),

we cannot obtain a routing time separation between
teleportation- and swap-based routing that is propor-
tional to the diameter.

Next we show tighter bounds for a few common fami-
lies of graphs.

B. Grids

For d-dimensional grids (i.e, P�d
n , the d-fold Cartesian

product of the path graph Pn, with N = nd vertices),
the vertex cut bound (Theorem 3.2) gives

rtLOCC(P�d
n ) ≥ 2

c(P�d
n )
− 1 ≥ n− 1, (35)

where c(P�d
n ) ≤ 2/n follows from considering a hyper-

plane that bisects the grid along one dimension. From
[5], we have

rtswap(G1�G2) = 2 rtswap(G1) + rtswap(G2). (36)
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Therefore, the swap routing time of a d-dimensional grid
is O(dN1/d) = O(dn). For constant d, this saturates
the cut bound in Eq. (35). Therefore, there is no worst-
case speedup from either teleportation or full LOCC, i.e,
adv(P�d

n ) = 1.

C. Expander graphs

We bound the advantage for spectral expander graphs
to be poly(logN). The spectral expansion of a graph is
given by the first non-zero eigenvalue, λ(G), of the graph
Laplacian L with

Lu,v =


dv if u = v

−1 if (u, v) ∈ E(G)

0 otherwise,

(37)

where dv is the degree of vertex v. Spectral expanders are
graphs with λ = Ω(1) and bounded degree. For a com-
prehensive introduction to spectral graph theory, consult
[6].

To bound the advantage for spectral expanders, we
first use the following upper bound on the swap-based
routing number. Let d∗ := maxv∈V dv

minv∈V dv
denote the degree

ratio of a graph.

Theorem 6.5 ([8]). For any graph G and permutation
π,

rtswap(G, π) = O

(
d∗

λ(G)2
log2N

)
. (38)

Combining this result with the lower bound of Theo-
rem 3.2, we immediately get

adv(G) = O

(
d∗c(G) log2N

λ(G)2

)
. (39)

Thus graphs with λ(G) = Ω(1) and d∗ = O(1) (such
as spectral expanders) have at most a polylogarithmic
advantage.

D. Hypercubes

The swap-based routing time for a d-dimensional hy-
percube Qd is [5, 25]

rtswap(Qd) = Θ(d). (40)

Since |V (Qd)| = N = 2d,

rtswap(Qd) = logN. (41)

Now, we will show that c(Qd) = Θ( 1√
d
). In a hypercube,

Hamming balls (i.e., sets of all points with Hamming
weight ≤ r for some integer r) have the smallest bound-
ary of all sets of a given size [26]. Taking the Hamming

ball of radius d/2 as X, we have |X| = 2d−1 and |δX| =(
d
d/2

)
= Θ(2d/

√
d). Therefore, c(G) = Θ(1/

√
d). Using

Theorem 3.2, we have rttele(G) = Ω(
√
d) = Ω(

√
logN).

Teleportation thus offers at most an O(
√

logN) advan-
tage on hypercubes.

E. Other graphs

The cyclic butterfly graph Br has been proposed as
a constant-degree interaction graph that allows for fast
circuit synthesis [3, 27]. Each of the N = r2r vertices
is labelled (w, i) ∈ {0, 1}r × [r]. Vertices (w, i) and
(v, i + 1 mod r) are connected if w = v or if w and
v differ by exactly one bit in the ith position. The
cyclic butterfly has diameter O(logN), degree 4, and
rtswap(Br) = O(logN) [27].

We now show that the O(logN) protocol is optimal
even for teleportation routing on the cyclic butterfly
graph, so adv(G) = O(1). Bipartition the vertices into
sets X,X such that X consists of all rows with bit j = 0
for some j, and X consists of all rows with bit j = 1. For
this partition, |X| = r2r−1 and |δX| = 2r, so c(G) ≤ 2/r.
Since r = Θ(logN), c(G) = O( 1

logN ), so from Theo-

rem 3.2, adv(G) = O(1).
The complete graph KN has rtswap(KN ) = O(1), and

therefore has adv(KN ) = 1.
Finally, graphs with poor expansion properties—in

particular, with vertex expansion c(G) = O(poly(logN)
N )—

have at most polylogarithmic advantage by Eq. (28).

VII. DISCUSSION

In this paper, we have used quantum teleportation to
speed up the task of permuting qubits on graphs. We
have shown examples of specific types of permutations
that can be sped up by teleportation. Further, we have
shown an example of a graph that exhibits a worst-case
teleportation routing speedup of logN . Our main tech-
nical result (Theorem 6.4) is a general upper bound of
O(
√
N logN) on the worst-case routing speedup.

These results lead to two natural open questions:

1. Does there exist a graph with adv(G) = ω(logN)?

2. Is there a tighter upper bound than Theorem 6.4
on the maximum teleportation advantage for any
graph?

We expect that both of these questions can be answered
positively. Our upper bound on teleportation advantage
was derived by showing a procedure to simulate a single
round of a teleportation protocol with swaps. We be-
lieve that there should be more sophisticated methods to
perform the conversion that give tighter bounds by ex-
ploiting parallelism. A possible approach to tightening
this bound would be to show a swap protocol that par-
allelizes performing routing from multiple teleportation



9

rounds, since swap paths need not obey the strict con-
ditions of teleportation paths (namely, allowing only a
constant number of path intersections per vertex).

