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Photon propagation through dissipative Rydberg media at large input rates
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We study the dissipative propagation of quantized light in interacting Rydberg media under the conditions of
electromagnetically induced transparency. Rydberg blockade physics in optically dense atomic media leads to
strong dissipative interactions between single photons. The regime of high incoming photon flux constitutes
a challenging many-body dissipative problem. We experimentally study in detail the pulse shapes and the
second-order correlation function of the outgoing field and compare our data with simulations based on two
novel theoretical approaches well-suited to treat this many-photon limit. At low incoming flux, we report good
agreement between both theories and the experiment. For higher input flux, the intensity of the outgoing
light is lower than that obtained from theoretical predictions. We explain this discrepancy using a simple
phenomenological model taking into account pollutants, which are nearly stationary Rydberg excitations coming
from the reabsorption of scattered probe photons. At high incoming photon rates, the blockade physics results in
unconventional shapes of measured correlation functions.
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I. INTRODUCTION

A number of platforms enable strong interactions between
photons at the level of single quanta [1], with Rydberg
electromagnetically induced transparency (rEIT) [2,3] being
particularly promising [4–11]. Rapid progress in the control of
rEIT at the level of a few photons has led to the demonstration
of strong interactions [10–16], a single-photon source [9],
atom-photon entanglement [17], a single-photon switch [18],
a transistor [19–21], and three-body interactions [22–25].
Due to the high tunability and strong interactions offered by
rEIT, exotic states of light such as different types of bound
states [12,24–28], as well as Wigner crystals of individual
photons [29,30], have been predicted and experimentally
demonstrated [12,25].

Generally, however, because of the many-body nature of
the underlying open quantum system, the problem of strongly
interacting photons is challenging to solve. Brute-force
analytical or numerical approaches thus far remain limited to
three or fewer photons [12,25,28]. In recent years, progress
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has been made to develop effective theories for strongly inter-
acting Rydberg polaritons in 1D. These theories are expected
to be valid in various dispersive [22,26,29,31] and dissipative
[32,33] regimes. Additionally, a promising numerical algo-
rithm has emerged, based upon a matrix-product-state ansatz
and the input-output formalism [34–36]. Here, we show that
the effective and numerical methods presented in Refs. [33]
and [36], respectively, enable quantitative comparisons with
rEIT experimental results, and together provide new insights
into the microscopic workings of these experiments.

After the demonstration of dissipative Rydberg blockade
at the single-photon level [10,11,37], a natural next step is the
realization of a regular train of single photons, which could
find many applications in quantum information and metrology
[38–40]. Here, we address this timely and exciting problem
both theoretically and experimentally.

To be more specific, we consider photons propagating
through a Rydberg medium, Fig. 1, in the regime in which
a probe field E is on resonance with the |g〉-|e〉 transition—the
so-called dissipative regime [41,42]. Van der Waals interac-
tions between Rydberg levels lead to a blockade effect, where
effectively only one atom may be excited to the Rydberg level
|s〉 within a blockade radius rb. The remaining atoms within
the blockade radius then act as two-level atoms scattering
incoming light. In the limit of large optical depth per blockade
radius ODb = ODrb/L (where OD is the total optical depth
for a medium of length L), only one photon per rb can enjoy
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FIG. 1. (a) Three-level rEIT scheme, where |g〉, |e〉, and |s〉 are
ground, excited, and long-lived Rydberg states, respectively. State |e〉
decays spontaneously at rate γ , while γss describes the decoherence
of |s〉. (b) Schematic representation of the theoretical model in
position space at two time instances. A photon pulse, incident on
the medium with velocity c, propagates as Rydberg polaritons with
a group velocity vg inside the medium. However, due to Rydberg
blockade, only one polariton per rb can propagate without loss. All
other photons are scattered (represented by the solid wavy red arrow)
at the beginning of the medium whenever a polariton is already inside
the medium within rb. There are additional losses in the medium
(represented by the dashed wavy red arrow) due to the finite width
of the EIT transparency window. (c) and (d) Output pulse shapes
as a function of time predicted by the theory (see Sec. II), for
two different choices of incoming rates Rin, blockade time τb, and
EIT filtering time τEIT: (c) A time trace for τEIT = τb/5 and Rin =
10/τb, which gives rise to a train of photons [33]. (d) A time trace
for τEIT = τb/2 and Rin = 3/τb, which are closer to the parameters
accessible in current experiments and in this work. Instead of well-
separated humps, the intensity exhibits oscillations with the peaks
corresponding to the photon humps in (c).

EIT and propagate through the medium without loss, while
other photons are scattered at the beginning of the medium
[depicted by the solid wavy red arrow in Fig. 1(b)]. For high
enough incoming rates Rin � 1/τb (where τb = rb/vg is the
blockade time and vg the EIT group velocity in the medium),
a probe pulse shape with a well-defined beginning (sharp
enough) can give rise to a train of single photons. The basic
idea behind this train of photons is as follows. The first photon
at the leading edge of the pulse forms a polariton in the begin-
ning of the medium, r = 0, while a second photon can enter
the medium only after the first polariton has propagated at
least rb into the medium, r > rb. Hence, for higher Rin, there is
a high probability that one or more photons are scattered at the
beginning of the medium leading to a projective measurement
of the position of the polariton inside the medium, making this
polariton shorter in time and hence wider in frequency. Due to
the finite width of the EIT transparency window, these high-
bandwidth polaritons [33] can decay in the medium [depicted
by the dashed wavy red arrow in Fig. 1(b)], which puts
additional constraints on ODb and OD required to observe an
outgoing train of single photons [33].

In this work, we experimentally demonstrate the time
traces and correlation functions of the transmitted field in the
regime of high incoming photon intensity and strong interac-
tions. Up to now, Rydberg blockade physics in the dissipative
regime resulted in the study of antibunching for photons
separated by times smaller than the blockade time τb, |t | < τb.

Here, we show experimentally and explain theoretically quali-
tatively new signatures of the blockade in the two-photon cor-
relation function g(2)(τ ) as well as in the time traces R(t ). In
particular, Rydberg blockade leads to a local maximum in R(t )
and g(2)(τ ) outside the blockade time τb. This hump in output
intensity [shown schematically in Fig. 1(d)] and correlations
comes from the interplay of blockade physics, the finite width
of the EIT transparency window, and the temporal shape of the
input pulse. With this in mind, we extend the serialized hard-
sphere model introduced in Ref. [33] to include the temporal
shape of the incoming photons as well as the decoherence of
the Rydberg level. We show good agreement with output time
traces predicted from exact numerics based on matrix product
states (MPSs) [36]. We explore this regime experimentally
and find qualitative signs of what the theories predict. Both
the theoretical model and MPS numerics differ quantitatively
from the experimentally observed time traces and correlations
for high incoming photon rates. We believe that these devi-
ations between theory and experiment are due to Rydberg
pollutants, i.e., additional Rydberg excitations (in |s〉 and other
nearby Rydberg states) which are created by scattered probe
photons. In order to capture the effect of pollutants, we de-
scribe a simple toy model for the dynamics of the pollutants in
the system. These pollutants also prevent us, as well as other
rEIT experimenters, from seeing multiple subsequent humps
in correlation functions [Figs. 1(c) and 1(d)]. In particular,
pollutants prevent us from accessing higher rates for which
humps would be more pronounced and therefore would lead
to an output train of single photons. We believe that the
understanding provided by the present paper will serve as
the basis for future work on (a) the suppression of pollutant
creation and (b) the efficient removal of them once created.
This in turn might enable the observation of photon trains.

The remainder of the paper is organized as follows. In
Sec. II, we present two modeling approaches describing dis-
sipative Rydberg EIT at large input rates. We first present
a hard-sphere serialized model, then a model based on ma-
trix product states, and finally compare their predictions. In
Sec. III, we present experimental results, compare them with
the theory, and discuss measurements suggesting that in order
to explain observed data we need to include pollutants. In
Sec. IV, we explain in detail the source and impact of the
pollutants, as well as describe a numerically tractable toy
model capturing the relevant physics. This leads to the quan-
titative agreement between the theory and the experiment. We
summarize our work and give an outlook in Sec. V.

II. THEORY OF DISSIPATIVE RYDBERG EIT

The propagation of resonant light through a medium de-
pends on the level structure of the atoms constituting the
medium. In particular, a resonant two-level medium with
levels |g〉 and |e〉 yields exponential attenuation of the trans-
mission intensity by a factor T = exp(−OD). Adding a third
level |s〉 and an appropriate control field makes the medium
transparent, as interference suppresses population in |e〉, and
a dark-state polariton with slow group velocity is generated.
This effect is known as electromagnetically induced trans-
parency (EIT) [43].

