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I. RENORMALIZED SPIN FREQUENCY

In this section, we reproduce the derivation [S1] of the crossover energy scale between weak and strong coupling,
the equivalent of the Kondo temperature, which we associate with the renormalized spin frequency ∆R in Eq. (2) in
the main text.

We employ the renormalization group (RG) procedure as used in Ref. [S1]. Let us denote the cutoff at some energy
scale l by Λ(l) (such that Λ(0) ≡ ωc is the original cutoff of the problem). The RG procedure consists of integrating
out the high-energy modes, and thus redefining the cutoff from Λ to Λ− dΛ. This leads to the RG flow equations for
the coupling constants α and h ≡ ∆/Λ [S1] (that can also be derived from perturbation theory in α)

dα

dl
= −2α2, (S1)

dh

dl
= (1− 2α)h, (S2)

where dl = −dΛ/Λ, which implies that l = log
(
ωc
Λ

)
.

The equation for α can be readily solved,

(S3)α(l) =
α(0)

1 + 2lα(0)
.

Plugging Eq. (S3) into the differential equation for h we find

h(l) =
el∆/ωc

1 + 2α(0)l
. (S4)
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Note that both the cutoff Λ and ∆ are decreasing as function of l. Equivalently, h increases from its initial value
of h(0) = ∆/ωc. Eventually, we have h(l∗) ≈ 1, which occurs when ∆(l∗) ≡ ∆R = Λ(l∗), and hence the RG breaks
down. The energy scale corresponding to this is l∗ = logωc/∆R. Plugging this into Eq. (S4) gives Eq. (2) from the
main text,

∆R =
∆

1 + 2α log(ωc/∆R)
. (S5)

This differs from the result presented in Refs. [S1, S2] in that we kept the ∆R on the right-hand-side (whereas these
references approximated it by ∆) as it agrees better with the numerical results.

As we show later in Sec. IV, we also reproduce exactly this equation by applying the Callan-Symanzik equation to
the bare Green’s function of the spin.

II. NUMERICAL METHODS

In this section, we describe the numerical methods we use to compute the single photon transport properties.
We first write the Hamiltonian (Eq.1 of the main text) in terms of bosonic creation and annihilation operators, as

follows,

(S6)Ĥ = −∆
σ̂z
2

+
∑
i=x,y

[∫ kmax

−kmax
ω(k)â†i,kâ

†
i,kdk +

σ̂i
2

∫ kmax

−kmax
g(k)(â†i,k + â†i,k)dk

]

with
[
â†
i,k
, â†j,k′

]
= δijδ(k − k′). We make the transformation

âi,k =
Âi,k + B̂i,k√

2
, k > 0,

âi,−k =
Âi,k − B̂i,k√

2
, k > 0,

(S7)

which transforms the Hamiltonian into two commuting parts

Ĥ = ĤXY SB + Ĥfree,

ĤXY SB = −∆
σ̂z
2

+
∑
i=x,y

[∫ kmax

0

ω(k)Â†i,kÂ
†
i,k +

σ̂i
2

∫ kmax

0

g̃i(k)(Â†i,k + Â†i,k)

]
,

Ĥfree =
∑
i=x,y

[∫ kmax

0

ω(k)B̂†i,kB̂
†
i,k

]
,

(S8)

where g̃(k) =
√

2g(k). It is enough therefore to only simulate the dynamics of the ĤXY SB Hamiltonian.
Explicitly, to determine the single-particle scattering properties, we perform the following procedure. We create

a single-particle Gaussian wavepacket on top of the ground state, with amplitude ck = N e−
(k−k0)2

2σ2
+ikx0 , where N

is a normalization so that
∫ kmax

0
dk|ck|2 = 1. Without loss of generality, we choose this excitation to be of the x

type (since for αx = αy the Hamiltonian is invariant under x ↔ y exchange.). We then evolve this state in time,
which leads to the scattering of the wavepacket off the spin. At long times after the scattering, we can extract several
observables such as the elastic scattering amplitudes and number of elastic and inelastic photons in the final state.

Denoting the ground state of the full Hamiltonian Ĥ by |GS〉 =
∣∣GSXY SB〉⊗ ∣∣0free〉, the initial state is

(S9)
|ψ(0)〉 =

∫ kmax

0

dkckâ
†
x,k |GS〉

=
1√
2

∫ kmax

0

dkckÂ
†
x,k

∣∣GSXY SB〉⊗ ∣∣0free〉+
∣∣GSXY SB〉⊗ 1√

2

∫ kmax

0

dkckB̂
†
x,k

∣∣0free〉 .
The time-evolved state is

(S10)|ψ(t)〉 =
1√
2
|ψXY SB(t)〉 ⊗

∣∣0free〉+ e−iEGSt
∣∣GSXY SB〉⊗ 1√

2

∫ kmax

0

dkcke
−iωktB̂†x,k

∣∣0free〉 ,
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where |ψXY SB(t)〉 ≡ e−iĤXY SBt
∫ kmax

