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In this Supplemental Material we present additional details concerning the random circuit. In Sec. I, we derive the
general transition rate matrix W , given in Eq. (5) of the main text. In Sec. II we specialize it to the case of an initial
single-site operator, deriving Eqs. (7) and (8) of the main text. In Sec. III, we present the continuum approximation
for small g, deriving the Fokker-Planck equation, Eqs. (9-11) of the main text. In Sec. IV, we derive the relation
between the average squared commutator and the mean operator weight. In Sec. V, we provide additional details on
the dynamics and steady-state of the probability weight distribution. In Sec. VI, we derive an analytical expression
for the probability weight distribution after one step of the random circuit and show that if the interactions are strong
enough, the scrambling time is O(1).

I. DERIVATION OF THE STOCHASTIC MATRIX W

To be slightly more general, we consider a system of N sites, each of local dimension q. As discussed in the main
text, we are interested in the time evolution of a simple initial operator O(t) = U†(t)OU(t)

O(t) =
∑
S
aS(t)S, (S1)

where the strings S form a basis for SU(qN ), normalized as tr(S) = qNδS,1, tr(SS ′) = qNδSS′ . We take U(t) =
∏t
i=1 Ui

where Ui = UIUIIUI and UI is a product of single site Haar random unitaries while UII is the global interaction. Note
that the two UI appearing on either side of the UII are different, i.e the random unitaries are random in both space
in time. Here we inserted an additional layer of the Haar unitaries, as compared to the main text. This is completely
equivalent, as this extra layer can always be absorbed into the Haar layer of either the step before or the step after,
but it simplifies calculations.

Using aS(t) = q−N tr(O(t)S), we can write a2
S(t) in terms of the coefficients at the previous time step

(S2)a2
S(t) = q−2N

∑
S′,S′′

aS′(t− 1)aS′′(t− 1) tr
(
U†S ′US

)
tr
(
U†S ′′US

)
.

Thus, we want to evaluate the quantity

(S3)
〈
tr
(
U†S ′US

)
tr
(
U†S ′′US

)〉
,

where 〈...〉 denotes Haar average over the random unitaries.
Using properties of trace, we can write

(S4)
〈
tr
(
U†S ′US

)
tr
(
U†S ′′US

)〉
=
〈
tr
(
U†S ′US ⊗ U†S ′′US

)〉
.

In doing so, we now have a trace over two copies of the system, which could still be thought as a N -site system, where
every site is now of dimension q2 instead of q. In the following, we will denote operators acting on the right system
by an overbar. For example ZiZ̄i corresponds to the Pauli Z operator acting on site i of both copies, i.e Zi ⊗ Zi.

For our choice of U , Eq. (S4) becomes

(S5)
〈
tr
(
U†S ′US

)
tr
(
U†S ′′US

)〉
= tr

(〈
(UI ⊗ UI)(UII ⊗ UII)

〈
UIS ′U†I ⊗ UIS ′′U†I

〉
(UII ⊗ UII)

†(UI ⊗ UI)
†
〉

(S ⊗ S)
)
.

We will calculate the above in several steps, working from inside out

I1 =
〈
UIS ′U†I ⊗ UIS ′′U†I

〉
, (S6)

I2 = (UII ⊗ UII)I1(UII ⊗ UII)
†, (S7)

I3 =
〈
(UI ⊗ UI)I2(UI ⊗ UI)

†〉 , (S8)
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with tr(I3(S ⊗ S)) being our quantity of interest.
Before proceeding, let us introduce an important formula for calculating the Haar averages. Consider a d2 × d2

matrix A, and a d× d Haar random unitary matrix U . Then, we have the following formula [S1, S2]

(S9)

〈
(U ⊗ U)A(U ⊗ U)†

〉
≡
∫
U(d)

(U ⊗ U)A(U ⊗ U)†dµ(U)

=

(
tr(A)

d2 − 1
− tr(AF )

d(d2 − 1)

)
1d2 −

(
tr(A)

d(d2 − 1)
− tr(AF )

d2 − 1

)
F,

where F =
∑
ij |ij〉 〈ji| is the swap operator.