Let us now consider the propagation of photons through
a dense medium of interacting three-level atoms under EIT
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conditions. Figure 1(a) shows the level structure of the atoms
with levels |g〉, |e〉, and |s〉. The control field has a Rabi fre-
quency � (it takes time π/� to do a π pulse), and γ is the full
width of the level |e〉. The output intensity can be calculated
using the following theory for dissipative dynamics developed
in Refs. [32,33,44]. A single photon incident under EIT con-
ditions is converted into a Rydberg polariton (approximately
a Rydberg spin wave) moving at a reduced group velocity
vg. In the presence of strong Rydberg-Rydberg van der Waals
interactions of the form C6/r6, this Rydberg polariton destroys
EIT for any subsequent photon incident within a blockade
radius rb = [C6( 1

2γEIT
+ 1

γ
)]1/6, where γEIT = �2

2γ
is the single-

atom EIT linewidth [26]. In the limit of large blockaded
optical depth ODb = OD rb

L , this leads to strong dissipation
and absorption of all photons incident within a blockade time,
τb = rb/vg = ODb/(2γEIT), after the formation of a polariton.
This is shown schematically in Fig. 1(b). Ideally, this would
lead to the conversion of a continuous-wave input into a train
of single photons separated in free space by the decompressed
blockade radius, rbc/vg. We described the main idea behind
this phenomena in the introduction. However, the propagat-
ing polariton may decay because of the finite width of the
EIT window, which washes out any spectral features sharper
than 1/τEIT = γEIT/

√
OD. In other words, τEIT quantifies how

smooth features of the input probe pulse in the temporal
domain have to be to propagate and to not be washed out in
the medium. Based on this intuition, the approximate output
intensity (within the so-called hard-sphere model) may be
obtained through a serialized approach in which we first
determine the output due to dissipative Rydberg-Rydberg
interactions for perfect single-polariton EIT conditions, and
then frequency-filter the output with a filter of width 1/τEIT

[33]. In contrast, the exact simulation using MPS does not rely
on such an ansatz in treating the single-polariton EIT physics.
We will now describe the hard-sphere and the MPS models in
more detail.

A. Hard-sphere serialized model

In Ref. [33], Zeuthen et al. develop a hard-sphere model
to calculate outgoing photon rates and pulse shapes for in-
coming photon pulses that are longer than the medium. The
basic assumptions in this model are as follows. Rydberg
interactions are approximated by a hard-sphere potential of
size rb. The medium is considered to be homogeneous with
sharp boundaries, and polaritons only form in the beginning
of the medium. Under these assumptions, it is possible to
compute the output photon rate and the output time trace for
a Poisson-distributed input at constant average input photon
rate. Throughout the paper, by the time trace we mean the
ensemble-averaged time trace, i.e., the average over many
experimental realizations of time traces. At perfect EIT, be-
cause of the hard-sphere dissipative interactions, the output
rate for increasing incoming rate is saturated by one photon
per blockade time. The finite EIT window can be accounted
for by considering the effect of the scattered photons: Once the
first polariton is formed at the beginning of the medium, the
next photon arriving within a blockade time τb of formation
is scattered. This projects and localizes the first polariton
wave function, with the time width of the polariton being

FIG. 2. Time traces of the output pulse for a uniform cloud with
an input Tukey pulse of the same shape as the one used in the
experiment. Comparison between MPS (dashed lines) and effective
hard-sphere model (solid lines) without free parameters. The atomic
cloud is taken as uniform in both models with L = 47.2 μm, chosen
to be consistent with the length of the experimental cloud (described
in Sec. III). Other parameters are OD = 33, γ /2π = 6.065 MHz,
�/2π = 10 MHz, and C6/2π = 1.87820 × 1014 Hz μm6 for the
n = 111 Rydberg state. Decoherence in the Rydberg level with full
width γss/2π = 40 kHz, which we extract from the transmission
at low incoming rates. MPS simulations used N = 60 and bond
dimensions D = 80, 120, and 160 for rates 0.6 ph/μs = 0.078/τb,
4.2 ph/μs = 0.55/τb, and 10.5 ph/μs = 1.4/τb, respectively (here
ph stands for photons). Note good agreement at initial times. Also
note that the agreement is better for lower incoming rates than for
higher ones. We do not see multiple humps because the blockade
time τb = 0.13 μs and filtering time τEIT = √

OD/γEIT = 0.11 μs
are comparable, and because the rise time of the pulse trise = 0.8 μs
is much greater than τb.

determined by the timing of the first scattering event. This
means that higher input rates of photons will make the polari-
ton wave function more localized in time. If the narrow polari-
tons do not fit in the EIT window (given by 1/τEIT), they may
decay. This decay is governed by single-polariton physics, and
we account for the EIT losses by using a Gaussian filter [33].
This model was shown to be accurate in the limit of large ODb,
where the predicted transmission rate was compared with
exact numerical simulation of two-photon dynamics [33]. We
review the details of this approach in Appendix B.

The model discussed above assumes a constant input rate.
Here, we extend this model to account for arbitrary input pulse
shapes. We consider the input photons to be well described
by a coherent state, and the temporal shape is given by a
real envelope h(t ) satisfying

∫
dt h2(t ) = 1. For the sake of

brevity, we relegate technical details to Appendix B. In the
Tukey pulse shape h(t ), which is used in the experiment, there
is a ramp over the time trise followed by a constant input rate.
We first calculate the intensity G(1)(t ) = 〈E†(t )E (t )〉 taking
into account only blockade without EIT filtering. Then, we
calculate the off-diagonal correlation function G(1)(t, t ′) =
〈E†(t )E (t ′)〉 and express it in terms of intensities G(1)(t ).
Finally, we convolve G(1)(t, t ′) with a Gaussian filter function,
which enables us to estimate the effect of a finite EIT window
and leads to the intensity profiles shown in Fig. 2.
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In the regime of trise � τb, the output intensity predicted
by the hard-sphere model is a train of single photons only in
the limit of large input rates Rin � 1/τb and large ODb. In
terms of timescales, the condition on large ODb corresponds
to a large blockade time, τb � τEIT. Physically, this condition
means that the photons in the train, which are necessarily
each shorter than τb, fit into the EIT transparency window,
which has width 1/τEIT. We define the ratio of these two
timescales, ν = τb/τEIT = ODb/2

√
OD, as a parameter quan-

tifying whether it is possible to observe the photon train. In
this scenario, G(1)(t ) would exhibit pronounced oscillations
as a function of time, as shown in Fig. 1(c), where we plot the
predicted time trace for τEIT = τb/5, i.e., ν = 5. As long as
ν > 1 and Rin is appropriately chosen, the hard-sphere theory
predicts oscillations in G(1)(t ) with the separation of the peaks
approximately given by τb. However, in the experimentally
relevant regime, we have ν ≈ 1. In this case, if we attempt
to raise Rin above 1/τb to obtain the train, any oscillations in
G(1)(t ) are washed out due to strong filtering.

Moreover, we would like to remark on the optimal OD for
the train of photons. At first glance, one could say that τEIT is
proportional to

√
OD and therefore for small OD the parame-

ter ν � 1, and hence, small OD is more preferable. However,
the physics involved here is a little more subtle. In order for
our scheme to work we require additionally that ODb � 1
(so that a photon within rb distance from the other photon
is scattered). Moreover, we consider L � rb and therefore
OD � ODb (for L < rb one needs to rewrite our conditions
by, e.g., replacing ODb by OD). Therefore, by definition a
too small OD cannot satisfy the required conditions. From the
expression for ν, we see in fact that in order to achieve large
ν it is best to have OD = ODb as large as possible.

An interesting feature observed in the predicted time traces
of the output intensity (Fig. 2) is the appearance of a hump at
the start of the output time trace for larger input photon rates,
in spite of the strong EIT filtering discussed above. This hump
results from the interplay of two effects present for the param-
eters and pulse shapes relevant to the experiment: First, the
incoming intensity |h(t )|2 increases with time which naively
would lead to the monotonic increase of the outgoing inten-
sity. Second, the impact of EIT filtering is time-dependent
because it depends on the input photon rate proportional to
|h(t )|2; therefore, for greater h(t ), each polariton is more
localized due to the position-projecting scattering of photons
at the beginning of the medium. In summary, the interplay
of rising incoming intensity and stronger filtering at later
times may (and for our parameters does) lead to a maximum
in the outgoing intensity around the time when the ampli-
tude of the output pulse settles to an approximately constant
steady-state value (i.e., around approximately trise + τd , where
τd is the time delay of the transmitted pulse compared to the
reference pulse). For a slower rise of h(t ) (i.e., larger trise),
the hump gets smaller. Note that the hump in the time trace
indicates the existence, for a continuous-wave experiment, of
an optimal input photon rate where the outgoing photon rate
is maximum. One indeed sees a local maximum when plotting
the outgoing steady state as a function of the input rate where
the interplay between dissipative interactions and EIT gives
rise to a hump [33]. This is also consistent with experimental

FIG. 3. As a function of the input photon rate, the figure shows
(a) the experimentally measured output photon rate in the steady-
state region of the output pulse [see Figs. 4(c) and 4(d)], (b) trans-
mission of the weak Gaussian test pulse through the medium, and
(c) the number of detected ions. Lines connecting points are only a
guide to the eye.

observations (see Fig. 3); however, the involved physics is
more complex as we will discuss in Sec. III.