0
ckÂ

†
x,k

∣∣GSXY SB〉 and EGS is the ground state energy.
From this state, we can extract the elastic scattering amplitudes as follows [S3] (with t = t∞ sufficiently long so

that the scattering event has finished):

txx =
〈GS| âx,k |ψ(t∞)〉

ck
=

1

2

〈
GSXY SB

∣∣ Âx,k |ψXY SB(t∞)〉+
1

2
cke
−i(EGS+ωk)t∞ , (S11)

rxx =
〈GS| âi,−k |ψ(t∞)〉

ck
=

1

2

〈
GSXY SB

∣∣ Âx,k |ψXY SB(t∞)〉 − 1

2
cke
−i(EGS+ωk)t∞ , (S12)

txy =
〈GS| ây,k |ψ(t∞)〉

ck
=

1

2

〈
GSXY SB

∣∣ Ây,k |ψXY SB(t∞)〉 . (S13)

The number of elastic photons generated by a given wavepacket can be found from the above amplitudes by squaring
and integrating over all k. This gives (for i = x, y)

(S14)
n̄i,elastic =

∫ kmax

0

dk
(
|〈GS| âi,k |ψ(t∞)〉|2 + |〈GS| âi,−k |ψ(t∞)〉|2

)
=

∫ kmax

0

dk

[
1

2

∣∣∣〈GSXY SB∣∣ Âi,k |ψXY SB(t∞)〉
∣∣∣2 +

1

2
|ck|2δx,i

]
.

The number of inelastic photons is

(S15)
n̄i,inelastic =

∫ kmax

0

dk
1

2
〈ψXY SB(t∞)| Â†i,kÂi,k |ψXY SB(t∞)〉

−
∫ kmax

0

dk
1

2

〈
GSXY SB

∣∣ Â†i,kÂi,k ∣∣GSXY SB〉− ∫ kmax

0

dk
1

2

∣∣∣〈GSXY SB∣∣ Âi,k |ψXY SB(t∞)〉
∣∣∣2.

Thus we see that all quantities of interest can be obtained from correlation functions and matrix elements of the states∣∣GSXY SB〉 and |ψXY SB(t∞)〉.

S1. Orthogonal polynomial mapping

The Hamiltonian ĤXY SB from Eq. (S8) describes a system with very nonlocal interactions. In order to efficiently
simulate it with matrix-product-states, we use the orthogonal polynomial mapping introduced in [S4, S5], which maps
the Hamiltonian into a tight-binding model with only nearest-neighbor interactions.

Here we summarize the main steps of the mapping. For more details, see Refs. [S4, S5]. We work with the
Hamiltonian from Eq. (S8), reproduced here

(S16)ĤXY SB = −∆
σ̂z
2

+
∑
i=x,y

[∫ kmax

0

ω(k)Â†i,kÂi,k +
σ̂i
2

∫ kmax

0

g̃i(k)(Âi,k + Â†i,k)

]
,

where ω(k) = ωck, kmax = 1, and g̃i(k) =
√

2αiωck. The resulting spectral functions are

Ji(ω) = π
∑
k

ḡi(k)2δ(ω − ω(k)) = 2παiωθ(ωc − ω). (S17)

We introduce the unitary transformation

Ui,n(k) = g̃i(k)pi,n(k), n = 0, 1, · · · , (S18)

where pi,n(k) are orthonormal polynomials with respect to the measure dµi(k) = g̃2
i (k)dk [i.e. 〈pi,n, pj,m〉 ≡∫ kmax

0
dµi(k)pi,n(k)pj,m(k) = δnmδij ], and a set of new discrete bosonic modes

(S19)b̂†i,n =

∫ kmax

0

dkUi,n(k)A†i,k,
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that satisfy
[
b̂i,n, b̂

†
j,m

]
= δijδn,m.

Using the recurrence relations of orthogonal polynomials, one can show that the Hamiltonian in Eq. (S16) can be
written as

(S20)ĤXY SB = −∆
σ̂z
2

+
∑
i=x,y

σ̂i
2

√
αiωc(b̂

†
i,0 + b̂i,0) + ωc

∑
i=x,y

∞∑
n=0

νnb̂
†
i,nb̂i,n + ωc

∑
i=x,y

∞∑
n=0

[
βn+1b̂

†
i,nb̂i,n+1 +H.c

]
,

which describes two semi-infinite tight-binding bosonic chains that are both coupled to the spin via their first site. For
the Ohmic spectral function, the pi,n polynomials are the Jacobi polynomials, and the on-site energies and hopping
coefficients are given by

νn =
1

2

(
1 +

1

(1 + 2n)(3 + 2n)

)
,

βn+1 =
1 + n

1 + n+ 2n

√
1 + n

2 + n
.