From this, it follows that

I1 =
∏
r

〈
U†rS ′rUr ⊗ U†rS ′′r Ur

〉
= δS′,S′′

∏
r

(
q2δS′

r,1
− 1

q2 − 1
1q2 +

q − qδS′
r,1

q2 − 1
Fr

)
(S10)

where we used tr(Sr) = qδSr,1 and tr(SrS ′r) = qδSr,S′
r
. Here Fr swaps site r of the left system with the corresponding

site r of the right system.
The overall delta function δS′,S′′ immediately implies that the Haar average of Eq. (S2) may be written as

(S11)
〈
a2
S(t+ 1)

〉
=
∑
S′

WS,S′
〈
a2
S′(t)

〉
,

where WS,S′ = q−2N tr(I3(S ⊗ S)).
To proceed, we specialize to qubits, i.e. q = 2, in which case the swap operator can be written as Fr = 1

2 (1r ⊗ 1̄r +
σr · σ̄r) = 1

2 (1r1̄r +XrX̄r +YrȲr +ZrZ̄r) where bar denotes operators acting on the second system. We can combine
all the 1s together, giving

(S12)

I1 = δS′,S′′

∏
i

(
δS′

i,1
122 +

1− δS′
i,1

3
σi · σ̄i

)
= δS′,S′′

∑
ΩS′⊂{1,2,···,N}

∏
i∈{1,2,···,N}/ΩS′

δS′
i,1
14

∏
j∈ΩS′

1− δS′
j ,1

3
σj · σ̄j ,

where in the second equality the sum is over the powerset of {1, 2, · · · , N}, i.e, all the (2N ) subsets of {1, 2, · · · , N}.
The sum above essentially contains every possible string of the form S ⊗ S, i.e the same operator appears on both
copies of the system. Note that for a given string S ′, there is only one nonzero term in the sum. For each site i, we
either put an 14 if S ′i = 1 or we place 1

3σi · σ̄i, if S ′i is any other generator. The set ΩS′ therefore represents the
support of the string S ′.

Before proceeding, let us summarize the high-level idea behind the derivation that follows. Our tasks consist of the
following:

1. First, we need to apply the global interaction UII ⊗ UII on Eq. (S12), giving us I2.

2. Then, we need to apply the layer of single-site Haar unitaries UI ⊗ UI, and average over the Haar distribution
on each site, giving us I3.

3. Finally, we need to multiply the result by S ⊗ S and take the trace, giving us WS,S′ .

Recall that

UII = e−i
g′
2

∑
i<j ZiZj , (S13)

where in the main text we have assumed g′ = g√
N

. To perform the first step, we will make use of the formulas

UIIXrU
†
II = Xr cos

g′∑
i 6=r

Zi

+ Yr sin

g′∑
i 6=r

Zi

, (S14)

UIIYrU
†
II = Yr cos

g′∑
i 6=r

Zi

−Xr sin

g′∑
i 6=r

Zi

. (S15)
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Now, note that each term in the sum in Eq. (S12) is a product of single-site operators. By performing our first
task, using Eqs. (S14) and (S15), we will obtain complicated operators, like those appearing on the right-hand-side
of Eqs. (S14) and (S15), that are supported on a large number of sites. In order to perform the second step, we can
make use of Eq. (S9). However, to use Eq. (S9), we need A to be a single-site operator. Thus, we will have to break
down complicated operators, like those appearing on the right-hand-side of Eqs. (S14) and (S15), into sums of simple
terms consisting of products of single-site operators. This will allow us to use Eq. (S9), after which we can easily
perform the last step, 3, since this will only require taking traces of single-site operators.

The result of step 1 and 2 can be simplified by noting that Eq. (S12) contains all possible strings of the form S ⊗S.
Hence, it is instructive to first consider the result of applying UII ⊗ UII and UI ⊗ UI to a single string of this form.
Note that the result of applying UII ⊗ UII, UI ⊗ UI, and averaging over the Haar unitaries is invariant if we replace
any number of Xs in the string by Y s or vice-versa. To see this, we use the fact that we can change a X into a Y (or
vice-versa) by applying a rotation about the Z axis, i.e e−i

π
4 ZXei

π
4 Z = Y . This rotation clearly commutes with UII

and can be absorbed into UI, since by definition, the Haar measure is invariant under multiplication by any unitary.
This means that we may calculate the result for a single representative string from each group and multiply by the

degeneracy. Let us denote ΩS the support of some string S. We can further divide ΩS based on the number and
location of Zs in the string. Define the subset Σ ⊆ Ω as the set of all sites with Z in them, and the remaining sites
(with either Xs or Y s) by Λ = Ω \Σ. For strings that are supported on k sites (i.e |ΩS | = k), with fixed number and
position of Zs, the degeneracy is 2|Λ|.

