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S1. TIME-DEPENDENT PROTOCOL FOR REVERSAL.

In this section, we give a simple analysis of the time-dependent protocol given in [S1, S2] using

our methods. The strategy is to prove that this protocol satisfies Lemma 1 from the main text.

Lemma 2 and Theorem 1 are then automatically satisfied. First, we re-introduce the protocol using

our notation.

Protocol S1. Let Hh := H(0,1) and HJ := H(1,0), where 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0).

Explicitly,

Hh =
N∑

k=1

Zk , (S1)

HJ = X1 +

N−1∑

k=1

XkXk+1 +XN . (S2)

Apply V :=
(
ei

π
4
Hhei

π
4
HJ

)N+1
to the input state.

As in the main text, we extend the chain with two ancillary sites {0, N + 1} that constitute the

edge E. The unitary V extends to an operator Ṽ := 1E ⊗ V on the extended chain. Then the

following lemma holds.
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FIG. S1. Time-dependent reversal protocol for N = 2 (with two edge ancillas). For any bulk state |ab〉12
(with edge state |++〉E), alternating π/4 evolutions under H̃2, H̃1 are applied a total of 2N + 2 times.

Each step braids neighboring Jordan-Wigner Majoranas as indicated by the arrows; the right-movers keep

the same sign while the left-movers gain a minus sign. The edge Majoranas γ0, γ7 are unchanged (a crucial

feature that ensures the correct parity phases), while the intermediate Majoranas undergo reversal of position

with alternating sign. The final state in the bulk of the chain is |ba〉12.

Lemma S2. The operation Ṽ acts on the Majorana operators as

Ṽ γkṼ
† =





γk if k = 0, 2N + 3,

(−1)k−1γ2N+3−k otherwise.

(S3)

Proof. We use Eq. (7) from the main text to write V as a product of alternating π/4-rotations

under two Hamiltonians H̃J = i
∑N

k=0 γ2k+1γ2k+2 and H̃h = i
∑N

k=1 γ2kγ2k+1. Since e−π/4γiγj is

a braiding unitary that maps γi 7→ γj , γj 7→ −γi, γk 6=i,j 7→ γk, it follows that the operator ei
π
4
H̃h

braids nearest-neighbor Majoranas along all odd edges of the chain (except the first and last edge),

while ei
π
4
H̃J braids along the even edges. Therefore, alternating π/4 rotations under H̃J and H̃h

implement an even-odd sort [S3] on the chain, as shown in Figure S1. Accounting for sign changes,

the Majoranas map as follows: γk 7→ (−1)k+1γ2N+3−k, while γ0, γ2N+3 remain unchanged.
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S2. INFINITE FAMILY OF HAMILTONIANS FOR STATE REVERSAL.

Reference [S4] shows that there is an infinite family of XY Hamiltonians that generalize the

protocol introduced in [S5]. In fact, Protocol 1 from the main text is also a special case of an

infinite family of protocols parameterized by a single non-negative integer m, as given below.

Protocol S3. Let m ∈ Z≥0, and

J
(m)
k :=

π

4

√
(2k + 1 + 4m) (2N + 1− 2k + 4m) (S4)

h
(m)
k := π

√
k (N + 1− k) (S5)

for all sites k = 1, . . . , N . Let H(m) = H(J (m),h(m)). Apply U (m) := e−iH
(m)

to the input state.

The protocol modifies only the couplings J
(m)
k as a function of m, while the field terms h

(m)
k = hk

are invariant with m. Note that U (0) = U , so Protocol 1 is indeed a special case of Protocol S3.

For convenience, we have rescaled the coefficients so that the evolution time is 1. To prove the

correctness of this family of protocols, write the Hamiltonian H(m) in terms of Majorana fermions

obtained by Jordan-Wigner transformation on the spin chain (extended to edge sites {0, N + 1}).
We have

H(m) =
1

2
γ ·A(m) · γ, (S6)

where γ =
[
γ1 γ2 · · · γ2N+2

]
and A(m) is a (2N + 2)× (2N + 2) tridiagonal matrix with entries

A(m) = i




0 J
(m)
0

−J (m)
0 0 h1

−h1 0 J
(m)
1

. . .
. . .

. . .

−hN 0 J
(m)
N

−J (m)
N 0




. (S7)

As before, the Heisenberg evolution of the Majoranas under H(m) is given by γ(t) = e2iA
(m)tγ(0).