(S21)

Using the inverse transformation

Â†i,k =
∑
n

Ui,n(k)b̂†i,n, (S22)

we can convert measurements in the b̂ basis to observables in frequency space. For example, the frequency-mode
occupation is (for k = k′)

(S23)
〈
Â†i,kÂi,k′

〉
=

∞∑
n,m=0

Ui,n(k)Ui,m(k′)
〈
b̂†i,nb̂i,m

〉
.

Note that this is an exact mapping, provided the length of the chains is infinite. In practice, the length of the chains
is truncated to a finite value L, and the dimension of each bosonic Hilbert space is truncated to a finite value d.
We varied these parameters and found that L = 250, d = 5, and bond dimension of χ = 30 are adequate to obtain
converging results for the scattering for most values of α.

III. ELASTIC S-MATRIX IN TERMS OF SPIN SUSCEPTIBILITIES

In this section, we derive the relation between the elastic scattering coefficients and the spin susceptibilities, given
in Eqs. (3,4) in the main text.

Let us write the Hamiltonian as

Ĥ =Ĥ0 + V̂ , (S24)

Ĥ0 =
∑
k

ωkâ
†
x,kâx,k +

∑
k

ωkâ
†
y,kây,k, (S25)

V̂ =− ∆

2
σ̂z +

σ̂x
2

∑
k

gx,k(â†x,k + âx,k) +
σ̂y
2

∑
k

gx,k(â†y,k + ây,k). (S26)

We are interested in the S-matrix between a particle with momentum k in bath i and a particle with momentum
k′ in bath j:

Sjk′,ik = 〈ψ−jk′ |ψ
+
ik〉 , (S27)

where
∣∣ψ±ik〉 are the exact incoming and outgoing scattering eigenstates. Following Ref. [S6], we can write these

eigenstates as follows: ∣∣ψ±ik〉 = â†i,k |ψ0〉+
∣∣χ±i 〉 , (S28)

where |ψ0〉 is the ground state of the full Ĥ with energy E0, and
∣∣χ±i 〉 are the states of the scattered particles. Since∣∣ψ±ik〉 are eigenstates of Ĥ with energy E0 + ωk, Schrodinger’s equation implies

(Ĥ − ωk − E0)
(
â†i,k |ψ0〉+ |χi〉

)
= 0. (S29)
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Furthermore,

Ĥâ†i,k |ψ0〉 =
(
â†i,kĤ −

[
â†i,k, Ĥ

])
|ψ0〉 = (E0 + ωk)â†i,k |ψ0〉+

σ̂i
2
gi,k |ψ0〉 . (S30)

Substituting this into Eq. (S29) gives

(E0 + ωk − Ĥ) |χi〉 =
σ̂i
2
gi,k |ψ0〉 →

∣∣χ±i 〉 =
1

E0 + ωk − Ĥ ± iε
σ̂i
2
gi,k |ψ0〉 , (S31)

with ε > 0 taken to zero at the very end. From this we find∣∣ψ+
ik

〉
−
∣∣ψ−ik〉 = −2πiδ(E0 − ωk − Ĥ)

σ̂i
2
gi,k |ψ0〉 . (S32)

Plugging this back into the S-matrix Eq. (S27) gives

Sjk′,ik = δkk′δij − 2πiδ(ωk′ − ωk)gik 〈ψ−jk′ |
σ̂i
2
|ψ0〉 ≡ δkk′δij − 2πiδ(ωk′ − ωk)Tjk′,ik, (S33)

where we defined the T -matrix

(S34)
Tjk′,ik = gik 〈ψ−jk′ |

σ̂i
2
|ψ0〉

= gik 〈ψ0| âjk′
σ̂i
2
|ψ0〉+ gikgjk′ 〈ψ0|

σ̂j
2

1

E0 + ωk − Ĥ+ iε

σ̂i
2
|ψ0〉 .

To evaluate the first term, we perform a similar manipulation as in Eq. (S30):

Ĥâj,k′ |ψ0〉 =
(
âj,k′Ĥ −

[
âj,k′ , Ĥ

])
|ψ0〉 = (E0 − ωk′)âj,k′ |ψ0〉 −

σ̂j
2
gj,k′ |ψ0〉 (S35)

→ âj,k′ |ψ0〉 =
1

E0 − ωk′ − Ĥ − iε
σ̂j
2
gj,k′ |ψ0〉 . (S36)

Inserting this into Eq. (S34) yields

(S37)Tjk′,ik = gikgjk′

[
〈ψ0|

σ̂j
2

1

E0 + ωk − Ĥ+ iε

σ̂i
2
|ψ0〉+ 〈ψ0|

σ̂i
2

1

E0 − ωk′ − Ĥ − iε
σ̂j
2
|ψ0〉

]
,

which, when ωk = ωk′ , we recognize as the Fourier transform of the retarded Green’s function

Tjk′,ik = gikgjk′G
R
ji(ω + iε) (S38)

with

GRji(ω + iε) = − i
4

∫ ∞
0

dt ei(ω+iε)t 〈[σ̂j(t), σ̂i]〉 , (S39)

which we equivalently refer to as the spin susceptibility in the main text.