B. Detection of Rydberg pollutants

As a corollary, one might consider what happens at the
end of the pulse. In this region, the incoming pulse rate Rin(t )
decays to zero in a time ∼tfall. Using the same logic of weaker
filtering for smaller intensities, one expects the presence of a
hump at the end of the output pulse. However, as we discuss in
Sec. III, the experimental measurements indicate the absence
of any such hump at the end of the pulse. This leads us
to conjecture the role of pollutants, which explains both the
amplification of the hump in the beginning and the lack of
a hump at the end of the output pulse. We discuss a simple
model for the pollutants and its consequences in Sec. IV.

C. MPS method

In addition to the hard-sphere model described in the
previous section, we can also numerically obtain the output
time traces using a novel time-evolution technique based on
MPSs introduced in Ref. [36]. This method, presented in
greater detail in Appendix C, relies on mapping the Maxwell-
Bloch equations describing the original atomic ensemble to
the propagation of a quantum field through a one-dimensional
waveguide coupled to atoms. One key to this mapping is
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the use of a much smaller number of atoms (N � 100) in
the waveguide system (relative to the true number of atoms),
while tuning the system parameters to ensure that macro-
scopic properties such as the optical depth and optical depth
per blockade radius remain the same. Furthermore, all of the
field properties are expressed in terms of the input field and
correlation functions of the atoms alone via an input-output
relation, while the dynamics of the atoms interacting with
the field are encoded in a quantum spin model. As a final
step, the dynamics are then solved using the MPS ansatz. The
ansatz relies on the fact that, in many systems, the complete
Hilbert space, which grows exponentially with atom number,
is not necessary for a faithful representation of the physical
states that occur, and, instead, a substantially restricted set of
states, those formed from matrix products, is sufficient. This
method has been extremely successful in studying condensed-
matter many-body problems that would be intractable using
direct diagonalization, and in Ref. [36] was applied to light
propagation in atomic ensembles. Here we extend the method
in Ref. [36] to propagate the density matrix of the rEIT system
in time, allowing for efficient numerical simulation of the
highly dissipative system we study here.

The main benefit of the MPS method is that it allows
a quantitative description beyond the hard-sphere model.
Specifically, the nature of EIT in the Rydberg system is
captured from first principles by using three-level atoms [as
shown in Fig. 1(a)] directly in the simulation, rather than
applying an approximate filter function to the photon wave
packet. Furthermore the full spatial form of the Rydberg inter-
action can be approximated to arbitrary precision by a sum of
exponential interactions that are efficiently represented within
the MPS method. Other details such as inhomogeneity in the
atomic cloud, arbitrary time dependence of the input beam,
and losses due to spontaneous emission and pure dephasing
can also be implemented directly (see Appendix C). This
allows us to check the results of the more intuitive hard-sphere
model and to make qualitative comparisons with experimental
results. Furthermore, we expect that this method will also be
useful in other regimes of rEIT where effective models are not
available.

D. Comparison between the MPS method and
the hard-sphere model

Figure 2 shows time traces from the MPS and the hard-
sphere models for a uniform atomic cloud with all other
parameters as in the experiment. We fix OD and take L =
47.2 μm. We see good agreement between MPS and the
hard-sphere model for small rates and/or initial times t < trise.
For higher rates, both methods agree qualitatively, with MPS
giving a more pronounced hump. Note that without the use
of any fitting parameters, the absolute suppression of the
incoming photon rate Rout/Rin in steady state is predicted by
both theories to be on a nearly equal level (on the order of
10%). While in this sense the two theories agree well at the
order-of-magnitude level, their predictions show appreciable
relative deviations as seen in Fig. 2. This confirms that we
can use the intuitive picture based on the hard-sphere model
to explain qualitatively, but not quantitatively, MPS numerics
and experimental data.

Note that due to trise � τb, the hump in output time traces is
mostly due to the nonmonotonic relationship between steady-
state input and output intensities, postulated in Ref. [33] and
discussed in Sec. III A. The visibility of a train of photons
depends on ν, which in our case is ≈1, making only the
first hump in the train potentially visible. Furthermore, since
trise � τb, there is a large uncertainty in when the train actually
begins, which further washes out the hump associated with the
first photon in the train. As a result, the first photon in the train
has only a minor contribution to the experimentally observed
hump.

III. EXPERIMENT

Next, we review the technical details of our experiment.
We start a measurement by preparing 8 × 104 atoms of
87Rb trapped in an optical dipole trap, producing a cigar-
shaped atomic cloud at 4 μK with the density described by
n(z, R) ∼ exp(−R2/2σ 2

R − z2/2σ 2), where σR = 6.5 μm and
σ = 23.6 μm characterize radial and longitudinal direction.
All the atoms are optically pumped into the initial ground
state |g〉 = |5S1/2, F = 2, mF = 2〉. We focus a weak 780 nm
probe laser beam (Gaussian beam waist w0,probe = 6.7 μm)
into the cloud [Fig. 4(a)], coupling the ground state |g〉 and
the intermediate state |e〉 = |5P3/2, F = 3, mF = 3〉. To es-
tablish EIT in the system, we add a strong 480 nm control
laser beam (Gaussian beam waist w0,control = 14 μm) cou-
pling the intermediate state |e〉 and the Rydberg state |s〉 =
|111S1/2, mJ = 1/2〉. The control Rabi frequency is measured
to be �/2π = 10 MHz. From this, the Rydberg blockade
radius is calculated to be rb = 18.7 μm [26]. For these pa-
rameters, we observe a time delay τd ≈ 0.31 μs of the weak
probe pulses, from which we estimate the optical depth of our
medium to be OD = 33.

The pulse sequence of a single experimental run is depicted
in Fig. 4(b). To investigate the probe propagation at high pho-
ton rates, we send a Tukey-shaped probe pulse (2 μs uptime
and 0.8 μs rise and fall times) with a varying amplitude into
the medium, while the control light is on to maintain EIT
conditions. The transmitted probe light is collected on a com-
bination of four single-photon counting modules (SPCMs).
Our key experimental observations are the deformation of
the probe pulse shapes transmitted through the cloud and the
strong dependence of this deformation on the input probe
photon rate. Two examples for intermediate and high photon
rates are shown in Figs. 4(c) and 4(d), respectively. In both
cases, we observe the appearance of an initial hump in the
transmitted pulses, the width of which is on the order of τb.
At a very low input photon rate of 0.6 ph/μs, this hump is
completely absent [Fig. 6(a)]. At this rate, we only observe
weak absorption caused by the Rydberg blockade and by the
decoherence of the Rydberg level. We also observe the time
delay of the transmitted pulse compared to the reference pulse.
Besides the initial hump, we are interested in the steady-state
transmission of the outgoing probe light. For this, we consider
the orange-shaded regions indicated in Figs. 4(c) and 4(d),
where the transmission becomes approximately constant, as
it does over a wide range of input photon rates we measure.
For higher photon input rate, we also observe a slow decay
of transmission in this region, as shown in Fig. 4(d). The
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FIG. 4. (a) Schematic of the experimental setup showing the
probe and control beams focused into the atomic cloud, as well
as the detectors for probe photons (SPCMs) and ions (MCP).
(b) Illustration of the pulse sequence for a single experimental
run. (c) and (d) Output pulse shapes (solid lines) observed in the
experiment for input photon rates Rin = 4.2 ph/μs = 0.55/τb and
Rin = 71.8 ph/μs = 9.3/τb, respectively. Dashed lines depict the
input pulses, whose values are divided by factor of 10 in (c) and
100 in (d) for easier viewing. Also shown are the input and output
pulses of the weak Gaussian test pulse following the main probe
pulse. The main distortion observed in the outgoing probe pulses is
the appearance of the initial hump, which becomes more pronounced
for higher input photon rates. The orange-shaded regions indicate the
timing window we analyze to obtain the steady-state outgoing photon
rate.