Without loss of generality, we can therefore consider strings composed of either Xs or Zs. Consider the string∏
i∈ΛXiX̄i

∏
j∈Σ ZjZ̄j . To apply UII, we can use the fact that [XiXj , ZiZj ] = 0. We get

(UII ⊗ UII)(
∏
i∈Λ

XiX̄i

∏
j∈Σ

ZjZ̄j)(UII ⊗ UII)
† =

∏
i∈Λ

[
(Xi cos(QΛ) + Yi sin(QΛ))

(
X̄i cos

(
Q̄Λ

)
+ Ȳi sin

(
Q̄Λ

))] ∏
j∈Σ

ZjZ̄j

(S16)

where we used Eq. (S14). Here, QΛ acts on all sites except those in Λ, i.e QΛ ≡ g′
∑
l/∈Λ Zl.

We see that we can safely apply the Haar unitaries and perform the Haar average on sites inside of Λ, since
all the cosines and sines and the ZZ̄ act on sites outside of Λ. With slight abuse of notation, let us denote〈
(UI ⊗ UI)A(UI ⊗ UI)

†〉 by simply 〈A〉 where it is understood that the Haar unitaries act only on the support of
A.

From Eq. (S9), one can easily check that
〈
XiȲi

〉
= 0, so the cross terms in the above expression will vanish. Only〈

XiX̄i

〉
=
〈
YiȲi

〉
≡ Vi will remain. Here the single site operator Vi is defined as Vj = − 1

314 + 2
3F . Explicitly, we find

(S17)

〈
(UII ⊗ UII)(

∏
i∈Λ

XiX̄i

∏
j∈Σ

ZjZ̄j)(UII ⊗ UII)
†

〉
=
∏
i∈Λ

Vi

〈
cos|Λ|(RΛ)

∏
j∈Σ

ZjZ̄j

〉

where RΛ = Q̄Λ −QΛ.
Combining this with the discussion above, we find that I3 may be written as

(S18)I3 = δS′,S′′

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

 ∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

2|Λ|

(∏
m∈Λ

Vm

)〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
.

It remains to compute
〈

cos|Λ|(RΛ)
∏
n∈ΩS′\Λ ZnZ̄n

〉
. To do so we expand the cosine as follows cosk(x) =

1
2k

∑k
n=0

(
k
n

)
cos[(2n− k)x],

(S19)

〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=

1

2|Λ|

|Λ|∑
l=0

(
|Λ|
l

)〈
cos((2l − |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
.

To proceed we can pull a single-site operator out of RΛ. Since RΛ =
∑
k/∈ΛDk where Dk = g′(Z̄k − Zk), we can pull

out a Dj , j ∈ ΩS′ \ Λ so that RΛ = RΛ∪{j} +Dj . We then use the trig identity

cos((2l − |Λ|)RΛ) = cos
(
(2l − |Λ|)RΛ∪{j}

)
cos((2l − |Λ|)Dj)− sin

(
(2l − |Λ|)RΛ∪{j}

)
sin((2l − |Λ|)Dj). (S20)
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This allows us to perform the Haar average over site j. The sine term will not contribute, since〈
sin((2l − |Λ|)Dj)ZjZ̄j

〉
= 0. Repeating this procedure recursively for all sites in ΩS′ \ Λ, we get

(S21)

〈
cos((2l − |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
〈
cos
(
(2l − |Λ|)RΩS′

)〉 ∏
n∈ΩS′\Λ

〈
cos((2l − |Λ|)Dn)ZnZ̄n

〉
.

Continuing the procedure for the
〈
cos
(
(2l − |Λ|)RΩS′

)〉
term, we have

(S22)

〈
cos((2n− |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
∏
t/∈ΩS′

〈cos((2l − |Λ|)Dt)〉
∏

n∈ΩS′\Λ

〈
cos((2l − |Λ|)Dn)ZnZ̄n

〉
.

Using cos((2l − |Λ|)D) = cos2((2l − |Λ|)g′) + ZZ̄ sin2((2l − |Λ|)g′) gives

(S23)

〈
cos((2n− |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin2((2l − |Λ|)g′)

) ∏
n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
.

Putting things together, we find that Eq. (S19) is〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉

=
1

2|Λ|

|Λ|∑
l=0

(
|Λ|
l

) ∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin2((2l − |Λ|)g′)

) ∏
n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
,

(S24)

and finally, I3 is given by

I3 = δS′,S′′

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

 ∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

(∏
m∈Λ

Vm

) |Λ|∑
l=0

(
|Λ|
l

)
×
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin2((2l − |Λ|)g′)

) ∏
n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
. (S25)

To compute the WS,S′ -matrix from Eq. (S11), it remains to take the trace of Eq. (S25) with S ⊗ S and divide by
22N , i.e

WS,S′ =
1

22N
tr(I3(S ⊗ S)) (S26)

Using Eq. (S25) together with tr(Vi(Si ⊗ Si)) = 4
3 (1− δSi,1), gives

WS,S′ =
1

22N

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

 ∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

(∏
m∈Λ

4

3
(1− δSm,1)

