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Nearly optimal time-independent reversal of a spin chain
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We propose a time-independent Hamiltonian protocol for the reversal of qubit ordering in a chain of N spins.
Our protocol has an easily implementable nearest-neighbor, transverse-field Ising model Hamiltonian with time-
independent, nonuniform couplings. Under appropriate normalization, we implement this state reversal three
times faster than a naive approach using SWAP gates, in time comparable to a protocol of Raussendorf [Phys.
Rev. A 72, 052301 (2005)] that requires dynamical control. We also prove lower bounds on state reversal by
using results on the entanglement capacity of Hamiltonians and show that we are within a factor 1.502(1 + 1/N )
of the shortest time possible. Our lower bound holds for all nearest-neighbor qubit protocols with arbitrary
finite ancilla spaces and local operations and classical communication. We give numerical evidence that the
fast reversal protocols are more robust to noise than a SWAP-based reversal. Finally, we extend our protocol to
an infinite family of nearest-neighbor, time-independent Hamiltonian protocols for state reversal. This includes
chains with nearly uniform coupling that may be especially feasible for experimental implementation.
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I. INTRODUCTION

Quantum information transfer is a fundamental operation
in quantum physics, and fast, accurate protocols for transfer-
ring quantum states across a physical system are likely to
play a key role in the design of quantum computers [1,2].
For example, quantum information transfer can be used to
establish long-range entanglement and is also useful for qubit
routing in quantum architectures with limited connectivity
[3,4]. Extensive work has studied the implementation of var-
ious information transfer protocols, often via Hamiltonian
dynamics on spin chains [5].

Information transfer in Hamiltonian systems is governed
by the spread of entanglement and has close links to
Lieb-Robinson bounds [6], entanglement area laws [7], and
algorithms for quantum simulation [8]. Fundamental limits
to the rate of entanglement growth are set by bounds on the
asymptotic entanglement capacity [9–12] and more recent
small incremental entangling theorems [13–16]. We show
that these limits can also be used to obtain lower bounds on
the execution time of Hamiltonian protocols for information
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transfer. This raises the question of whether a protocol can
achieve optimality by saturating the bound.

Quantum state transfer studies protocols for moving qubits
through a spin chain [17]. Long-range interactions can be
used to speed up protocols [18], but here we consider only
nearest-neighbor interactions. State transfer protocols usually
assume the intermediate medium to be in a known initial state
[19–22] or allow it to change in an unknown or nontrivial
manner [23,24]. Such protocols are not directly applicable
when some or all spins in the chain contain data qubits that
need to be transferred or maintained.

Protocols for state reversal, also known as state mirroring
[25], take steps towards addressing this issue. State reversal
reverses any input state on a spin chain about the center of
the chain. Specifically, with qubit labeling 1, 2, . . . , N , state
reversal corresponds to the unitary

R :=
�N/2�∏
k=1

SWAPk,N+1−k (1)

up to a global phase, which is independent of the state. State
reversal is potentially a useful subroutine for the more general
task of qubit routing, where we wish to apply arbitrary per-
mutations to the qubits. Early results in this area require the
state to be in the single-excitation subspace [26] or introduce
phases in the final state that depend on a nonlocal property
such as the number of qubits in state |1〉 [25,27]. The protocol
introduces a phase (−1)M(M−1)/2 that is a function of the
excitation number M (mod 4). This is nontrivial to correct:
Consider the task of signaling the value of the left bit to the
right end of a chain with zeros in the bulk. A right edge
state prepared in |〉+ is flipped to |−〉 by the phase correction
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procedure, conditioned on the value of the left bit. By the
signaling lower bound, we incur a time overhead linear in N
to correct these phases and implement a reversal for a general
state. These limitations were later removed by time-dependent
protocols for state reversal [28–30]. Concepts from [28,29]
can also be used for translation-invariant universal quantum
computation by, for example, modeling a quantum cellular
automaton [28,31–33].

In this work, we propose a time-independent protocol for
state reversal using nearest-neighbor interactions that we ex-
pect has applications in noisy, connectivity-limited quantum
devices. We show that the execution time of our protocol is
nearly optimal, comparable to the time-dependent protocol
given in [28]. We also find, through simulations, that these
reversal protocols have reduced error scaling in system size
to noise due to static disorder caused by imperfect fabrication
when compared to a SWAP-based protocol (see Supplemen-
tal Material [34]). In addition, our protocol does not require
dynamical control but only engineered nearest-neighbor cou-
plings, so we expect it to be more experimentally feasible on
near-term quantum systems such as superconducting qubits
[35] where dynamical control could be an additional source
of noise.