origin of this effect is discussed in the next section. Figure 3(a)
shows the extracted steady-state transmission of the Tukey
pulse as a function of the incoming rate. We find that after
reaching a maximum for an input rate of Rin ≈ 3 ph/μs, the
output photon rate saturates to a constant value [depicted by
the orange-shaded time window in Figs. 4(c) and 4(d)]. Within
this time window, we calculate from the experimental data
the second-order correlation function g2(τ ) for the outgoing
photons, as shown in Fig. 5. At low input photon rates, we
find the previously observed antibunching at τ = 0 caused
by the Rydberg-blockade-induced nonlinearity of the medium
[11]. For higher input photon rates, the g(2)(τ ) correlation
functions exhibit two striking features. First, the width of the
antibunching dip shrinks, while at the same time we observe
maximal bunching [g(2)(τ ) > g(2)(0)] of photons at separa-
tions τ approximately equal to the blockade time. Intuitively,

FIG. 5. Second-order correlation function measured for differ-
ent photon rates between 0.2 ph/μs = 0.026/τb and 10.1 ph/μs =
1.3/τb within the time window marked by orange shading in Fig. 4.
The figure suggests that the height of the bunching feature saturates
at high input rates. We confirmed that the MPS toy model reproduces
qualitatively this saturation for the chosen parameters, but since the
model does not provide a more quantitative description of the system
and we do not have measurements for the higher input rates, we
refrain from showing and discussing in detail these results.

these effects emerge due to the tighter packing of the Rydberg
polaritons at higher rates, and due to the rate-dependent
creation of pollutants. Before we compare in Sec. III A our
experimental data to the results of MPS numerics introduced
in Sec. II, we briefly discuss the experimental observation of
Rydberg pollutants in the optical medium and how they affect
our experiment.

For the highest photon rates probed in our experiments,
we observe that the outgoing probe photon rate, instead of
reaching a steady-state value after the initial hump, continues
to decrease on a timescale unrelated to the width of the
hump [Fig. 4(d)]. We trace this effect back to the creation of
stationary Rydberg excitations that are not accounted for in
the theoretical models introduced in Sec. II. We quantify the
number of these pollutant atoms and their effect on the probe
photon transmission in two ways [Fig. 4(b)]. After each Tukey
pulse, we probe the medium with a second Gaussian-shaped
probe pulse (στ = 0.5 μs with constant peak amplitude of
2.4 ph/μs) to measure how the unwanted Rydberg excitations,
created during the Tukey pulse and remaining in the cloud
after the initial pulse has passed, reduce the transmission of
this weak test pulse. Second, after the end of both pulses, we
switch off the control light field and immediately ionize any
remaining Rydberg atoms. The produced ions are collected
on a microchannel plate detector (MCP). The intensity of the
Gaussian test pulse is chosen so low and its length so short
(compared with the lifetime of the Rydberg states on the order
of ms) that the number of detected ions is unchanged by this
test pulse.

The two observables characterizing the Rydberg pollutants
which we extract from these additional measurements, namely
the weak test pulse transmission and the number of detected
ions after field ionization, are shown in Figs. 3(b) and 3(c),
respectively, as a function of the incoming probe photon rate.
Specifically we find that, together with the growing number
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FIG. 6. Comparison of the experimental photon output with the
output simulated using MPS. (a)–(c) Time traces for various input
photon rates: (a) 0.6 ph/μs = 0.078/τb, (b) 4.2 ph/μs = 0.55/τb,
and (c) 10.5 ph/μs = 1.4/τb. From (a), we see that the reference
pulse is well described using a Tukey function. (d) Steady-state
output as a function of the input rate. Experimental data and theo-
retical curves are shown with solid and dashed lines, respectively.
In (a)–(c) blue (dark) curves indicate input pulses while the orange
(light) ones depict the output. The input pulses indicated with ÷10
have been divided by a factor of 10 for easier viewing. The Rydberg
interaction is modeled by a sum of five exponentials as described
in Appendix C 1. In (a)–(c), MPS density matrix simulations use
time step 0.01/γ , N = 60 effective atoms, and bond dimensions D
equal to (a)–(b) 100, (c) 180. The steady-state results in (d) are from
quantum jump MPS simulations with time step 0.01/γ , number of
effective atoms N = 70, and bond dimensions dependent on the input
rate as shown in Fig. 11 in Appendix C 2. In the experimental results
shown in (d) the error bars are plotted but are smaller than the data
points.

of detected ions, the test probe pulse transmission is reduced,
meaning that the pollutant atoms affect the propagation of
probe photons through the polluted medium.

It is important to note that between the Tukey pulse and
the field ionization, the control light is left on for multiple
microseconds, which should depump stationary Rydberg exci-
tations created during the probe pulse from the initial |s〉 state.
The fact that we still find a significant number of ions suggests
that these Rydberg atoms have undergone a state change. Our
field-ionization voltage is sufficiently high to ionize Rydberg
states with n > 50, ensuring that we ionize atoms over a wide
range of states near the original |s〉 state. The claim that many
of these atoms have transitioned to a state that interacts with
|s〉 only weakly (or have moved outside of the control and
probe beams) is supported by the relatively weak suppression
of test pulse transmission they cause. A stationary atom in
state |s〉 would block a significant part of the atomic cloud

(ODb > 5), resulting in strong attenuation of probe photons.
Finally, we notice that the ion number grows with Rin faster
than linearly, which suggests that it is, at least partially, a two-
(or more) body effect.

We discuss the possible origins of these pollutants in
Sec. IV, where we also introduce an effective model to sim-
ulate their influence on pulse propagation. Figure 3 suggests
that this pollution effect becomes significant for large input
photon rates Rin > 1 ph/μs. To further quantify when this
pollution becomes important, in the following section, we
compare our experimental observations to the MPS theory
developed in Sec. II.

Comparison of theory and experiment

To compare our experimental results quantitatively with
theory, we use MPS simulations. The flexibility of the MPS
model allows us to treat quantitatively crucial aspects of the
experiment, such as the spatial dependence of the Rydberg
interaction and the nonuniform cloud density n(z) along the
probe beam direction z (see Appendix C for numerical de-
tails). Executing this model with the experimental parameters,
we show in Fig. 6 the comparisons with the experimental
results for time traces at various input rates, as well as the
steady-state output rate as a function of input rate.

In the time trace shown in Fig. 6(a) and for low input rates
in the steady state [Fig. 6(d)], we see excellent agreement
between the experiment and the MPS model. However, at
higher input rates [Figs. 6(b) and 6(c) and part of Fig. 6(d)],
we see the presence of a much larger initial hump and lower
steady state in the experimental output relative to our numer-
ics. Furthermore, in Fig. 6(c), a second hump at the end of the
output pulse is visible in the MPS simulation, but is absent in
the experiment. This suggests that for these higher rates, the
pollution described above plays a role in determining both the
size of the initial hump in the output pulse and the strength of
the steady-state signal.

The pollution also plays a role in explaining the relation
between g(2) measured in the experiment and the correspond-
ing MPS simulations. In Fig. 7, we show this comparison
between the theory prediction and the experimental obser-
vations for three different input photon rates. We see that
the theory reproduces the qualitative feature of hump size
increasing with input rate; however the humps are much larger
in the experiment, suggesting once again that pollution is
non-negligible at high input rates.

IV. POLLUTANTS

While the results of MPS simulations presented in the
previous section qualitatively reproduce the experimentally
observed effects both in the probe pulse shape and in the
steady-state correlation functions, the lack of quantitative
agreement suggests that the Rydberg pollutants we register in
the experiment may have a strong effect on the probe pulse
transmission even at low photon rates �4 ph/μs, which is
lower than what Figs. 3(b) and 3(c) may suggest. On the other
hand, the relatively weak reduction of the test pulse transmis-
sion points toward the fact that the Rydberg pollutants have
undergone a Rydberg state change and/or that there exists
a process that removes them from the path of control and
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FIG. 7. Experimental second-order correlation function (solid)
compared with its MPS-simulated counterpart (dashed) for different
input photon rates. Experimental parameters used in MPS simula-
tions are as in all other figures except γss/2π = 120 kHz, because
the g(2) data were taken in slightly different experimental conditions.
The Rydberg interaction is modeled by three exponentials, as de-
scribed in Appendix C 1. MPS density matrix simulations used time
step 0.01/γ , N = 60, and bond dimension D = 140 for input rates
0.4 ph/μs = 0.052/τb and 2.9 ph/μs = 0.38/τb, and D = 180 for
the input rate 7.7 ph/μs = 1/τb.

probe beams. As a possible explanation for the initial source
of pollutants, we suggest radiation trapping [45] of scattered
probe photons as an initial creation mechanism of Rydberg
pollutants, followed by interaction-induced antiblockade and
Rydberg-atom collisions [46,47]. Note that, based on our es-
timates, the two latter processes alone (i.e., without radiation
trapping) lead to the pollutant-creation rates which are too low
to explain the observed physics.