IV. DERIVATION OF THE SPIN SUSCEPTIBILITIES

In this section, we explicitly compute the spin susceptibility, Eq. (S39). We will do so by first computing the
imaginary-time Matsubara Green’s function,

Gji(iΩ) =

∫ β

0

dτ eiΩnτ 〈Tτ σ̂j(τ)σ̂i(0)〉 . (S40)

Here, the imaginary-time dependence of operators is σ̂j(τ) = eHτ σ̂je
−Hτ , and Tτ is the imaginary-time ordering

operator. This function may be computed using the usual diagrammatic perturbation theory if we can use Wick’s
theorem, after which we may obtain the spin susceptibility by analytic continuation [S7]:

GRji(ω + iε) = −1

4
Gji(iΩ→ ω + iε). (S41)
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However, the Pauli matrices do not satisfy Wick’s theorem. We can get around this by using an Abrikosov pseudo-
fermion representation of the spins. We introduce a two-component set of fermions, {χa, χ†b} = δab, a, b = 1, 2, related
to the spin operators by

σ̂x = χ†1χ2 + χ†2χ1,

σ̂y = −i
(
χ†1χ2 − χ†2χ1

)
,

σ̂z = χ†1χ1 − χ†2χ2. (S42)

This is only a faithful representation of the spin operators in the subspace χ†1χ1 +χ†2χ2 = 1. However, we can project
to this subspace using the Popov-Fedotov trick of using an imaginary chemical potential µ = −iπ/2β, which results in
a cancellation between the unphysical subspaces [S7]. This method requires us to work at finite temperature during
intermediate calculations, but below we will always take the β →∞ limit as early as possible.

FIG. S1. The Feynman rules, which follow from Eq. (S43). (a) The fermionic (top) and bosonic (bottom) propagators, which
are given in Eqs. (S44)-(S47). (b) The interaction vertices for our theory. Each vertex contributes a factor of

∑
k gk/

√
2. The

dependence of diagrams on the spectral function comes from internal bosonic propagators connecting two such vertices. (c)
Diagrammatic representation of the insertion of external spin operators, which are composite when written in terms of the
fermionic χa fields.

We may now express the system as a coherent-state path integral. We introduce the bosonic fields φ±,k = (ax,k ±
iay,k)/

√
2, after which our model may be described by the Lagrangian

L =
∑
i=±

∑
k

φ†i,k (∂τ + ωk)φi,k +

2∑
a,b=1

χ†a

[
(∂τ − µ) δab −

∆

2
σzab

]
χb

+
1√
2
χ†1χ2

∑
k

gk

(
φ−,k + φ†+,k

)
+

1√
2
χ†2χ1

∑
k

gk

(
φ+,k + φ†−,k

)
. (S43)

In this form, it is straightforward to treat the interactions gk perturbatively using a Feynman-diagram expansion and
the Matsubara formalism. We have the bare fermionic Green’s functions

δabΠa(τ) = 〈Tτχa(τ)χ†b(0)〉, Πa(iαn) =

∫ β

0

dτ eiαnτΠa(τ), (S44)

with

Π1(iαn) = − 1

iαn + µ+ ∆/2
, Π2(iαn) = − 1

iαn + µ−∆/2
, (S45)
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where αn = π(2n+ 1)/β, n ∈ Z. Similarly, the bosonic propagators are

δijδkk′Dk(τ) = 〈Tτφi,k(τ)φ†j,k′(0)〉, Dk(iΩn) =

∫ β

0

dτ eiΩnτDk(τ), (S46)

with

Dk(iΩn) =
1

−iΩn + ωk
(S47)

and Ωn = 2πn/β, n ∈ Z. The interaction terms in Eq. (S43) result in four interaction vertices, which contribute
dependence on gk. Since we are interested in correlation functions of the spin operators, we also introduce a diagram-
matic notation representing the composite operators σ̂+ = χ†1χ2 and σ̂− = χ†2χ1. The Feynman rules for this theory
are displayed in Fig. S1.

As a demonstration of this formalism, we obtain the spin susceptibility in the non-interacting (α = 0) limit by
computing the diagrams with a single fermion loop and no bosonic propagators,

G+− (iΩn) =

∫ β

0

dτeiΩnτ 〈T χ†1(τ)χ2(τ)χ†2(0)χ1(0)〉

= − 1

β

∑
iαn

1

(iαn + µ+ ∆/2)(iαn + iΩn + µ−∆/2)

=
tanh (β∆/2)

∆− iΩn
. (S48)

We also have G−+(iΩn) = G+−(−iΩn) and G++ = G−− = 0. Going back to the xy basis, taking β = ∞, and
analytically continuing, we obtain the expected form for the spin susceptibilities for α = 0:

GRxx(ω + iε) = GRyy(ω + iε) =
∆/2

(ω + iε)2 −∆2
,

GRxy(ω + iε) = −GRyx(ω + iε) =
iω/2

(ω + iε)2 −∆2
. (S49)

These expressions could be simply obtained through a direct computation at zero temperature with the spin operators,
but the diagrammatic approach is useful for including interactions.