Before presenting our state reversal protocol in more detail,
let us elaborate on the claim that it is nearly optimal—
specifically, that it has an evolution time within a factor
1.502(1 + 1/N ) of the shortest possible. For any nearest-
neighbor spin Hamiltonian H , a timescale follows from a
normalization that limits the strength of every two-qubit inter-
action but allows fast local operations. Up to local unitaries,
we can write any two-qubit Hamiltonian in the canonical form
[36]

K :=
∑

j∈{x,y,z}
μ jσ j ⊗ σ j, (2)

where μx � μy � |μz| � 0 and σ j are the Pauli matrices. We
impose the normalization condition that ‖K‖ = ∑

j |μ j | � 1
for all interactions, where ‖ · ‖ is the spectral norm. Under this
normalization, a SWAP can be optimally implemented in time
3π/4 [37], and our protocol achieves state reversal in time

tN := π
√

(N + 1)2 − p(N )/4, (3)

where p(N ) := N (mod 2). This is equivalent in time to a
SWAP gate circuit of depth ∼N/3. As state reversal using only
SWAPs requires depth at least N − 1 [38], our protocol is faster
than any SWAP-based protocol by an asymptotic factor of 3.
Similarly, we can compare to other time-independent Hamil-
tonian protocols that use nearest-neighbor interactions: [19]
implements state transfer in time Nπ/4 and [25] implements
state reversal in time Nπ/2 but introduces relative phases in
the state as mentioned earlier. Our time-independent protocol
(and some time-dependent protocols [28–30]) thus improve
upon these previous protocols for state transfer and state re-
versal except for a subleading term.

We lower-bound the time for state reversal, which can gen-
erate entanglement across a bipartition, by using bounds on
the asymptotic entanglement capacity in a more general model
[10,12]. The asymptotic entanglement capacity bounds the
rate at which entanglement can be generated by any evolution

FIG. 1. The state reversal operation R (depicted by arrows) and
an illustration of our time-independent protocol to implement it. The
nearest-neighbor σ k

x σ k+1
x couplings (Jk , dashes) and on-site σ k

z fields
(hk , dots) are plotted on the y axis. Sites 0, N + 1 are ancilla qubits,
which are not part of the protocol and are used purely in the analysis.

of a given bipartite Hamiltonian interspersed with arbitrary
local operations and classical communication (LOCC) and
with arbitrary finite local ancilla spaces. We give an ex-
plicit example of entanglement generated by state reversal
and lower-bound the time using the capacity of a normalized
two-qubit interaction in canonical form (2), even allowing
for LOCC. Nonetheless, our state reversal protocol is able to
nearly saturate this bound without classical communication,
without ancillas, and with only nearest-neighbor interactions
throughout the chain.

We propose a state reversal protocol with Hamiltonian of
the form

H (J, h) = J0σ
1
x +

N−1∑
k=1

Jkσ
k
x σ k+1

x + JNσ N
x −

N∑
k=1

hkσ
k
z , (4)

where the coefficients J, h are engineered as follows. Letting

ak := π
√

(N + 1)2 − (N + 1 − k)2/(4tN ), (5)

for k ∈ N, our protocol is defined as follows (see also Fig. 1).
Protocol 1. Let Jk = a2k+1, hk = a2k for all sites k, and let

H := H (J, h). Apply U := e−itN H to the input state.
We show in the following sections that our protocol imple-

ments state reversal exactly, up to a global phase (we denote
this equivalence by ∼=).

Theorem 1. U ∼= R.

A. Proof and analysis of the protocol

We prove the correctness of our protocol (i.e., Theorem 1)
by mapping the spin chain to a doubled chain of Majorana
fermions via a Jordan-Wigner transformation, describing the
action in the Majorana picture, and then mapping back to the
spin picture. To help with the analysis, we extend the chain
with two ancillary sites {0, N + 1} called the edge, E , and
refer to the sites {1, . . . , N} as the bulk, B. We define the
transverse-field Ising model Hamiltonian

H̃ :=
N∑

k=0

a2k+1σ
k
x σ k+1

x −
N∑

k=1

a2kσ
k
z . (6)

on the extended chain that reduces to H when the edge is ini-
tialized to state | + +〉. Similarly, we define Ũ := e−iH̃tN . Note
that the operator H̃ (and hence Ũ ) acts trivially on | + +〉E ,
so this edge state does not change through the course of the
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evolution. [Our results also hold using the edge state | − −〉E ,
which is equivalent to negating the sign of the longitudinal
fields in (4).] We then prove that in the Heisenberg picture,
Pauli matrices on site k map to the corresponding Pauli on
site N + 1 − k for all sites k in the chain.