In this model, the pollutant creation proceeds as follows.
Due to the finite extent of the cloud and the large waist of the
control beam, photons scattered out of the probe mode do not
necessarily escape the medium, but can instead be reabsorbed
in state |s〉. Indeed, we estimate that our atomic cloud has a
transverse optical depth of ∼13 at its center, and given that
optical depth is a rough estimate of how many times a photon
is scattered before leaving the medium, we expect that the
lifetime of scattered photons could be enhanced by a factor
of order 10. This radiation trapping leads to additional atoms
in |s〉 that are not part of polaritons propagating in the probe
direction, but are however able to block the probe photon
transmission. This effect in itself is not sufficient to explain
the observation of ions, as even taking into account radiation
trapping, such |s〉-state excitations would still be expected to
exit the system before the ionization pulse. Instead, through
this process, atoms in |s〉 with all possible angles between
pairs of them are created. In this situation, both state-changing
Rydberg collisions as well as direct antiblockade excitation of
other Rydberg levels can occur on the microsecond timescale
of the experiments [46,47]. Atoms in these additional states
are not coupled to the control light and therefore are not
de-pumped. Summarizing, the radiation trapping gives rise to
both (a) the creation of the pollution atoms in the |s〉 state
(which ultimately leave the medium) and (b) the creation

FIG. 8. (a) Illustration of radiation trapping of scattered probe
photons in the atomic cloud. Reabsorption of probe photons is
possible within the larger control beam. The two three-level atoms
that we zoom into schematically represent a process where the left
atom emits a photon (red arrow), which is then absorbed by the
right atom. (b) Level scheme for the effective model we introduce
to incorporate the pollutant atoms in our numerics.

of stationary pollutant Rydberg states (other than state |s〉),
which we observe as ions after field ionization [Fig. 4(c)].

Effective pollutant model

Simulation of the full pollution process discussed above
is prohibitively difficult. Specifically, the MPS model that
we have used is only efficient in describing one-dimensional
propagation. Treatments of the full scattering problem in three
dimensions, so that radiation trapping is fully accounted for,
are possible but currently only at the level of one or two total
atomic excitations in the the system [48–50]. Furthermore,
taking into account the full family of Rydberg states and
interactions would lead to an explosion of the computational
Hilbert space.

Instead, we develop here a toy model that includes the basic
features of the pollution process. We do so by modifying the
existing MPS model to include an additional atomic “pollu-
tant” state |p〉. This state is populated by the decay from state
|s〉 at rate γsp as shown in Fig. 8 and is assumed to induce the
same Rydberg blockade as atoms in state |s〉 (in future work, it
may be interesting to consider extensions where states |p〉 and
|s〉 have different blockade radii [51]). The population of state
|p〉 can then decay back to the ground state at rate γpg. While
state |p〉 is not meant to represent any specific Rydberg state,
we take it as a proxy for the pollution process. Atoms in state
|p〉 could represent atoms in state |s〉 that are radiation-trapped
outside of the probe beam (but still inside the control beam) or
atoms that have changed to new Rydberg states that still have a
similar blockade radius. The decay γpg then takes into account
two phenomena: (a) a final escape from the control field of the
radiatively trapped |s〉 excitations and (b) decay of the other
Rydberg pollutant states (note that since the population of the
ground state in the MPS model is essentially arbitrary, this
decay can also represent decay to other long-lived Rydberg
states that interact with |s〉 only weakly).

To estimate the possible values of γsp due to the radiation
trapping we performed the following analysis: We place a
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FIG. 9. (a) Population decay in function of time for a single excitation placed at the center of the elongated 3D atomic cloud. For details
see main text. (b) Comparison of experimental data for 7.1 ph/μs with MPS pollution model for different decay rates. The labels in the
legend denote {γsp, γpg}/(2π 100 kHz). (c) and (d) Intensity output time traces from the experiment, MPS pollution model, and standard
MPS (depicted by blue-solid, orange-dashed, and green-dot-dashed lines, respectively), for input rates of (c) 4.2 ph/μs = 0.55/τb and
(d) 7.1 ph/μs = 0.92/τb. The pollution toy model with γsp/2π = γpg/2π = 100 kHz shows better agreement with the experimental time
traces than the original MPS model with γss/2π = 40 kHz. Correlation function g(2) for (e) 3.0 ph/μs = 0.39/τb and (f) 7.7 ph/μs = 1/τb for
the toy model with pollution decay rates as above, compared with experiment and the original MPS model with γss/2π = 120 kHz. All other
parameters as in the rest of this paper. The Rydberg interaction is modeled by three exponentials as described in Appendix C 1. MPS density
matrix simulations used time step 0.01/γ , N = 60, and bond dimensions (c) (original) D = 100, (pollution) D = 120; (d) (original) D = 140,
(pollution) D = 180; (e) (original) D = 140, (pollution) D = 200; (f) (original) D = 180, (pollution) D = 260.

single |s〉 excitation at the center of the 3D atomic cloud
and observe how long it takes it to decay with the control
field, using a full coupled-dipole simulation [49,50] involving
50 000 randomly distributed atoms with an average density
corresponding to experimental conditions. The results are
shown in Fig. 9(a), where we plot the total |s〉- and |e〉-state
populations in function of time. For comparison we plot
the exponential decay exp(−γfitt ) with γfit/2π = 315 kHz,
which closely matches the decay. Obviously, having a single
excitation at the center of the cloud is an extreme case, but
this estimate justifies the possibility that the radiation trapping
plays a role in the experiment. Moreover, we would like to
note that the simulation of that many atoms is a significant
result in itself: the number of simulated atoms is more than
10 times greater than previously done.

In Figs. 9(a) and 9(b), we show time traces generated
by the MPS model with and without pollution for two dif-
ferent input photon rates and compare these time traces to
the experimental data. Choosing decay rates of γsp/2π =
γpg/2π = 100 kHz, the modified MPS model provides much
closer agreement with the experimental data than the original
simple MPS model. While γsp can be extracted from the
probe photon rescattering in the full 3D numerics simulating
radiation trapping, we stress that γpg is determined by roughly

optimizing the match between theory and experiment. As
we discuss above, we so far only have suggestions for the
Rydberg-state-changing dynamics that lead to this rate.

Despite the simplicity of this toy model, we see that it can
explain the much larger initial humps seen in the experimen-
tal time traces. Furthermore, in the g(2) correlation function
shown in Figs. 9(c) and 9(d), the addition of pollutants to the
theory also increases the size of the hump; however in this
case for the parameters chosen the hump becomes larger than
that seen in the experiment. Note that we have not performed
any exhaustive optimization of the decay rates giving the best
fit to the data. The reason is twofold: First, the MPS numerics
is numerically expensive. Second, we treat this analysis as a
toy model, and believe that further understanding is necessary
before a more quantitative study can be undertaken.

We note that the appearance of the hump in the correlation
functions can be understood intuitively: The probability of
creating at least one pollutant rises with the number of photons
propagating through the medium. Once a pollutant is created,
it leads to strong absorption of the subsequent incoming
photons. For enough sharp and intense incoming pulses of
light, this leads to the hump in g(1). To understand the hump
in g(2), notice that the fact that we detected a photon at time t
means that the pollutants did not impact its transmission. Due
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to the blockade, only photons after time t + τb can enter the
medium and possibly create the pollutants. Therefore, using
an analogous argument to the g(1) case, we expect the hump in
g(2)(τ ) at τ > τb.