We note that the susceptibilities in Eq. (S49) have a simple pole located at the bare spin frequency, and such a
pole can never be shifted or broadened by computing a finite number of diagrams. Therefore, we will use both the
Callan-Symanzik equations and a Dyson equation to sum an infinite number of diagrams, which will result in a change
in the analytic structures of the susceptibilities.

As discussed in Sec. I, if we perform an RG transformation on our system, redefining the cutoff from ωc ≡ Λ(0) to
some lower cutoff Λ(l), we obtain the flow equations

Λ
dα

dΛ
= 2α2, (S50)

Λ
dh

dΛ
= −(1− 2α)h, (S51)

where h ≡ ∆/Λ. In addition to coupling renormalization, it turns out that one also needs to renormalize the spin
operators under an RG transformation, and one may show that, perturbatively,

σi(l) ≈ (1− α logωc/Λ)σi(0), (i = x, y), (S52)

implying a flow for the operators,

Λ
dσi
dΛ

= ασi, (i = x, y). (S53)
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These flow equations, first obtained in Ref. [S1] using a Wilsonian momentum-shell RG scheme, may also be obtained
by treating Eq. (S43) using the conventional methods of quantum field theory. We now use the fact that the suscepti-
bilities should be independent of an RG transformation, dGRji/dΛ = 0. Taking into account any explicit and implicit
dependence on the cutoff, this implies the Callan-Symanzik equation,[

Λ
∂

∂Λ
− h(1− 2α)

∂

∂h
+ 4α2 ∂

∂α
+ 2α

]
GRji = 0. (S54)

The general solution to this partial differential equation is

GRji =
fji(h̄(Λ), ᾱ(Λ))

ω + 2αω log Λ/ω
, (S55)

where the fji are arbitrary functions of the “running couplings,” defined as

h̄(Λ) =
hΛ

ω + 2αω log Λ/ω
, ᾱ(Λ) =

α

1 + 2α log Λ/ω
. (S56)

Comparing this general solution to the leading-order expressions of Eq. (S49), we may read off the α = 0 limit of the
functions fji, and then use the α-dependence implied by the solution of the differential equation to find

GRxx =
∆/2

ω2(1 + 2α logωc/ω)2 −∆2
,

GRxy =
iω(1 + 2α logωc/ω)/2

ω2(1 + 2α logωc/ω)2 −∆2
, (S57)

where we have plugged in Λ(l = 0) = ωc to give expressions in terms of the initial cutoff and the bare quantities, and
ω has a small positive imaginary part. We see that both expressions no longer diverge at ω = ∆, but instead they
have poles at ω = ∆R, where ∆R satisfies

∆R =
∆

1 + 2α log(ωc/∆R)
. (S58)

From Eq. (S57), we see that the effect of solving the Callan-Symanzik equation was to sum the “leading logarithms,”
which are terms of the form αn logn ωc/ω at nth order in perturbation theory.

FIG. S2. Diagrammatic representation of the Dyson equation, Eq. (S59).

Although we have succeeded in capturing the renormalization of the spin frequency using the Callan-Symanzik
equations, they still predict a sharp behavior at ω = ∆R, whereas we expect interactions to broaden the peak near
the renormalized spin frequency. We rectify this by computing an additional infinite set of diagrams using Dyson’s
equation. We first consider the one-particle irreducible Green’s functions, G1PI

ji , which are defined to be the complete
set of diagrams that cannot be split in two by cutting a single propagator. By the structure of the interactions, the
only possible propagators which can be cut to disconnect a susceptibility diagram is a bosonic propagator. As a result,
we have the exact relation (in matrix notation)

G = G1PI + G1PIDG. (S59)

See Fig. S2 for a diagrammatic representation of this Dyson equation. Here, D is the result from computing the
diagrams. We find the simple structure, D++ = D−− = 0 and D+− = D−+. An explicit calculation gives

D+− = −πα|Ωn|. (S60)



9

Then the full Matsubara Green’s function satisfies

G =
[
I− G1PID

]−1 G1PI. (S61)

We now approximate the full Green’s function by just using the leading-order result, Eq. (S48), for G1PI. This
corresponds to summing all possible “bubble diagrams” which contribute to the susceptibility, which is reminiscent
of the RPA approximation in the dense electron gas. In this approximation, we obtain the susceptibilities as

GRxx(ω) =
(∆− iπαω) /2

(1 + π2α2)ω2 + i2πα∆ω −∆2
,

GRxy(ω) =
iω/2

(1 + π2α2)ω2 + i2πα∆ω −∆2
. (S62)

We see that the inclusion of these diagrams has resulted in a finite imaginary part in the denominator, which removes
the pole on the real-ω axis. We may now furthermore use the Callan-Symanzik equation to sum the leading logarithms.
After matching Eq. (S55) to Eq. (S62), we obtain the spin susceptibilities given in Eqs. (5,6) of the main text.