) |Λ|∑
l=0

(
|Λ|
l

)

×
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′)4δSt,1 +

4

3
(1− δSt,1) sin2((2l − |Λ|)g′)

)

×
∏

n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)4

3
(1− δSn,1) + 4δSn,1 sin2((2l − |Λ|)g′)

)
. (S27)
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Note that because of
∏
m∈Λ

4
3 (1− δSm,1) in Eq. (S27), Λ is constrained to be in ΩS ∩ΩS′ . The matrix elements of W

are

W =
1

22N

(
1

3

)|ΩS′ | ∑
Λ⊂ΩS∩ΩS′

(
4

3

)|Λ|[ |Λ|∑
l=0,2l 6=|Λ|

(
|Λ|
l

)(
4 cos2((2l − |Λ|)g′)

)N−|ΩS∪ΩS′ |

×
(

4

3
sin2((2l − |Λ|)g′)

)|ΩS\ΩS′ |

×
(

4

3
cos2((2l − |Λ|)g′)

)|ΩS∩ΩS′ |−|Λ|

×
(
4 sin2((2l − |Λ|)g′)

)|ΩS′\ΩS |

+ δ2l,|Λ|

(
|Λ|
|Λ|/2

) ∏
t/∈ΩS′

(4δSt,1)
∏

n∈ΩS′\Λ

(
4

3
(1− δSn,1)

)]
. (S28)

Note that the last term is only nonzero when both 2l = |Λ| and ΩS = ΩS′ . The last condition is equivalent to
|ΩS |+ |ΩS′ | − 2|ΩS ∩ ΩS′ | = 0.

We can combine all constant factors (with the same result holding for the 2l = |Λ| term)

(S29)
1

22N

(
1

3

)|ΩS′ |(4

3

)|Λ|
4N−|ΩS∪ΩS′ |

(
4

3

)|ΩS\ΩS′ |(4

3

)|ΩS∩ΩS′ |−|Λ|

4|ΩS′\ΩS | =

(
1

3

)|ΩS′ |+|ΩS |

.

Now, note that Λ only appears in Eq. (S28) as |Λ|. Thus, we can replace the sum over subsets of ΩS ∩ ΩS′ as∑
Λ⊂ΩS∩ΩS′ =

∑|ΩS∩ΩS′ |
k=0

(
|ΩS ∩ ΩS′ |

k

)
. Thus, the W matrix can be written as

WS,S′ = W (|ΩS |, |ΩS′ |, |ΩS ∩ ΩS′ |) (S30)

=

(
1

3

)|ΩS′ |+|ΩS | |ΩS∩ΩS′ |∑
k=0

(
|ΩS ∩ ΩS′ |

k

)[ k∑
l=0,2l 6=k

(
k
l

)[
cos2((2l − k)g′)

]N−k−(|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |)

×
[
sin2((2l − k)g′)

]|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |
+ δ2l,kδ|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |,0

(
k
k/2

)]
,

which is what appears in Eq. (5) of the main text, with the identification w = |ΩS |, w′ = |ΩS′ |, v = |ΩS ∩ ΩS′ |. In the
main text, we also dropped the δ2l,kδ|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |,0 term and the 2l 6= k restriction in the sum which requires
one to be careful to identify 00 as 1. From this expression it is clear that W is a real symmetric (WS,S′ = WS′,S)
matrix with all positive matrix elements.

II. MASTER EQUATION FOR SIMPLE INITIAL OPERATOR

Let us now assume that the initial operator O starts as a single-site operator on site 1 without loss of generality.
We may further assume that we start with X1, i.e aS = δS,X1

. Since the circuit will involve random Haar unitaries,
let us consider the result of applying a Haar random unitary on X1, which, after averaging over the Haar unitary, will
be 1

3 (X1 + Y1 + Z1), which already does not contain any information about the specific generator we picked. Let us
therefore pick this as the initial conditions at t = 0 for the master equation, Eq. (S11),

〈
a2
S(t = 0)

〉
=

{
1
3 if S = X1, Y1, Z1,

0 otherwise .
(S31)

We now claim that for these initial conditions, the probabilities
〈
a2
S(t)

〉
only depend on the string weight w ≡ |ΩS |

and the weight on site 1, w1 ≡ |ΩS ∩ {1}|. Note that w1 takes values either 0 or 1. In light of this, it is convenient to
account for the number of string configurations with constant w and w1 by defining the operator weight probability
ht,

(S32)ht(w,w1) =
〈
a2
S(t)