The success of this toy model leads us to conclude that
pollutants do indeed play a major role in the observed output
field, and may be the dominant determiner of the size of the
humps we see both in the time traces and in g(2). Meanwhile,
this simple model neglects effects that are likely present in
the system, such as the potential intensity dependence of γsp

and γpg. The description of such effects requires a deeper
understanding of which Rydberg processes take place and lead
to pollution. Given the importance of these pollution effects
at high intensity, we hope that this work will motivate further
experimental and theoretical studies of this phenomenon and
how it may be controlled and harnessed for applications.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed the physics of transmission
of photons at high intensities through a Rydberg medium
under the conditions of electromagnetically induced trans-
parency. We have utilized a phenomenological model that
produces reasonably good qualitative predictions for the time
trace of the output intensities as well as for the steady-state
output rate. In addition, we utilized numerical MPS tech-
niques to obtain a quantitative simulation of the system. The
results of the two theoretical models qualitatively agree with
each other. The discrepancy between these simulations and
the observed experimental data points to the presence of pollu-
tants. We extend the MPS model to include a simple treatment
of pollutants consisting of an additional level. We tune this
model to provide a better match to the experimental results.
Our work motivates further investigation of high-intensity
rEIT. It highlights the importance of the role pollutants play
in this strongly interacting many-body system, a role that
requires additional theoretical and experimental studies and
that may eventually be harnessed for applications.
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APPENDIX A: EXPERIMENTAL DATA
ACQUISITION SEQUENCE

The starting point for all experiments is an ultracold cloud
of atoms contained in an optical dipole trap as described
in Sec. III. After the initial cooling and trapping phase, the
Rydberg excitation sequence as shown in Fig. 4(b) is repeated
1000 times before the remainder of the cloud is released and
a new sample is prepared. At the end of each repetition the
field ionization pulse removes any Rydberg excitations from
the system. This ensures that each experiment repetition starts
without any previous Rydberg pollutants present. Since this
removes a certain number of atoms in each repetition, the total
number of atoms in the trap goes down during one iteration of
1000 shots. While this is irrelevant for the low probe photon
rates, it becomes noticeable for the higher input rates where
larger numbers of pollutants are created and destroyed after
each shot. To counter this effect, we increase the transverse
trap confinement during the sequence, which brings atoms
from outside the probe beam into the central region of the trap,
so that the optical depth of the medium remains constant for
all repetitions.

APPENDIX B: EXTENSIONS OF THE
HARD-SPHERE MODEL

In this Appendix, we first introduce the technical details
of the hard-sphere model discussed in Ref. [33] and then
present extensions to this model. In this model, we approxi-
mate the interaction between Rydberg polaritons by a hard-
sphere potential of radius rb. The projective nature of this
interaction means that the resulting many-body Rydberg wave
function takes a relatively simple form in the position-space
representation. We also assume that the polaritons move with
a constant velocity vg in the Rydberg medium. This allows us
to use position and time interchangeably. We will use a time
basis to denote the position of the ith polariton. For example,
a polariton denoted by ti was created at the beginning of the
medium, r = 0, at time ti. At any time t > ti, the position of
the polariton is given by ri(t ) = (t − ti )vg. A many-body pure
state of R Rydberg polaritons is described by a time-ordered
set of coordinates,

|tR〉 = |t1, t2, . . . , tR〉, t1 < t2 · · · < tR. (B1)

We can now define a general density matrix describing this
system of polaritons,

ρ =
∑
R,R′

∫
Dt Dt ′ eR,R′ ({tR; t ′

R′ })|t ′
R′ 〉〈tR|, (B2)

where eR,R′ ({tR; t ′
R′ }) are the elements of the density matrix,

and we have defined the shorthand for the time-ordered inte-
gral

∫
Dt Dt ′ ≡ ∫

t1<t2···<tn

∏
i dti

∫
t ′
1<t ′

2···<t ′
n′

∏
i′ dt ′

i′ . Note that

the density matrix we consider here is the one that results after
the entire pulse has entered the medium.
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The expression for the density matrix obtained in the hard-
sphere model is a generalization of that derived in Ref. [32].
In Ref. [32], the authors develop a master-equation-type ap-
proach to calculate the outgoing photonic density matrix in
the limit that the incident photons, after EIT compression,
fit within the medium and that the full medium is block-
aded. While the first photon forms a polariton, the subse-
quent photons get scattered and project the wave function
of the first polariton. Given that the scattered photons are
not detected (and hence traced out in our formalism), the
density matrix of the outgoing single photon is no longer
pure. In fact, the coherence in the single-polariton density
matrix is related to the timing of the scattering. Reference
[33] generalized Ref. [32] to the case where the pulse size is
larger than the blockade radius. We now provide an intuition
for the output density matrix under the assumptions of the
hard-sphere model. The density matrix consists of coherences
between many-polariton states. The polaritons must be at
least one blockade time τb apart from each other. Let I (tR)
denote the region

⋃R
i=1[ti, ti + τb) in which incoming photons

are scattered by a polariton state. The quantum coherence
(developed between the polariton states |tR〉 and |t ′

R′ 〉) arises
from the fact that the projections of the Rydberg polariton
wave function associated with a given set of scattering events
does not fully determine the position of the polaritons. Put
slightly differently, we can regard the wave function of the
incoming light as a coherent superposition of arrival times
for the photons; those coherences that are not destroyed by
a given set of scattering events are then simply mapped into
coherences of the Rydberg wave function. Since we assume
that the scattered photons are not detected, they are traced
out in our theory. Hence, we must perform an (incoherent)
integral over all sets of scattering times. To this end, let us
represent the temporal region in which scattering events can
take place without destroying the coherence between states
|tR〉 and |t ′

R′ 〉 as I (tR) ∩ I (t ′
R′ ). For m scatterings, the coherence

factor becomes [
∫

I (tR )∩I (t ′
R′ ) h2(τ )dτ ]m in a straightforward

generalization of Ref. [32]. Utilizing the above insight, the
elements of the density matrix for a Fock-state input, |ψin〉 =
|nin〉, can be expressed as

eR,R′ ({tR; t ′
R′ }) = δR,R′

∏
i,i′

�(ti+1 − ti − τb)�(t ′
i′+1 − t ′

i′ − τb)h(ti )h(t ′
i′ )

nin!

(nin − R)!

[∫
I (tR )∩I (t ′

R′ )
h2(τ )dτ

]nin−R

, (B3)

where the factor nin!
(nin−R)! is the number of ways in which one can pick an ordered set of R elements (polaritons) out of the nin

incoming photons. Note that for an input state with a definite photon number, it is not possible to have any coherence in the output
between states with a different number of polaritons R �= R′ since the environment knows the number of scattered photons and
thus the number of remaining polaritons. Now we can generalize the result for an input coherent state |α〉 = ∑

n
αn√

n!
e−|α|2/2|n〉,

where for simplicity we assume α ∈ R+. The general density matrix element is given by

eR,R′ ({tR; t ′
R′ }) =

∏
i,i′

�(ti+1 − ti − τb)�(t ′
i′+1 − t ′

i′ − τb)h(ti )h(t ′
i′ )e

−α2
α(R+R′ )e

α2
∫

I (tR )∩I (t ′
R′ ) h2(τ )dτ

. (B4)

We can now utilize the expression for the general density matrix element to derive expressions for correlation functions such as
G(1)(t, t ′).

Expressions for G(1)(t, t ) and G(1)(t, t ′) for time-varying h(t )

Here we present the expressions, used to plot Fig. 2 in the main text, for G(1)(t, t ) and G(1)(t, t ′) for time-varying h(t ). By
definition, we know that

G(1)(t, t ) = Tr[E†(t )E (t )ρ] =
∑

R

∫
Dt eR,R({tR; tR})

R∑
i=1

δ(t − ti ). (B5)

The above expression can be simplified further by carrying out the integrals over all ti > t . Using Eqs. (B4) and (B5) and
assuming that the rise time of the pulse trise fits at most Rr (note that always Rr � 1) polaritons, and that the pulse begins at
t = 0, we arrive at

G(1)
Rr

(t, t ) = | f (t )|2
�t/τb�∑
R=1

exp[Rin(R − Rc − 1)τb]RR
in

⎡
⎣ j=Rc∏

j=1

∫ t−(R− j)τb

t j−1+τb

dt j | f (t j )|2
⎤
⎦

× exp

{
Rin

Rc∑
i=1

[F (ti + τb) − F (ti )]

}[
t − tRc − (R − Rc)τb

]R−Rc−1

(R − Rc − 1)!
exp[−RinF (t )], (B6)

where we used Rin, Rc, t0, f , and F defined as Rin = α2h̄2, Rc = min[Rr, R − 1], t0 = −τb, f (t ) = h(t )/h̄, and F (t ) = ∫ t
0 | f (t )|2,

respectively. The amplitude h̄ is defined as the (constant) amplitude of the incoming photon for times greater than trise. Notice
that we do not include the fall time of the Tukey pulse in this model.
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Analogously, using Eq. (B4), we can calculate the off-diagonal G(1)(t, t ′). To this end, we introduce t> = max(t, t ′) and
t< = min(t, t ′). Then the expression for G(1)(t, t ′) for t> − t< < τb takes the form

G(1)
Rr

(t, t ′) = f (t>)

f (t<)
G(1)

Rr
(t<, t<) exp {−Rin[−F (t<) + F (t> + τb) − F (t< + τb) + F (t>)]}, (B7)

whereas, for t> − t< > τb, we obtain

G(1)
Rr

(t, t ′) = e−Rin[F (t<+τb)+F (t>+τb)−F (t> )−F (t< )]

f (t ) f (t ′)Rin
G(1)

Rr
(t<, t<)G(1)

Rr ,t<+τb
(t> − t< − τb, t> − t< − τb), (B8)

where G(1)
Rr ,ts

(t, t ) is defined using Eq. (B6) but with h(t )
replaced by hts (t ) = �(t )h(t + ts) and f (t ), F (t ) are defined
using hts (t ).