First, we map to the doubled chain of Majorana fermionic
operators by defining

γ2k := P[0,k−1]σ
k
x , γ2k+1 := P[0,k−1]σ

k
y (7)

at each site, where we have used the notation P[a,b] :=∏b
j=a(−σ

j
z ) for the Jordan-Wigner parity string between sites

a and b. The γk are Hermitian and satisfy the Majorana
anticommutation relations {γ j, γk} = 2δ jk . We also see that
σ k

z = −iγ2kγ2k+1 and σ k
x σ k+1

x = iγ2k+1γ2k+2, leading (6) to
take the form

H̃ = i
2N+1∑
k=1

akγkγk+1. (8)

The Majoranas γ0, γ2N+3 do not appear in the sum, since
a0 = a2N+2 = 0. In the following lemma, we show how Ũ
transforms the Majorana operators. Our main technique is an
analogy with the dynamics of the y component of the spin
operator for a spin N + 1

2 particle, similar to [19,25]. Here, the
same analogy provides a protocol which gives state reversal
on all spins in the chain without introducing relative phases.

Lemma 1. The operation Ũ acts on the Majorana operators
as

ŨγkŨ
† =

{
γk if k = 0, 2N + 3
(−1)k−1γ2N+3−k otherwise.

(9)

Proof. For the first case, H̃ has no overlap with operators
γ0 and γ2N+3, so they are stationary under evolution by H̃ .

For the remaining cases, we use the analogy with a spin
s = N + 1

2 particle. The Heisenberg evolution of γk corre-
sponds to the rotation of the Sz eigenstate |s, k − s − 1〉 of
magnetization k − s − 1. Observing that

iπ

4tN
〈s, m|Sy|s, m′〉 = as+m+1(δm′(m+1) − δm(m′+1)) (10)

(with h̄ = 1), we can express (8) in the bilinear form H̃ =
1
2γ†Aγ , for the vector γ := [γ1 γ2 . . . γ2N+2] and the
matrix A := −π/(2tN )Sy expressed in the Sz basis. Using
the Majorana commutation relations, we have γ̇ = i[H̃, γ] =
2iAγ , so γ (t ) = e2iAtγ (0). The Heisenberg evolution of γk

under H̃ for time tN is exactly analogous to the (Schrödinger)
time evolution of the state |s, k − s − 1〉 under Sy for time π .
A π rotation under Sy maps

|s,−s + k − 1〉 �→ (−1)k−1|s, s − k + 1〉, (11)

and correspondingly, γk (tN ) = (−1)k−1γ2N+3−k . �
Note that eq. 11 can easily be verified for a spin-1/2 parti-

cle. Similarly, a spin-s particle may be viewed as a system of
2s spin- 1

2 particles with maximal total spin. In this picture, a
π rotation under Sy corresponds to independent π rotations of
each small spin. Since the state |s, k − s − 1〉 is represented
by a permutation-symmetric state with k − 1 up spins, the
π rotation maps it to a state with 2s − (k − 1) up spins and
introduces a phase (−1) for each up spin, which is precisely
(11).

Due to the signed reversal of the Majoranas in Lemma 1,
the parity string P[0,k] = ib+1−a

∏2b+1
j=2a γ j is (with the excep-

tion of γ0) reflected about the center of the chain with an
overall phase that exactly cancels when the product is re-
ordered by increasing site index. The invariance of the edge
Majoranas is crucial, as it provides a phase factor that cancels
the state-dependent phases when we revert to the spin picture.
In particular, we have the following lemma.

Lemma 2. The operation Ũ acts on the parity strings as
ŨP[0,k]Ũ † = iσ 0

x σ N+1
x P[0,N−k] for all k.

Proof. Applying Lemma 1, we have

ŨP[0,k]Ũ
† = ik+1(−1)k(2k+1)γ0

2k+1∏
j=1

γ2N+3− j . (12)

= γ0P[0,N]P[0,N−k]γ2N+2, (13)

where we reordered the product and used P[N+1−k,N] =
P[0,N]P[0,N−k]. From the Majorana anticommutation relations
and (7), the result follows.