〉
D(w,w1),

where D(w,w1) is the number of string configurations for a given w and w1. Since
∑
S′ =∑

w1=0,1

∑N−1+w1

w=w1
3k
(
N − 1
w − w1

)
, we have

(S33)D(w,w1) = 3w
(
N − 1
w − w1

)
.
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Note that ht(w,w1) is a valid (normalized) probability distribution since
∑
w1=0,1

∑N−1+w1

w=w1
ht(w,w1) =∑

w1=0,1

∑N−1+w1

w=w1

〈
a2
S(t)

〉
D(w,w1) =

∑
S
〈
a2
S(t)

〉
= 1, using the fact that a2

S are probabilities that sum to 1.
Thus, ht(w,w1) gives the probability of O(t) being a string of total weight w with a weight of w1 on the initial site 1.

The claim above can be proved by induction. The base case is trivial to see, by multiplying the initial conditions
Eq. (S31) by the transition matrix W from Eq. (S30) (see also Sec. VI). The inductive step proceeds as follows. First,
we decompose the sum over strings S ′ as

∑
S′ =

∑
ΩS′⊂{1,···,N} 3|ΩS′ |, which yields

(S34)
〈
a2
S(t+ 1)

〉
=

∑
ΩS′⊂{1,···,N}

1

D(|ΩS′ |, |ΩS′ ∩ 1|)
3|ΩS′ |W (|ΩS |, |ΩS′ |, |ΩS ∩ ΩS′ |)ht(|ΩS′ |, |ΩS′ ∩ 1|).

We then split the sum over terms where |ΩS′ ∩ {1}| = 0 or |ΩS′ ∩ {1}| = 1. For each of these terms, we further
decompose the sum over terms with equal |ΩS′ |. The remaining sum can be written as a sum over different values of
the overlap |ΩS ∩ ΩS′ |. The final result is〈

a2
S(t+ 1)

〉
=

N−1∑
k=0

3k

min{|ΩS |−|ΩS∩{1}|,k}∑
m=0

(
|ΩS | − |ΩS ∩ {1}|

m

)(
N − 1− |ΩS |+ |ΩS ∩ {1}|

k −m

)
W (|ΩS |, k,m)

ht(k, 0)

D(k, 0)

+
N∑
k=1

3k

min{|ΩS |,k−1+|ΩS∩{1}|}∑
m=|ΩS∩{1}|

(
|ΩS | − |ΩS ∩ {1}|
m− |ΩS ∩ {1}|

)(
N − 1 + |ΩS ∩ {1}| − |ΩS |
k −m− 1 + |ΩS ∩ {1}|

)
W (|ΩS |, k,m)

ht(k, 1)

D(k, 1)
.

(S35)

Here, the first binomial in each bracket counts the number of ways one can choose the part of ΩS′ that is overlapping
with ΩS and the second binomial counts the number of ways to choose the non-overlapping part of ΩS′ . It is clear
at this point that the right-hand-side is a function of w = |ΩS | and w1 = |ΩS ∩ 1|. Thus, replacing

〈
a2
S(t+ 1)

〉
by

Eq. (S32) and simplifying gives

(S36)ht+1(w,w1) =
∑

w′
1=0,1

N−1+w′
1∑

w′=w′
1

R(w,w1, w
′, w′1)ht(w

′, w′1)

where the 2N × 2N matrix R is

R(w,w1, w
′, w′1) = 3w

min{w−w1,w
′−w′

1}∑
m=max{0,w+w′−N+1−w1−w′

1}

(
w′ − w′1
m

)(
N − 1− w′ + w′1
w − w1 −m

)
W (w,w′,m+ w1w

′
1), (S37)

where w1, w
′
1 ∈ {0, 1}, w ∈ [w1, N − 1 + w1], w′ ∈ [w′1, N − 1 + w′1], and for completeness

W (w,w′, v) =

(
1

3

)w+w′ v∑
k=0

(
v
k

)[ k∑
l=0,2l 6=k

(
k
l

)[
cos2((2l − k)g′)

]N−k−(w+w′−2v)
(S38)

×
[
sin2((2l − k)g′)

]w+w′−2v
+ δ2l,kδw+w′−2v,0

(
k
k/2

)]
.

One may verify that
∑
iRi,j = 1 where i = (w,w1) and j = (w′, w′1). This means that if we start with normalized

h0, we will have a valid (normalized) probability distribution at later times.
The initial conditions become

(S39)h0(w,w1) =

{
1 if w = w1 = 1,

0 otherwise .

To get the probability of having a specific weight, we can sum over w1,

(S40)h(w) =


h(0, 0) if w = 0,

h(N, 1) if w = N,

h(w, 0) + h(w, 1) otherwise .