APPENDIX C: MPS TREATMENT OF RYDBERG EIT

Light propagation though atomic ensembles in the high-
intensity limit is a difficult problem to study numerically,
as we need to describe a driven-dissipative system in the
regime where many-body correlations are important. To do
so, we extend a recently developed technique [36] that is
based on mapping light propagation to the physics of a
driven-dissipative spin chain and then solving the spin-chain
dynamics using the matrix product ansatz [52,53]. Here we
briefly review this technique while referring the reader to
Ref. [36] for further details.

In quasi-1D light propagation experiments, such as the one
presented here, the standard approach is to study the paraxial
Maxwell-Bloch equations. Instead, in our MPS approach we
take advantage of a mapping of these equations to the dy-
namics of a chain of atoms. The atoms couple via a dipole
transition |g〉-|e〉 to the quantum light field E (z, t ) with central
wave vector k propagating in the z direction, and at any point
the resulting field is just the sum of the input field and the field
generated by the M atomic dipoles. This yields the generalized
input-output relation [34,36] for the electric field

E (z, t ) = Ein(z, t ) + i
M∑

j=1

√

 j

2
eik|z−z j |σ j

ge(t ), (C1)

where 
 j describes the strength of the coupling between the
paraxial input mode and the atom j described by σ

j
ge defined

as |g〉 j〈e| j .
This field then couples back to the atoms, where the

coupling of the atoms to the input field is given by
Hdrive = −∑M

j=1

√

 j/2[Ein(t, z)σ j

eg + H.c.]. Coherent input
Ein(t, z) = Ein(t )eikz, as used in our experiment, can be treated
as a classical field without approximation [54]. Furthermore,
the field generated by one atom may then couple to another
atom giving an effective dipole-dipole interaction between the
atoms [34,36],

Hdd =
M∑

j,l=1

√

 j
l

2
sin(k|z j − zl |)σ j

egσ
l
ge. (C2)

Dissipation is also present as photons leave the ensemble in
the chosen paraxial mode. This dissipation is described by a

Lindbladian

Ldd[ρ] =
M∑

j,l=1

√

 j
l

2
cos(k|z j − zl |)

× (
2σ j

geρσ l
eg − σ j

egσ
l
geρ − ρσ j

egσ
l
ge

)
. (C3)

Photons can also leave via spontaneous emission at rate γ into
other modes (taken to be the rate of spontaneous emission of
a single atom in free space). This process corresponds to the
Lindbladian

Lspont[ρ] = γ

2

M∑
j=1

(
2σ j

geρσ j
eg − σ j

egσ
j

geρ − ρσ j
egσ

j
ge

)
. (C4)

The dynamics of this driven spin system can then be solved
to yield the output field after propagation through the ensem-
ble using Eq. (C1). While above we have only discussed the
coupling of the light to the transition |g〉-|e〉, additional atomic
dynamics, such as those due to the presence of Rydberg levels
and due to the dipolar interaction between them, may be added
to the master equation without altering the above results.

Solving the spin dynamics itself is challenging. Indeed, in
the experiment, the atomic cloud contains tens of thousand of
atoms, a number that cannot be feasibly modeled numerically.
The dynamics may be found by evolving directly the density
matrix in time or using the quantum jump formalism [55]
for up to ∼20 atoms. To go beyond this, we first recognize
that, in many propagation experiments, the number of atoms
present is not of primary importance. Instead, the important
quantity is the number of atoms multiplied by their coupling
strength to the probe beam. The original large number of
atoms in the ensemble can then be modeled by a much smaller
chain of atoms where the overall optical depth of the system
and optical depth per Rydberg blockade radius are conserved.
Specifically, we can divide the atom cloud along the z axis
into N slices of width a centered at positions zl . Then the col-
lection of atoms within one slice

∑
|z j−zl |<a/2

√

 j/2σ

j
ge may

be replaced by an effective atom
√


l/2σ l
ge, whose coupling

to the propagating field is the sum of the couplings of the
original atoms 
l = ∑

|z j−zl |<a/2 
 j . In this way, the optical
properties of the system are preserved as long as single-
effective-atom saturation effects are not present. To avoid
saturation, the number of slices must be kept sufficiently large,
which can be checked in numerical simulations by verifying
that observables are invariant under changes in N provided
that OD and ODb are maintained constant (see Appendix C 2).
Grouping the atoms in this way also allows the nonuniform
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distribution of atoms in the cloud to be conveniently modeled
by a nonuniform coupling to each atomic slice.

By reducing the full propagation dynamics to a model
of tens of atoms, the dynamics can now be solved using
matrix product states. There are then two possible treatments:
(1) to represent the state of the system as a pure-state MPS
and propagate using the quantum jump formalism [56,57] or
quantum state diffusion [58], or (2) to convert the density
matrix of the system to an MPS and use the Liouvillian
superoperator approach to find the time dynamics [59,60]. In
Ref. [36], light propagation was studied exclusively using the
quantum jump method, and here we use that method to find
the steady-state output shown in Fig. 6(d).

On the other hand, we find that using quantum jump trajec-
tories to find the time traces in Figs. 6(a)–6(c) is inefficient, as
is quantum state diffusion, due to the large number of trajec-
tories needed to reduce statistical noise. Instead, we propagate
the density matrix using the master equation ∂tρ = L(ρ) (=
−i[Hdd + Hdrive, ρ] + Ldd(ρ) + Lspont(ρ) for the simple spin
model above). To do so, we first map the density matrix
ρ to a vector [59] by identifying local vector basis states,

e.g., for two-level atoms {|g〉 〈g| , |g〉 〈e| , |e〉 〈g| , |e〉 〈e|} →
{|gg), |ge), |eg), |ee)}. In this basis, the density operator can be
rewritten as an MPS |ρ) = ∑

β1,...,βN
Aβ1 · · · AβN |β1) · · · |βN ),

where the sum is over the basis states |β j ) for each atom j.
MPS states are generalizations of product states, e.g., |ρ) =∑

β1,...,βN
cβ1 · · · cβN |β1) · · · |βN ), where instead of having a

complex coefficient cβ j associated with the state of each atom
we have a matrix Aβ j . This allows for entanglement to be
introduced into the state in a controlled way by increasing the
size of the matrices associated with each site.

Operators acting to the left or right of ρ, as required to
represent the Liouvillian, can also be mapped into our new
vector space using Kronecker products. Operator products
such as O jρI j , where O j and I j are the matrix represen-
tations in the original basis of operator O and the iden-
tity acting at site j, become O j⊗̃I j |ρ). Here we have de-
fined the Kronecker product A⊗̃B = A ⊗ BT for notational
convenience.

In this way, the Liouvillian for the spin-model described
above becomes

L =
∑
l> j

√

 j
l

4

{
eika(l− j)[(I j⊗̃σ j

eg − σ j
eg⊗̃I j

)
σ l

ge⊗̃I l + σ j
ge⊗̃I j

(
I l⊗̃σ l

eg − σ l
eg⊗̃I l

)]

+ e−ika(l− j)
[
I j⊗̃σ j

eg

(
σ l

ge⊗̃I l − I l⊗̃σ l
ge

)+ (
σ j

ge⊗̃I j − I j⊗̃σ j
ge

)
I l⊗̃σ l

eg

]}+
∑

j

L j, (C5)

where

Lj = 
 j + γ

2

(
2σ j

ge⊗̃σ j
eg − σ j

ee⊗̃I j − I j⊗̃σ j
ee

)+ i

√

 j

2
Ein(t )

[
eikz j

(
σ j

eg⊗̃I j − I j⊗̃σ j
eg

)+ e−ikz j
(
σ j

ge⊗̃I j − I j⊗̃σ j
ge

)]
. (C6)

We can then express the entire Liouvillian as a matrix product operator (MPO) with site matrices given by

L j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I j⊗̃I j
√


 j

2 eika
(
I j⊗̃σ

j
eg − σ

j
eg⊗̃I j

) √

 j

2 eikaσ
j

ge⊗̃I j
√


 j

2 e−ikaI j⊗̃σ
j

eg

√

 j

2 e−ika
(
σ

j
ge⊗̃I j − I j⊗̃σ

j
ge
)

Lj

0 eikaI j⊗̃I j 0 0 0
√


 j

2 σ
j

ge⊗̃I j

0 0 eikaI j⊗̃I j 0 0
√


 j

2

(
I j⊗̃σ

j
eg − σ

j
eg⊗̃I j

)
0 0 0 e−ikaI j⊗̃I j 0

√

 j

2

(
σ

j
ge⊗̃I j − I j⊗̃σ

j
ge
)