As noted in the main text, to this order, we have found that the above expressions do not lead to any contribution
to inelastic scattering (γ(ω) in the main text). We have checked that including all O(α) contributions to G1PI still
does not lead to inelastic scattering. We believe that including O(α2) contributions to G1PI will lead to inelastic
contributions, which is consistent with Sec. V, where we show that inelastic contributions to the S-matrix appear at
O(α2).

V. INELASTIC SCATTERING

In this section, we will consider the leading contributions to inelastic scattering in perturbation theory using the
diagrammatic approach developed in Sec. IV. To proceed, we need a relation between time-ordered expectation values
and S matrix elements. Such a relation is called the LSZ reduction formula in relativistic quantum field theory [S8],
but we can follow the derivation for our present system and derive a non-relativistic analogue of the reduction formula.
If we consider the scattering of n photons with momenta k1, k2, ..., kn into a state with n′ photons with momenta
k1′ , k2′ , ..., kn′ , the S matrix element is given by

S = in+n′
∫
dt1′ e

iωk
1′
t1′
(
−i∂t1′ + ωk1′

)
· · ·

dt1 e
−iωk1 t1 (i∂t1 + ωk1) · · ·

×
〈
Tt
{
φk1′ (t1′) · · ·φ

†
k1

(t1) · · ·
}〉

. (S63)

Here, ωk = |k| is the energy of the photon. Note that the real time-ordered correlation function appears in this
expression, which is related to the Matsubara correlation functions in Sec. IV by a Wick rotation. This expression
greatly simplifies after Fourier transforming to frequency space. When we evaluate diagrams using Wick’s theorem,
we will come across the following bosonic contractions from the external legs of Feynman diagrams,〈

Tt
{
φk(t1)φ†k(t)

}〉
= −i

∫
dω

2π

e−iω(t1−t)

ωk − (ω + iε)
. (S64)

These will set the external legs of the Feynman diagrams to their on-shell values, ω = ωk, and additionally cancel out
the contribution of the external propagators. Then the S matrix elements simply become

S =
〈
Tt
{
φk1′ (ωk1′ ) · · ·φ

†
k1

(ωk1) · · ·
}〉

amp.
. (S65)

That is, we evaluate the diagram in momentum space with on-shell external legs and omit the external propagators
(i.e. we “amputate” the legs).

The symmetry of the model greatly reduces the number of diagrams we need to consider. In particular, the
Hamiltonian has a U(1) symmetry [S9], and the conserved charge [which is more easily apparent in terms of the ±
photons â± = 1

2 (âx ± iây)] is

Q =
σ̂z + 1

2
+
∑
k

(â†−,kâ−,k − â
†
+,kâ+,k). (S66)
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FIG. S3. The nonzero diagrams contributing to the scattering of one photon into three photons.

Since the scattering cannot change the spin (as this would require the existence of bound spin-photon eigenstates), it

follows that the quantity
∑
k(â†−,kâ−,k − â

†
+,kâ+,k) must be conserved in any scattering process.

We now consider the simplest case, where one photon scatters into three photons. The discussion above means that
there are only two nonzero diagrams, pictured in Fig. S3. An explicit calculation finds that to lowest order we have

〈0| â+,k1 â−,k2 â+,k3Sâ
†
+,k |0〉 =

α2ω2
c

4

√
ωω1ω2ω3

2∆− ω1 − ω3

(ω −∆)(ω1 −∆)(ω3 −∆)(ω2 + ∆)
, (S67)

〈0| â−,k1 â+,k2 â−,k3Sâ
†
−,k |0〉 =

α2ω2
c

4

√
ωω1ω2ω3

2∆ + ω1 + ω3

(ω + ∆)(ω1 + ∆)(ω3 + ∆)(ω2 −∆)
, (S68)

together with the energy conservation condition ω = ω1 + ω2 + ω3 (enforced by a delta function, which has been
omitted in these expressions). Denoting Eq. (S67) by a function f(ω1, ω2, ω3;ω), we see that Eq. (S68) is simply
f(−ω1,−ω2,−ω3;−ω). Alternatively, each amplitude can be found from the other by substituting ∆ → −∆ (up to
an overall minus sign). This is because the two diagrams in Fig. S3 are related to each other by replacing + photons
with − photons and − photons by + photons. From Sec. IV we see that this requires flipping the sign of ∆.