Note that h(0, 0) does not actually participate in the dynamics since R(0, 0, w′, w′1) = W (0, w′, 0) = δw′,0.
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III. CONTINUUM APPROXIMATION

We assume here the normalization g′ = g√
N

. The first step is to approximate W (w,w′, v) for small g. We consider

the two cases w+w′ − 2v = 0, 1 which amount to a change of the string weight by 0,±1 and give rise to terms up to
g2.

Taylor expanding the factors of cosine and sine appearing in Eq. (S38), up to g2, gives[
cos2

(
(2l − k)

g√
N

)]N−k−(w+w′−2v)[
sin2

(
(2l − k)

g√
N

)]w+w′−2v

≈

{
g2(k−2l)2(k−N)

N + 1 if w + w′ − 2v = 0,
g2(k−2l)2

N if w + w′ − 2v = 1.

(S41)

In general, the w + w′ − 2v = n, n ∈ N>0 case will scale as O(g2n). We can now perform the sums over l and k
appearing in Eq. (S38). We find

(S42)W (w,w′, v) ≈
(

1

3

)w+w′−v
{

1 + g2 2v
32N (1− 3N + 2v) if w + w′ − 2v = 0,

g2 2v
3N if w + w′ − 2v = 1.

The higher order terms will scale at most like O(g4N2/N2) = O(g4) and so for small g, the above expression for
W (w,w′, v) is an excellent approximation. In the general case of g′ = g

Na , a ≥ 0, the above Taylor expansion yields
a series expression for W (w,w′, v) where the nth term scales at most as O(g2nNn/N2na). Thus, for a < 1

2 , the series
is not convergent, and Eq. (S42) does not constitute a good approximation. Below, we assume a = 1

2 , but all results
and expressions in this section are applicable for a ≥ 1

2 as well, with the appropriate replacement of g. For some
discussion of the a = 0 case, see Sec. VI.

Let us now consider the R matrix. The w + w′ − 2v = 0, 1 cases contribute to the diagonal as well as super- and
sub-diagonals of each block of R. These matrix elements are

R(w, 0, w′, 0) = δw,w′3wW (w,w′, w′) + δw,w′+13w(N − w′ − 1)W (w,w′, w′) (S43)

+ δw,w′−13ww′W (w,w′, w′ − 1) +O(g4),

R(w, 1, w′, 0) = δw,w′+13wW (w,w′, w′) +O(g4), (S44)

R(w, 0, w′, 1) = δw,w′−13wW (w,w′, w′ − 1) +O(g4), (S45)

R(w, 1, w′, 1) = δw,w′3wW (w,w′, w′) + δw,w′+13w(N − w′)W (w,w′, w′) (S46)

+ δw,w′−13w(w′ − 1)W (w,w′, w′ − 1) +O(g4).

Writing out the master equation, Eq. (S36), within the g2 approximation, we have two coupled equations for the two
(w1 = 0, 1) blocks:

ht+1(w, 0)− ht(w, 0)

g2
=

2w

9N
ht(w + 1, 1) +

2w

9N
(1− 3N + 2w)ht(w, 0) (S47)

+
2(N − w)

3N
(w − 1)ht(w − 1, 0) +

2w(w + 1)

9N
ht(w + 1, 0),

ht+1(w, 1)− ht(w, 1)

g2
=

2(w − 1)

3N
ht(w − 1, 0) +

2w

9N
(1− 3N + 2w)ht(w, 1) (S48)

+
2(w − 1)

3N
(N − w + 1)ht(w − 1, 1) +

2w2

9N
ht(w + 1, 1).

Note that the coupling between the two w1 sectors scales as w/N . Since the initial conditions are constrained to the
w1 = 1 sector [see Eq. (S39)], the early time dynamics will remain approximately in ht(w, 1) (i.e ht(w, 0) ≈ 0 at early
times) until w reaches O(N).

By adding Eqs. (S47) and (S48), we get a closed equation for the total operator weight probability ht(w) ≡
ht(w, 0) + ht(w, 1)

(S49)
ht+1(w)− ht(w)

g2
=

2w(w + 1)

9N
ht(w + 1) +

2w

9N
(1− 3N + 2w)ht(w) +

N − w + 1

3N
2(w − 1)ht(w − 1).
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Up to now, the only approximation we made was the expansion up to g2. We now assume that h(w, t) varies slowly
with respect to g2t and w, and replace finite differences by derivatives which yields a Fokker-Planck equation

∂τh(w, τ) = −∂w(D1(w)h(w, τ)) + ∂2
w(D2(w)h(w, τ)), (S50)

where we introduced a rescaled time τ = g2t. Note that Eqs. (S47) and (S48) individually are not in the form of a
Fokker-Planck equation, but their sum is. The drift and diffusion coefficients are