Now we prove the main theorem. �
Proof of Theorem 1. U ∼= R holds iff all bulk observ-

ables on the chain transform identically under U, R. For
any operator Ok supported on bulk site k ∈ {1, . . . , N},
we show that UOkU † = 〈+ + |ŨOkŨ †| + +〉E = ON+1−k .
(Henceforth we drop the edge subscript E .) By Lemmas 1 and
2, σ k

x is mapped to

Uσ k
x U † = 〈+ + |ŨP[0,k−1]γ2kŨ

†| + +〉 (14)

= −i〈+ + |σ 0
x σ N+1

x P[0,N+1−k]γ2N+3−2k| + +〉 (15)

= −iσ N+1−k
z σ N+1−k

y = σ N+1−k
x . (16)

Next, we use Lemma 2 to show that σ k
z is mapped to

Uσ k
z U † = −〈+ + |ŨP[0,k−1]P[0,k]Ũ

†| + +〉 (17)

= 〈+ + |σ 0
x σ N+1

x P[0,N+1−k]σ
0
x σ N+1

x P[0,N−k]| + +〉 (18)

= σ N+1−k
z . (19)

All other observables can be written in terms of the on-site
Pauli operators σ k

x , σ k
z , so U is identical to R, up to global

phase. �

B. Time lower bound

We now prove a lower bound on the optimal time, t∗, to
implement state reversal using normalized local interactions.
Let the entanglement entropy between systems A and B of
a bipartite state |ψ〉AB be E (|ψ〉), defined as the local von
Neumann entropy S(ρ) := −Trρ log2 ρ, for ρ = TrB|ψ〉〈ψ |.
Then, the asymptotic entanglement capacity of a Hamiltonian
H that couples systems A and B was shown to equal [12]

EH = sup
|ψ〉∈HAA′BB′

lim
t→0

E(e−iHt |ψ〉) − E(|ψ〉)

t
, (20)

where HAA′BB′ is the Hilbert space of the bipartite systems A
and B with arbitrarily large ancilla spaces A′ and B′, respec-
tively. In particular, for a Hamiltonian of the form σx ⊗ σx,
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[9,10] showed that

α := Eσx⊗σx = 2 max
y

√
y(1 − y) log2

y

1 − y
≈ 1.912. (21)

This is tighter than the more general small incremental en-
tangling bound EH � c‖H‖ log2 d = 2 for the conjectured
c = 2 [13] (best known c = 4 [15]) and where the smallest
dimension of A or B gives d = 2. Since E is invariant under
local unitaries, a direct corollary is that Eσy⊗σy = Eσz⊗σz = α.

We now show that Protocol 1 is close to the shortest time
possible.

Theorem 2. It holds that tN
t∗(1+1/N ) � απ/4 < 1.502.

Proof. We prove the time lower bound via an upper bound
on the rate of increase of entanglement across a cut in the
center of the chain (allowing differences of one qubit for odd
N). Designate the left half of the cut as subsystem A and the
right half as subsystem B. A consists of subsystem A given
by the qubit at site �N/2� adjacent to the cut, and subsystem
A′ consisting of the remaining qubits to the left of the cut as
well as a finite but arbitrary number of ancilla systems that
are not part of the chain. Similarly, B consists of subsystem
B, the qubit at site �N/2� + 1, and B′, the remaining qubits in
the right half with an arbitrary finite number of ancilla.

Consider Hamiltonians of the form H (t ) = K (t ) + K̄ (t )
specifying the evolution of the AB system, where K (t ) is a
two-qubit Hamiltonian supported on systems AB (i.e., the cut
edge), while K̄ contains terms supported on AA′ or BB′ but
not the cut edge AB. For brevity, we drop the time parameter t
even though we allow the Hamiltonian to be time dependent.
We assume that K is expressed in canonical form (2) due to
equivalence under local unitaries. Aside from its support, we
make no assumptions about the form of K̄ (so the resulting
bound is more general than nearest-neighbor interactions).
We call H satisfying these conditions divisible and also call
protocols using divisible Hamiltonians divisible.