Converting Eqs. (S67) and (S68) to the xy basis, we find the four amplitudes

(S69)4 〈0| âx,k1 âx,k2 âx,k3Sâ
†
x,k |0〉 = f(ω1, ω3, ω2;ω) + f(ω1, ω2, ω3;ω) + f(ω2, ω1, ω3;ω)

+ f(−ω2,−ω1,−ω3;−ω) + f(−ω1,−ω2,−ω3;−ω) + f(−ω1,−ω3,−ω2;−ω),

(S70)i34 〈0| ây,k1 ây,k2 ây,k3Sâ
†
x,k |0〉 = −f(ω1, ω3, ω2;ω)− f(ω1, ω2, ω3;ω)− f(ω2, ω1, ω3;ω)

+ f(−ω2,−ω1,−ω3;−ω) + f(−ω1,−ω2,−ω3;−ω) + f(−ω1,−ω3,−ω2;−ω),

(S71)i24 〈0| âx,k1 ây,k2 ây,k3Sâ
†
x,k |0〉 = −f(ω1, ω3, ω2;ω)− f(ω1, ω2, ω3;ω) + f(ω2, ω1, ω3;ω)

+ f(−ω2,−ω1,−ω3;−ω)− f(−ω1,−ω2,−ω3;−ω)− f(−ω1,−ω3,−ω2;−ω),

(S72)i4 〈0| âx,k1 âx,k2 ây,k3Sâ
†
x,k |0〉 = −f(ω1, ω3, ω2;ω) + f(ω1, ω2, ω3;ω) + f(ω2, ω1, ω3;ω)

− f(−ω2,−ω1,−ω3;−ω)− f(−ω1,−ω2,−ω3;−ω) + f(−ω1,−ω3,−ω2;−ω).

The resulting probabilities are: for x→ xxx

γxxx(ω1, ω2, ω3;ω) =
α4ω4

c

16
ω1ω2ω3ω|∆|2× (S73)∣∣∣∣∣ 3∆4 −∆2

(
ω2 − ω1ω2 − ω2ω3 − ω1ω2

)
− ωω1ω2ω3

(ω −∆)(∆ + ω)(∆− ω1)(∆ + ω1)(∆− ω3)(∆ + ω3)(∆ + ω2)(∆− ω2)

∣∣∣∣∣
2

.
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This expression is equivalent to the leading-order result given in Ref. [S10] for the spin-boson model. This can be
understood from the fact that, at leading order, the x→ xxx process does not involve any y photons. Computing the
other scattering probabilities, we find that the processes x→ {yyy, xxy} have a simple relation to the above process,
given by

(S74)γyyy(ω1, ω2, ω3;ω) = γxxx(ω1, ω2, ω3;ω)
ω2

|∆|2
,

(S75)γxxy(ω1, ω2, ω3;ω) = γxxx(ω1, ω2, ω3;ω)
ω2

3

|∆|2
.

The remaining process, x→ xyy, does not have a simple relation to the above expressions. It is explicitly given by

γxyy(ω1, ω2, ω3;ω) =
α4ω4

c

16
ω1ω2ω3ω|∆|2× (S76)∣∣∣∣∣∆4 + ∆2

(
ω2 − ω(ω2 + ω3)− ω2

2 − 3ω2ω3 − ω2
3

)
+ ω2ω3(ω2 + ω3)2 − ωω1(ω2

2 − ω2ω3 + ω2
3)

(ω −∆)(∆ + ω)(∆− ω1)(∆ + ω1)(∆− ω3)(∆ + ω3)(∆ + ω2)(∆− ω2)

∣∣∣∣∣
2

.

As with the elastic probabilities, the leading-order calculation leads to poles in the scattering probabilities at the
bare spin frequency ∆. We may apply procedures like those in Sec. IV to obtain an analytic dependence, which
better resembles that of the fully-interacting problem. For example, by applying the Callan-Symanzik equation to the
amplitudes in Eq. (S67)-(S68), we will find that the instances of ∆ will be corrected to the renormalized value ∆R.
Similarly, if we developed a Dyson equation for this amplitude, we expect that the poles will be softened to broad
peaks with a similar width to the peaks seen in the elastic probabilities given in the main text.

From Eq. (S74), we see that scattering processes involving a photon from one waveguide into three photons in the
other waveguide will dominate over scattering entirely within the same waveguide if ω � ∆R. In this same limit,
we do not expect a large region of phase space with very large final ω3, so γxxy is expected to be much smaller than
γyyy. We have verified by numerically integrating the above expressions over the possible final frequencies that, when
ω � ∆R, the total cross section for the processes x → {xyy, xxy} are of the same order of magnitude, and they are
both much smaller than x → yyy. We also found that the cross section for x → xxx is much smaller than the three
other processes in the same limit. This is consistent with our numerical results, where we found that the inelastic
scattering for ω � ∆R is dominated by scattering from one photon flavor to the other.