D1(w) =
2(4 + w + 3Nw − 4w2)

9N
, (S51)

D2(w) =
−3 + 3N(w − 1) + 7w − 2w2

9N
. (S52)

In terms of the scaled weight φ ≡ w/N , the Fokker-Planck equation takes the form

∂τh(φ, τ) = −∂φ
(

2

3

(
φ− 4

3
φ2

)
h(φ, τ)

)
+ ∂2

φ

((
φ

3N
− 2

9

φ2

N

)
h(φ, τ)

)
, (S53)

where we dropped all the O(1/N) terms from the drift coefficient and all the O(1/N2) terms from the diffusion.

IV. RELATION BETWEEN THE AVERAGE OF THE SQUARED COMMUTATOR AND THE MEAN
OPERATOR WEIGHT

In this section, we derive the relation between the average of the squared commutator, defined in Eq. (1) of the
main text, and the operator weight probability ht(w,w1).

Let us start with Eq. (1) of the main text, and, without loss of generality, pick the two operators to be X1 at
position 1 and Yr at position r > 1

C(r, t) = −1

2
tr
(
ρ∞[X1(t), Yr]

2
)
, (S54)

where ρ∞ is the infinite-temperature Gibbs state, and X1(t) is the Heisenberg evolved operator. Using Eq. (S1), the
commutator in Eq. (S54) can be written as

[X1(t), Yr]
2

=

(∑
S
aS(t)[S, Yr]

)2

=

2
∑

S:Sr=X,Z

aS(t)SYr

2

, (S55)

which gives

C(r, t) =− 2
∑

S:Sr=X,Z

∑
S′:S′

r=X,Z

aS(t)aS′(t) tr(ρ∞SYrS ′Yr) (S56)

=2
∑

S:Sr=X,Z

aS(t)2, (S57)

where we used tr(ρ∞SS ′) = δSS′ and the fact that different Pauli matrices anti-commute. Here the sum is constrained
to be over all strings that have an X or a Z on site r.

The average of Eq. (S56) over many realizations of the random circuit is therefore given by

〈C(r, t)〉 = 2
∑

S:Sr=X,Z

〈
aS(t)2

〉
, (S58)

where the evolution of
〈
a2
S(t)

〉
is what we calculated in the previous sections.

Since we have assumed in this section that we start from a single site operator, as we did in Sec. II, we have that
the average probabilities

〈
a2
S(t)

〉
only depend on the total weight w and weight w1 on site 1, as explained in Sec. II.
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Thus, we may rewrite Eq. (S58) in terms of ht(w,w1), using Eq. (S32). A similar calculation to the one leading to
Eq. (S36) yields

〈C(r, t)〉 =4
∑

ΩS⊂{1,···,N}
r∈ΩS

3|ΩS |−1 ht(|ΩS |, |ΩS ∩ {1}|)

3|ΩS |
(

N − 1
|ΩS | − |ΩS ∩ {1}|

) (S59)

=
4

3

N−1∑
w=1

(
N − 2
w − 1

)
ht(w, 0)(
N − 1
w

) +

N∑
w=2

(
N − 2
w − 2

)
ht(w, 1)(
N − 1
w − 1

)
 (S60)

=
4

3(N − 1)

N∑
w=1

[(w − 1)ht(w) + ht(w, 0)], (S61)

where ht(w) ≡ ht(w, 0) + ht(w, 1), as defined in the main text and in Sec. III [Eq. (S40)].
Using the fact that ht(w) is normalized (i.e.

∑
w ht(w) = 1) and defining the mean weight 〈w(t)〉 =

∑
w wht(w),

we get

〈C(r, t)〉 =
4

3

〈w(t)〉 − 1

N − 1
+

4

3(N − 1)

N∑
w=1

ht(w, 0). (S62)

By the normalization of the probability distribution, we further know that
∑N
w=1 ht(w, 0) < 1. Hence, the second

term in the equation above scales as O(1/N) and is therefore negligible for large N . Thus, in the limit of large N we
have

(S63)〈C(r, t)〉 =
4

3

〈w(t)〉
N

+O(1/N).