A graph with a superlogarithmic separation between
swap- and teleportation-based routing (if one exists) can-
not be a spectral expander, as per Theorem 6.5. From
Lemma 6.2, we know that a graph with large diam-
eter will have poor expansion properties (small c(G))
and therefore will not have a large teleportation advan-
tage as per Eq. (28). Some candidate graphs for a su-
perlogarithmic teleportation advantage are those with
c(G) ≈

√
(logN)/N . Such graphs may come closer to

achieving a teleportation advantage given by the upper
bound of Theorem 6.4.

We have primarily focused on the teleportation model
of routing. However, teleportation routing is a special
case of the more general LOCC model of routing. We
currently do not know whether the full power of LOCC
can provide a super-constant speedup over teleportation
routing. This is analogous to another open question,
namely whether routing with arbitrary 2-qubit gates—
or even with arbitrary bounded 2-qubit Hamiltonians—
can provide a super-constant speedup over swap-based
routing [8].

Herbert [18] posed the question of establishing to what
extent ancillas can be used to reduce the routing depth.
Rosenbaum [19] showed an O(1) routing protocol on N
qubits with Θ(N2) ancillas (i.e., an advantage of O(N)),
while systems without ancillas cannot perform LOCC or
teleportation routing, and therefore cannot exhibit any
speedups. We have investigated an intermediate regime,
and have shown that a linear number of ancillas cannot
allow for speedups greater than O(

√
N logN). It remains

an open question to further investigate the space-time
tradeoff between the number of ancilla qubits and the
routing time.

A more general task than routing is to perform unitary

synthesis, i.e, decompose a particular unitary into 2-qubit
gates that can be applied on our locality-constrained
qubits. It remains an open question to understand how
much unitary synthesis can be sped up by using LOCC
with a linear number of ancillary qubits. Previous work
has shown an Ω(N) speedup for implementing fanout [13]

and preparing GHZ and W states [14], and an Ω(
√
N)

speedup for preparing toric code states [14], which takes

time Ω(
√
N) without LOCC [28]. Previous work has also

shown how measurements of cluster states can be used
to efficiently prepare long-range entanglement [16] and
states with exotic topological order [17]. In principle,
LOCC could similarly provide polynomial speedups for
unitary synthesis, as we currently have no upper bounds
on the advantage for any unitary.
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FIG. 6. Advancing a train of tokens, as in Algorithm A.1.
Blank vertices hold state |0〉. The dashed lines represent con-
nections with the local ancilla qubits.

· · ·

(a) The blue train advances
one vertex at a time.

· · ·

(b) The red train waits for
the blue train, but remains in
the same connected token

cluster.

· · ·

(c) The red train is
concatenated to the blue

train.

· · ·

(d) Once concatenated, they
move as a single train.

FIG. 7. Joining trains of tokens.

Appendix A: Sparse routing
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based routing algorithm to route k vertices on a graph
G. In this Appendix, we show that using swaps with a
constant number of ancillas per qubit, this result can be
improved to be linear in k.

We first introduce the following definitions.

Definition A.1 (Null token). A null token is a dummy
token that can be routed anywhere. In quantum routing,
all ancillas are initialized with a null token in state |0〉.
Definition A.2 (Train). A train is a set of non-null
tokens along a path subgraph of G.

Now we show how a train can advance, i.e., translate
by 1 along its length.

Lemma A.3. A train can advance in depth 5.

Proof. Suppose we want to move a train of length l to-
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Algorithm A.1: Advance a train

Input : Train T from vertices 0 to l − 1 on a path.
Vertex l has a null token. The data token on
vertex i is data(i), and the token on the
corresponding ancilla is ancilla(i).

1 parallel for i = 1, 3, . . . :
2 swap data(i) with ancilla(i)
3 parallel for i = 0, 2, 4, . . . :
4 swap data(i) with data(i+ 1)
5 swap data(i+ 1) with ancilla(i+ 1)

6 parallel for i = 1, 3, . . . :
7 swap data(i) with data(i+ 1)
8 swap data(i) with ancilla(i)

Algorithm A.2: Token cluster movement

Input : Set of token clusters; vertex r.
1 In each token cluster, advance the train with head

closest to r by 1 using Algorithm A.1.
2 If any two token clusters are adjacent, join them as a

single token cluster.
3 If the head of any train T1 is adjacent to the tail of

another train T2, join them as a single train with the
head of T2 and the tail of T1.

as the vertices of the shortest path from the head to r.
Let the tail lie on vertex 0, and head lie at vertex l − 1.
We use Algorithm A.1 to advance the train such that af-
ter 5 time steps, the tail of the train is at vertex 1 and
the head at l. This procedure is depicted in Fig. 6.

We now define a token cluster.

Definition A.4 (Token cluster). A token cluster is a set
of trains such that each train contains a token on a vertex
that is adjacent to a vertex with a token from another
train in the token cluster.