VI. COMPARISON WITH A MODEL WITHOUT FRUSTRATION

In this section, we compare the results of the main text to the more common situation in waveguide QED, without
frustration. We assume the same geometry as in the main text [shown in Fig. S4], with the spin coupling to two
waveguides, but the coupling is via the same operator σ̂x. The coupling constant to each waveguide is given by
α1 = α2 = αT /2.

1

2

FIG. S4. Schematic of the same model as in the main text but without frustration. Here the spin-1/2 is coupled locally to two
independent waveguides with the same operator σ̂x.

We obtain the elastic scattering probabilities shown in Fig. S5 by the same method as described in the main text
and in Secs. II and IV above. For the analytical calculation, the only major difference is that the φ+ and φ− bosons
are now equivalent, so the bottom two vertices in Fig. S1(b) are equivalent to the top two. The elastic scattering
coefficients shown in Fig. S4 take the form

r11(ω) = r21(ω) = t21(ω) = −iπαTωχxx(ω), (S77)

t11(ω) = 1 + r11(ω), (S78)
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and the susceptibility computed using the methods of Sec. IV is given by

χxx(ω) =
−(ω/ωc)

αT ∆/2

∆2(ω/ωc)2αT − ω2 − iπαT∆ω(ω/ωc)αT
. (S79)

Figure S5 shows that the elastic response has a resonance that is in excellent agreement with the well-known result
from the spin-boson [S11] or Kondo literature:

∆R = ∆

(
∆

ωc

)αT /(1−αT )

. (S80)
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FIG. S5. Numerical (top row) and analytical (bottom row) elastic scattering coefficients for Fig. S5, as a function of the
incoming frequency ω and coupling constant αT . The red dashed line corresponds to ∆R from Eq. (S80). The cutoff is given
by ωc = 10∆. The large oscillations at the top of the numerical |t(ω)|2 are finite time/size effects due to the fact that the
scattering takes a very long time at those large couplings.

However, we see that, in contrast to the frustrated case, the transmission away from the resonance is very high,
whereas the reflection is only nonzero around the ∆R resonance. Note that Im(χxx(ω)) in Eq. (S79), describing the
spectral weight of the spin, shows a sharp peak at ∆R. Moreover, the large ω limit of Eq. (S79) is Re(χxx(ω)) ∼ ωαT−2

and Im(χxx(ω)) ∼ ω2αT−3, both of which decay to zero much faster than in the frustrated case. These results are
consistent with previous studies [S10, S12–S15], in other one-dimensional realizations of the spin-boson model. In
all of these cases, the system is well described in terms of the polaron or dressed-spin picture. Even at very large
couplings, where ∆R → 0 and the resonance is disappearing, the photons show almost no trace of the coupling to
the spin, being almost fully transmitted. This should be contrasted to the frustrated case discussed in the main text,
where we have the complete opposite scenario, where the spin becomes extremely widespread over the entire energy
spectrum, leading to strong elastic response in the whole range ω > ∆R.

Next, we look at the inelastic scattering, employing the same numerical procedure as we used in the main text. We
scatter narrow wavepackets and record the resulting number of elastic and inelastic particles, shown in Fig. S6. Note
that because the coupling to both waveguides is the same, the number of inelastic photon emitted in each of the two
waveguides is also the same. Hence, we present only the total number of elastic and inelastic photons. We see that
the number of elastic photons is always near 1, never going below ∼ 0.9 for the wavepackets considered. In fact, since
∆R/∆ ≈ 0.5 for αT = 0.25 (see Fig. S5), most of Fig. S6 is in the regime ω � ∆R. The number of inelastic particles
does not exceed ∼ 0.36, which occurs for the lowest-energy wavepacket ω̄in = 0.5∆. In fact, as shown also in Ref.
[S10], for a given αT , the inelastic scattering rate peaks at an energy close to ∆R. For example, for αT = 0.5 (the
Toulouse point), the peak occurs at 2∆R [S10]. This should be contrasted again to the situation with frustration,
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described in the main text, where we found that the inelastic rate remained saturated close to its maximum allowed
value 0.5 even for energies above the bar spin gap ∆.
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FIG. S6. Numerically computed total number of elastic (left) and inelastic (right) particles as a function of αT for six different
incoming wavepackets, for Fig. S5. The incoming single-particle wavepackets are Gaussians centered at ω̄in with a standard
deviation of 0.2∆. The cutoff is ωc = 10∆.

Finally, from Fig. S5 we also observe that the analytics are in much greater agreement with the numerics, even at
very large α. This is consistent with our assertion in the main text, that the disagreement in the frustrated case is
due to the fact that inelastic processes are missing from the susceptibility calculation. In the frustrated case, these
inelastic processes can be extremely important, accounting for half of the scattering, whereas in the present case with
no frustration they are insignificant.
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