Lemma 1 (main text) shows that the operator e2iA
(0)

implements reversal. Here we show that

e2iA
(m)

= e2iA
(0)

for all m, which implies that U (m) implements state reversal for all m. We state

the following lemma (due to [S6, S7]) on the spectrum of A(m).
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Lemma S4. Let A(m) be as given in (S7), and sk := sgn(2N + 3− 2k). Then A(m) has spectrum

E
(m)
k =

π

4
(2k − 2N − 3 + 4skm) (S8)

for k = 1, . . . , 2N + 2. The corresponding eigenvectors vk satisfy vkj = (−1)N+k−j+1/2vk(2N+3−j).

Proof. The first claim follows from [S6]. Via a transformation of the off-diagonals that preserves

the spectrum, A(m) can be converted to a matrix B(n, a) of Sylvester-Kac type

B(n, a) :=
π

4




0 1 + a

n+ a 0 2

n− 1 0 3 + a

. . .
. . .

. . .

2 0 n+ a

1 + a 0




, (S9)

for n = 2N + 1, a = 4m. As shown in [S6], the eigenvalues of B(n, a) are given by the formula

λ±,j = ±π
4 |2j + 1 + a| for j ∈ {0, . . . , n}, and the first claim follows.

For the second claim, we observe again that A(m) may be converted to a real, symmet-

ric, tridiagonal matrix C(m) with positive off-diagonal entries via the similarity transformation

C(m) := DA(m)D−1 where D = diag
(
i, i2, . . . , i2N+2

)
. Reference [S7] shows that the eigenvectors

uk = Dvk of C(m) (ordered by ascending eigenvalue) satisfy ukj = (−1)k−1uk(2N+3−j) for k =

1, . . . , 2N +2. Correspondingly, the eigenvalues of A(m) satisfy vkj = (−1)k−1i2N+3−2jvk(2N+3−j) =

(−1)N+k−j+1/2vk(2N+3−j).

Finally, we show that e2iA
(m)

implements reversal.

Theorem S5. For all m ∈ Z≥0, A
(m) satisfies

[
e2iA

(m)
]
jl
= (−1)j−1δj(2N+3−l).

Proof. Write

e2iA
(m)

=
2N+2∑

k=1

e2iE
(m)
k vkv

†
k =

2N+2∑

k=1

(−1)k−N−3/2vkv
†
k , (S10)

where we dropped the trivial phase 2πimsk. The matrix elements of eiA
(m)

are

[
eiA

(m)
]
jl
=

2N+2∑

k=1

(−1)k−N−3/2vkjv
∗
kl (S11)

=

2N+2∑

k=1

(−1)2N+2−lvkjv
∗
k(2N+3−l) (S12)

= (−1)j−1δj(2N+3−l) , (S13)
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where in the second step we used Lemma S4 as v∗kl = (−1)l−k−N−1/2v∗k(2N+3−l). Therefore, e2iA
(m)

maps γk 7→ (−1)k−1γ2N+3−k, which implies that the protocol U (m) implements state reversal for all

m ∈ Z≥0.

When normalized so that all two-qubit terms are bounded by unity in spectral norm, H(m)

implements state reversal in time t
(m)
N = (N+1+4m)π

4 . Therefore, the time cost increases linearly in m

and is minimal for Protocol 1 (main text) where m = 0. Next, observe that if we choose 4m≫ N ,

the variation in coupling coefficients J
(m)
k is small and on the order ∼1

8

(
N+1
2m

)2
. Therefore, the

parameter m quantifies a trade-off between reversal time and the non-uniformity of J
(m)
k . Setting

m = N +1, for example, yields a variation in the couplings on the order of 3% for any N , and gives

reversal in time 5Nπ/4.

S3. ROBUSTNESS OF THE PROTOCOL.

Protocol 1 and its generalizations given in Section S2 are exact, i.e., any input state |ψ〉 maps

perfectly to the output R|ψ〉, assuming the interaction coefficients are implemented exactly as

prescribed. However, inherent in experimental systems is noise, and the usefulness of a given

state transfer protocol is determined not only by the time of operation and fidelity under perfect

implementation, but also resilience to noise. Here, we model imperfect fabrication as a static noise

term on every coefficient in the Hamiltonian. We compare our time-independent protocol with a

swap-based protocol for reversal (odd-even sort) and a gate-based protocol [S1].

Stochastic noise can be modeled as a perturbation to the Hamiltonian coefficients. For the

case of disorder, we draw a single noise term for every coefficient from the normal distribution N .