Observing that EH is the supremum over a time derivative
of the von Neumann entropy of ρ = TrB|ψ〉〈ψ |, we have

EH = sup
|ψ〉

Tr

(
−dρ

dt
log2 ρ − ρ

d log2 ρ

dt

)
(22)

= sup
|ψ〉

Tr

(
−dρ

dt
log2 ρ

)
. (23)

The reduced density matrix ρ has time evolution

dρ

dt
= −iTrB[H, |ψ〉〈ψ |]. (24)

We substitute H = K̄ + ∑
j∈{x,y,z} μ jσ j ⊗ σ j in the commu-

tator and substitute the time dependence of ρ into eq. 23. By
linearity of the trace and sublinearity of the supremum, we get

EH � EK̄ +
∑

j∈{x,y,z}
μ jEσ j⊗σ j � α, (25)

where we observe that EK̄ = 0 since K̄ does not have support
across the cut, and use the normalization condition

∑
j |μ j | �

1. This bound holds for all divisible Hamiltonians H , with
nearest-neighbor Hamiltonians as a special case.

The entanglement generated by any divisble protocol can
now be bounded in time. We observe that if the protocol

contains local measurements, then these cannot increase en-
tanglement E (|ψ〉) and that feedback may be viewed as a
particular time dependence of H conditioned on measurement
outcomes. Therefore, (25) bounds the total increase in entan-
glement across bipartition AB over a time t∗ by

E (|ψ (t∗)〉) − E (|ψ (0)〉) � αt∗ (26)

for any initial state |ψ (0)〉 acted on by a divisible protocol and
LOCC.

Finally, we give an explicit bound on the worst-case time of
divisible state reversal protocols by specifying an initial state.
Let the system start in the product state |φ〉A ⊗ |φ〉B where
each qubit forms a Bell state with a local ancilla not part of the
chain. Clearly, E (|φ〉A) ⊗ |φ〉B = 0. We perform a reversal
R on the chain and get the state |ψ〉AB := R(|φ〉A ⊗ |φ〉B ),
which is maximally entangled, i.e., E (|ψ〉AB ) = N . Then,
(26) gives the bound

t∗ � E (|ψ〉AB ) − E (|φ〉A ⊗ |φ〉B )

α
� N

α
(27)

on any divisible state reversal protocol. Comparing this to our
protocol time (3), we have

tN
t∗ � απ

√
(N + 1)2 − p(N )

4N
� απ (1 + 1/N )

4
. �

C. Discussion

The time-dependent protocol in [28] is closely related to
our time-independent protocol, and both can be described
within the same framework (see Supplemental Material [34]).
In the time-dependent case, the state is evolved alternately
under two restrictions of the Hamiltonian (4): H (1, 0) (uni-
form Ising) and H (0, 1) (uniform transverse field), each for
time π/4, for a total of N + 1 rounds. In the Majorana pic-
ture, these Hamiltonians carry out a simultaneous braiding of
neighboring Majoranas along even (respectively, odd) edges
of the doubled Majorana chain. The resulting map matches
Lemma 1 exactly, implying that the two protocols are iden-
tical at the level of Majorana operators. Indeed, any protocol
achieving the map in Lemma 1 is guaranteed to implement
state reversal.

In fact, as shown in the Supplemental Material [34],
there is an infinite family of nearest-neighbor, time-
independent Hamiltonian protocols for state reversal that
generalizes Protocol 1. This family is parametrized by a
non-negative integer m, with modified σ k

x σ k+1
x coupling

J (m)
k ∝ √

(2N + 1 − 2k + 4m)(2k + 1 + 4m) and unmodified
σ k

z field strength. Protocol 1 corresponds to the special case
of m = 0. By choosing large m, the coupling strength can be
engineered to be nearly uniform throughout the chain, which
may be a desirable feature in experimental implementations
of the protocol [27].

Moreover, we show by numerical simulations that our pro-
tocol is more robust to noise. Specifically, we consider static
disorder, which could be caused by imperfect fabrication or
tuning in noisy, intermediate-scale quantum device implemen-
tations (see Supplemental Material [34]). Our results imply,
for example, that with strong disorder and an error threshold
of 0.03, a SWAP protocol can only reverse four sites, whereas
the time-independent protocol can reverse eight sites.
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In general, we would like to know how fast we can perform
qubit routing on graphs. Qubit routing is a key subroutine
in quantum architectures with incomplete connectivity [4],
and can potentially improve runtimes of general quantum
algorithms by overcoming limitations imposed by the un-
derlying qubit connectivity. Indeed, we later showed [39]
that a constant-factor speedup over a SWAP-based approach
is achievable for general qubit routing on the chain using our
fast reversal protocol as a primitive. While a superconstant
speedup is not possible in one dimension, our techniques
suggest that routing protocols for higher-dimensional systems
might be found by exploiting similar mappings between spins
and fermions [40–42]. While state transfer in these systems
has been studied [43], the more general questions of upper and

lower bounds on routing remain open, and our bounds based
on the entanglement capacity might yield new insights.
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