Token clusters move as in Fig. 7, by Algorithm A.2.
Once a train joins a token cluster, it remains connected
and part of the token cluster.

We now prove Theorem 3.5, which we reproduce here
for clarity.

Theorem 3.5 (Sparse routing). For any N -vertex con-
nected simple graph G and k ∈ [N ],

rtswap(G, k) = O(diam(G) + k). (14)

Proof. Let us call the k tokens on vertices

{v ∈ V (G) | π(v) 6= v} (A1)

marked tokens, and let the remaining token be unmarked
tokens. Our algorithm involves three phases.

Phase 1: First, we swap the unmarked tokens into
local ancilla qubits and store them there for the duration
of routing. Every vertex that initially held an unmarked
token now holds a null token.

Next, we select some vertex r of G arbitrarily (in prac-
tice, selecting r to be at the center of the graph may pro-
vide constant-factor speedups). We now move all marked
tokens towards vertex r by swapping along the shortest
possible paths, until the tokens span a set of vertices
forming a tree connected to r. The tokens are moved in
parallel, and when their paths intersect, the tokens move
as trains, as per Lemma A.3. When the paths of multi-
ple trains intersect, they form a token cluster, and can
be moved as in Algorithm A.2.

Any given train is at most diam(G) distance away from
r at the start of Phase 1. At every time step, a train
either advances by 1 vertex towards r, or is part of a
token cluster in which another train closer to r advances.
Therefore, every token cluster becomes connected to r in
depth O(diam(G)), since in every token cluster, at least 1
train must reach r in depth O(diam(G)). In particular, in
O(diam(G)) depth, all non-null tokens must span a tree
containing r, and thus have merged into a single token
cluster.

Phase 2: Now we have k vertices spanning a tree T .
Suppose token v is mapped to the vertex t(v) in T after
Phase 1. Note that the token u that was originally at
t(v) must also be a marked token, and therefore must
now lie in T . We route the tokens on T according to a
permutation π′ such that

π′(t(v)) := t(π(v)) (A2)

for all t(v) ∈ V (T ), in depth 2k [5].
Phase 3: We now simply perform Phase 1 in reverse.

During Phase 1, the marked token at u was mapped
to t(u). Therefore, after Phase 3, the token at t(u) is
mapped to vertex u. Therefore, the following mapping is
applied to all vertices with marked tokens:

u
Phase 1−−−−−→ t(u)

Phase 2−−−−−→ t(π(u))
Phase 3−−−−−→ π(u). (A3)

The combined depth of the three phases is at most
O(k + diam(G)).

Appendix B: Proof of diameter-expansion trade-off

In this appendix, we prove Lemma 6.2, adapting
Proposition 3.1.5 from [29] to vertex neighborhoods
rather than edge neighborhoods.

Lemma 6.2. For any connected simple graph G,

diam(G) ≤ 2
log N

2

log (1 + c(G))
+ 2. (27)

Proof. For any vertex v ∈ V , denote by C(v, k) the set
of all vertices that are at distance k from v. We call
C(v, k) a circle of radius k centered on v. Note that
C(v, k) ∩ C(v, k′) = ∅ when k 6= k′. Next, define

D(v, k) :=

k⋃
r=0

C(v, r) (B1)
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to be the disk of radius k centered on v. Observe that
C(v, 0) = D(v, 0) = {v}. Finally, choose an integer ρ(v)
such that |D(v, ρ(v))| ≤ N/2 < |D(v, ρ(v) + 1)| and call
it the horizon of v. For any vertex, a horizon exists and
is an integer between 0 and diam(G)− 1.

By definition, for all k ≤ ρ(v) + 1, we have

|C(v, k)| ≥ c(G) · |D(v, k − 1)|. (B2)

Applying this inequality gives

|D(v, ρ(v))| = |C(v, ρ(v))|+ |D(v, ρ(v)− 1)| (B3)

≥ (1 + c(G))|D(v, ρ(v)− 1)|. (B4)

Recursing until we reach the base case D(v, 0) = {v}, we
obtain

N/2 ≥ (1 + c(G))ρ(v), (B5)

giving

ρ(v) ≤ log(N/2)

log(1 + c(G))
. (B6)

Next, for any two vertices u, v ∈ V , let d(u, v) denote the
distance between u, v. We claim that

d(u, v) ≤ ρ(u) + ρ(v) + 2. (B7)

To see this, note that by definition, |D(u, ρ(u) + 1)| >
N/2 and |D(v, ρ(v) + 1)| > N/2, which implies that
D(u, ρ(u) + 1)

⋂
D(v, ρ(v) + 1) 6= ∅ by the pigeonhole

principle. Therefore, there exists a vertex t such that
d(u, t) ≤ ρ(u) + 1 and d(t, v) ≤ ρ(v) + 1. By the triangle
inequality, we have d(u, v) ≤ ρ(u) + ρ(v) + 2 as claimed.

Finally, we use Eq. (B6) and maximize the distance
over all vertex pairs u, v to get

diam(G) ≤ 2 log(N/2)

log(1 + c(G))
+ 2 (B8)

as claimed.
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