We assume that the noise is multiplicative, so that the noise strength scales proportional to the

magnitude of the coefficient. The perturbed Hamiltonian H ′ for our time-independent protocol then

looks like

H ′ = J ′
0σ

1
x +

N−1∑

k=1

J ′
kσ

k
xσ

k+1
x + J ′

Nσ
N
x −

N∑

k=1

h′kσ
k
z , (S14)

where J ′
i = Ji · (1 + δJi), h

′
i = hi · (1 + δhi), where δhi ∼ N (δh), δJi ∼ N (δJ ) for specified standard

deviations δh, δJ ≥ 0. Evolution under this Hamiltonian gives a noisy reversal R′ := e−iH
′
itN that

reduces to R when δh = δJ = 0. For swap and gate-based protocols, we compute an equivalent

Hamiltonian formulation and similarly add noise terms.
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A natural and widely used metric for the distinguishability of outputs of two quantum channels is

the completely bounded trace norm (or diamond norm) [S8]. The computation of the diamond norm

can be efficiently expressed as the solution to a semidefinite program [S9], making it a somewhat

non-trivial quantity to compute. We consider unitary noise models, where the diamond distance is

equivalent to a simpler notion of distinguishability, the spectral distance

∆ := ‖R′−R‖ , (S15)

where we take the spectral norm of the difference between perfect and noisy state reversals R and

R′. In this case, the diamond distance is at most two times as large as the spectral distance [S10].

The distance ∆ can be used to bound another common figure of merit, the fidelity

F(ρ, σ) = Tr

(√√
ρσ

√
ρ

)
, (S16)

for output states ρ and σ evolved by a perfect and noisy reversal, respectively.

We will prove a bound on the minimum fidelity for completeness here but do not claim novelty

of the result. First, we bound ∆ by the minimum fidelity over pure states as follows:

∆2 = ‖(R−R′)†(R−R′)‖ (S17)

= max
|ψ〉

|〈ψ|(R−R′)†(R−R′)|ψ〉| (S18)

= max
|ψ〉

|〈ψ|21 − R†R′ −R′†R|ψ〉| (S19)

= max
|ψ〉

|2− 2Re 〈ψ|R†R′|ψ〉| (S20)

= 2−min
|ψ〉

2Re 〈ψ|R†R′|ψ〉 (S21)

≥ 2− 2min
|ψ〉

|〈ψ|R†R′|ψ〉| , (S22)

where we used the fact that for any unitary U , Re 〈ψ|U |ψ〉 ≤ 1, and Re [z] ≤ |z| for any z ∈ C. Let

Fmin denote the worst-case fidelity over all input states. By the joint concavity of the fidelity [S11,

Corollary 3.26], Fmin is attained for a pure state, thus

Fmin = min
|ψ〉

F(R′|ψ〉, R|ψ〉) = |〈ψ|R†R′|ψ〉| (S23)

since F(|φ1〉, |φ2〉) = |〈φ2|φ1〉| for pure states |φ1〉 and |φ2〉. It then follows from (S22) that Fmin ≥
1− 1

2∆
2.

We estimate the spectral distance dependence on noise and system size in the three candidate

protocols [S12]. For each protocol, we probe the distance as a function of similar on-site and coupling
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FIG. S2. Spectral distance mean values with standard deviation (shaded region) for different protocols under

varying strengths of noise. We take 100 samples for each data point and use a linear fit for a power law

∆ = exp(Naδb) controlled on the protocol, i.e., fitting log∆ = a logN+b log δ+O(1), to find (standard error)

a ≈ 1.66(0.012) and b ≈ 0.994(0.0028) for the swap-based protocol. The b coefficient changes insignificantly

for time-independent and gate-based protocols but the a coefficient is reduced by 0.31(0.016) for gate-based

and 0.23(0.016) for time-independent protocols, indicating more robust scaling of these protocols in system

size, relative to a swap-based protocol.

disorder δ = δh = δJ , and increasing number of spins N . The spectral distance is computed by exact

diagonalization, taking time exponential in N , and it is possible to probe system sizes up to N = 14

with the resources available. At these sizes, we can already see differences between the protocols,

shown in Figure S2. At each error rate δ, the swap protocol has the worst performance, the time-

independent protocol performs better, and the gate-based protocol has the best performance. We

note that the gate-based and time-independent protocols perform within a standard deviation of

one another, but the swap protocol is significantly noisier. For example, at a threshold of ∆ ≤ 0.03,

the swap can reverse only up to 4 sites, while the time-independent protocol can successfully reverse

8 sites. Therefore, the specialized protocols for reversal improve upon swap-based protocols not

only in runtime but also in accuracy.

The relative performance of time-independent and gate-based protocols (including the swap

protocol) may not be captured by our simulations. Since the time-independent protocol is static,

it derives its error primarily from imperfect engineering of the coupling strengths and interactions

with the environment. Gate-based protocols, however, require dynamical control, which could be



8

an additional source of noise. Since this noise source is likely to worsen the performance of discrete

protocols, we cannot make a definite comparison between our protocol and gate-based protocols in

our noise model.
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