V. ADDITIONAL DETAILS ON THE TIME-EVOLUTION OF h(w,w1)

In this section, we provide additional numerical and analytical details regarding the probability weight distribution.
In Fig. S1, we plot snapshots of h(w) and h(w,w1 = 0, 1), at different times, computed numerically using the exact

master equation. The initial distribution starts in the w1 = 1 sector and quickly (exponentially) expands. At early
times, during the exponential growth, the distribution is supported almost exclusively on the w1 = 1 sector. At later
times, when h(w) is very broad in weight space and has large support on weights w ∼ O(N), the coupling between
the two w1 = 0, 1 sectors turns on and h(w, 0) starts to get populated. Finally, h(w) reaches the steady-state, which,
as we show below, is, to a good approximation, a Gaussian centered at w = 3N/4 with a width ∼ ∆w/N ∝ 1/

√
N .

The steady-state corresponds to all strings being equally likely, and hence the Gaussian peak in h(w, 1) is three times
as large as the one in h(w, 0).

S1. Stationary solution for h(w)

At large t the distribution h(t, φ = w/N) approaches a stationary solution that obeys following equation

− ∂φ [D1(φ)h(φ)] + ∂2
φ [D2(φ)h(φ)] = 0, (S64)

where

D1(φ) =
2

3
φ

(
1− 4φ

3

)
, D2(φ) =

φ

3N

(
1− 2φ

3

)
. (S65)

Integrating out Eq. S64 we obtain

−D1(φ)h(φ) + ∂φ [D2(φ)h(φ)] = C. (S66)
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FIG. S1: (a) Snapshots of the numerically computed total probability weight distribution h(w) = h(w, 0) + h(w, 1)
for g = 0.1 and N = 100, together with the analytical expression of the steady-state from Eq. (S71), which

essentially agrees with the g2t = 30 numerics. (b) The same plot for h(w,w1 = 0). While h(w, 0) ≈ 0 for early and
intermediate times, the numerics for g2t = 30 essentially agree with the analytical prediction for the steady state.

(c) The same plot for h(w,w1 = 1).

Equation (S66) can be rewritten as

∂φh(φ) =

(
D1(φ)− ∂φD2(φ)

D2(φ)

)
h(φ) +

C

D2(φ)
. (S67)

Solution of (S67) is straightforward:

h(φ) = const× eJ(φ)

∫ φ

0

dφ′e−J(φ′)

D2(φ′)
,

J(φ) =

∫
dφ
D1 − ∂φD2

D2
= 4Nφ− log φ+ (3N − 1) log (3− 2φ).

(S68)

As a result we obtain solution for h(φ) in the form:

h(φ) = const× eNS(φ)

(3− 2φ)φ

∫ φ

0

dφ′ e−NS(φ′), (S69)

where

S(φ) = 4φ+ 3 log (3− 2φ). (S70)

In the limit N → ∞ the main contribution in the integral (S69) comes from the vicinity of the boundary point
φ = 0. Expanding S(φ) in Taylor series in powers φ: S(φ) ≈ S(0) + 2φ and substituting it inside of the integrand in
Eq. (S69) results in

h(φ) ∼ eNS(φ)

(3− 2φ)φ

[
1− e−2Nφ

]
. (S71)

Expression Eq. (S71) can be further simplified since eNS(φ) is strongly peaked in the vicinity of φ0 = 3/4 which is

the extremum of S(φ): S(φ) ≈ S(φ0) + S′′(φ0)
2 (φ− φ0)2 + ..., that gives

h(φ) ∼ e−
8N
3 (φ−3/4)2

φ(3− 2φ)

[
1− e−2Nφ

]
. (S72)

VI. MEAN-WEIGHT AFTER ONE STEP AND SCRAMBLING IN O(1)

In this section, we derive a simple expression for the mean-weight after a single step of the random circuit. Here, a
single step is defined as in Sec. I, i.e U = UIUIIUI. In doing so, we show that if the global interactions are sufficiently
strong (i.e if g′ is independent of N) then a single step of the circuit is sufficient to achieve scrambling.
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Starting from the initial conditions defined in Eq. (S39), and using the master equation in Eq. (S36), we find after
a single step

ht=1(w,w1) = R(w,w1, 1, 1). (S73)

Using Eqs. (S37) and (S38), we can further simplify

ht=1(w,w1) = 3w
(
N − 1

w − w1

)
W (w, 1, w1) =

{
0 if w1 = 0,
1
3

(
N−1
w−1

)(
δw,1 + 2

[
cos2(g′)

]2(N−w)[
sin2(g′)

]2(w−1)
)

if w1 = 1.

(S74)
The above describes the probability weight distribution after a single step, valid for arbitrary g′.

The mean of the above distribution can be computed exactly,

〈w〉 =

N∑
w=1

wht=1(w,w1 = 1) =
1

3
+

2

3
cos2(g′) +

2

3
N sin2(g′). (S75)

Thus, if g′ is independent of N , then 〈w〉 is O(N) and 〈C〉 (see Sec. IV) is O(1) after just a single step.
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