0 0 0 0 e−ikaI j⊗̃I j
√


 j

2 I j⊗̃σ
j

eg

0 0 0 0 0 I j⊗̃I j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C7)
for j = 2, . . . , N − 1, and

L1 =
(

I1⊗̃I1,

√

1

2
eika

(
I1⊗̃σ 1

eg − σ 1
eg⊗̃I1

)
,

√

1

2
eikaσ 1

ge⊗̃I1,

√

1

2
e−ikaI1⊗̃σ 1

eg,

√

1

2
e−ika

(
σ 1

ge⊗̃I1 − I1⊗̃σ 1
ge

)
, L1

)
, (C8)

LN =
(

LN ,

√

N

2
σ N

ge⊗̃IN ,

√

N

2

(
IN⊗̃σ N

eg − σ N
eg⊗̃IN

)
,

√

N

2

(
σ N

ge⊗̃IN − IN⊗̃σ N
ge

)
,

√

N

2
IN⊗̃σ N

eg, IN⊗̃IN

)T

. (C9)

The above operators can now be applied to the MPS
representing the density operator to evolve the system in
time. For example, a linear expansion of the master equation
could be achieved by applying 1 + dtL to |ρ) for sufficiently
small time step dt , where 1 + dtL is found from the ma-
trix product operator above by simply multiplying all rates


 j, γ ,
√


 jEin by dt and adding I j⊗̃I j/N to each Lj . Here,
instead, to allow for larger time steps, we use a Runge-Kutta
4th-order method [61]. The steady state may also be found by
minimizing (ρ|L†L|ρ) using traditional DMRG algorithms
[62,63]; however we find that time evolution in the quantum
jump formalism yields the steady state more efficiently for the
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FIG. 10. (a) The Rydberg interaction is truncated at V = 20γ

and is approximated using a sum of interactions with exponential
form. The specific interaction being modeled has C6/2π = 1.8782 ×
1014 Hz μm−6. Note that we only require a good approximation at
the atomic positions, and in between the potential may take arbitrary
values. Here we plot the approximate potential only at the posi-
tions of the atoms assuming a spin chain with interatomic distance
a = 2.5 μm. (b) The number of exponentials used leads to only
minor differences in the time trace shown here for an input photon
rate of 10.4 ph/μs. Parameters used in MPS simulations: γ /2π =
6.065 MHz, OD = 33, γss/2π = 40 kHz, N = 60, D = 100. The
atomic cloud has a Gaussian distribution n(z) = exp[−z2/(2σ 2)]
with σ = 23.6 μm.

problem at hand. In this new vector space, we use the identity
tr(A†ρ) = (A|ρ) to calculate expectation values, where |A) is
the MPS vector mapping of the operator A.

1. Approximation of Rydberg power-law interactions
by a series of exponentials

The MPO presented above describes the interaction and
propagation of light in a 1D channel. We now show how this
model is extended to include the case where the atoms also
have a third level |s〉 with Rydberg interactions of the form
V (r) = C6/r6∑

j<l σ
j

ssσ
l
ss.

The classical driving of the control laser, Hcontrol =
�
∑

j (σes + σse )/2, and decoherence of |s〉, Lss[ρ] =
γss
∑M

j=1(σ j
ssρσ

j
ss − σ

j
ssσ

j
ssρ/2 − ρσ

j
ssσ

j
ss/2), are trivially in-

cluded in the local part of the Liouvillian [Eq. (C6)]. On
the other hand, the interaction term is more complicated,
as power-law decays have no known compact MPO rep-
resentation. However, such decays can be approximated to
arbitrary precision over finite distances by sums of expo-
nentially decaying interactions of the form V (r) ≈ ∑

j η jλ
r
j

[64–66]. Here we use the technique described in Ref. [64]
to find approximations of the Rydberg interaction over the
range appropriate for the atomic cloud used in the experiment
using 3–6 exponentials. In doing so, we also recognize that
the large strength of the Rydberg interaction at short range
can lead to numerical instabilities and instead fit the sum of
exponentials to a fixed core strength at short range, as shown
in Fig. 10(a). This is justified, as above a certain value the
Rydberg interaction detunes the |s〉 levels to the extent that
they no longer play a role in the physics.

In Fig. 10(b), we calculate the output intensity given
a Tukey function input with incoming photon rate Rin =
10.4 ph/μs, and for different approximations of the Rydberg
interaction ranging from 3 to 6 exponentials. No great differ-

FIG. 11. Convergence of the predicted steady-state output pho-
ton rate with bond dimension D of the MPS used in the quantum
jump trajectories. Parameters used in MPS simulations: γ /2π =
6.065 MHz, OD = 33, γss/2π = 40 kHz, N = 70. The Rydberg
interaction is modeled by five exponentials as described in Ap-
pendix C 1. The atomic cloud has a Gaussian distribution n(z) =
exp[−z2/(2σ 2)] with σ = 23.6 μm. The vertical bars denote the
statistical errors s in the averaging of intensities over all trajectories.

ence is seen between the curves produced with 3–6 exponen-
tials. Furthermore, we have also checked that changing the
core cutoff from 20γ (which is shown in the figure) to 30γ

(not plotted) makes no difference to the dynamics.

2. Convergence with bond dimension and number of spins

The accuracy of the MPS methods depends on how well
the quantum state of the system can be approximated by an
MPS of constrained bond dimension D. Furthermore, we have
modeled the system consisting of thousands of atoms by tens
of atoms. To test that both of these approximations allow the
nature of the light propagation to be faithfully represented,
we test for convergence of the observable dynamics in both
the bond dimension and in the number of atoms used in the
simulations.

In Fig. 11, we show how increasing the bond dimension of
the MPS used in the quantum jump simulations for finding the
steady-state affects the observed output steady-state intensity.
For input intensities below 10 ph/μs, the output is already
well approximated by MPS with D = 10. For higher inten-
sities, larger bond dimension is required: for the maximum
input rate in the experiment of 71.8 ph/μs, convergence
requires D > 50, suggesting a buildup of entanglement at that
rate. To calculate the steady-state output, we run quantum
jump trajectories under constant input photon flux for a time
of ∼10 000/γ , and after neglecting an initial equilibration
time, calculate the average intensity Iss = ∑T

j I j/T , where I j

are the intensities at the T discrete time steps of the simula-
tion. This averaging is accompanied by statistical error s =√

Var(
∑T

j I j/T ) =
√∑T

j,l Cov(I j, Il )/T taking into account
the correlations in the time series. As shown in the error bars
in Fig. 11, this error increases for higher input intensities due
to the larger numbers of quantum jumps in the evolution.
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FIG. 12. Convergence of the time traces with bond dimension
of the MPS for the input rate of 4.2 ph/μs (left) and 10.4 ph/μs
(right). Higher input photon rates require larger bond dimension,
where for an input rate of 4.2 ph/μs the time trace has already con-
verged for D = 100, while at input rate of 10.4 ph/μs convergence
is not seen until D = 180. Parameters used in MPS simulations:
γ /2π = 6.065 MHz, OD = 33, γss/2π = 40 kHz, N = 60. The
Rydberg interaction is modeled by five exponentials as described
in Appendix C 1. The atomic cloud has a Gaussian distribution
n(z) = exp[−z2/(2σ 2)] with σ = 23.6 μm.

Simulations using an MPS representation of the full den-
sity matrix require a larger bond dimension for convergence.
However, despite this reduction in computational efficiency,
this method may still be more efficient than the quantum
jump approach as no summation over trajectories is required
(where tens of thousands of trajectories are typically required
for the convergence of a time trace). In Fig. 12, we show the
convergence of the time traces for two different input rates.
For an input rate of 4.2 ph/μs, a bond dimension of 100 is
sufficient, while for 10.4 ph/μs a bond dimension of 180 is

FIG. 13. Convergence of the time trace of the MPS simulation
with the number of effective atoms N used in the spin model. Here we
show the time trace for an input rate of 10.4 ph/μs. The simulations
are all done for maximum bond dimension 100. Parameters used in
MPS simulations: γ /2π = 6.065 MHz, OD = 33, γss/2π = 40 kHz.
The Rydberg interaction is modeled by five exponentials as described
in Appendix C 1. The atomic cloud has a Gaussian distribution
n(z) = exp[−z2/(2σ 2)] with σ = 23.6 μm.

required. Finally, in Fig. 13, we show the convergence of the
time trace for an input rate of 10.4 ph/μs with the number of
atoms (slices) used in the simulations. For smaller number of
atoms, e.g., N = 30, the time trace shows an overestimate of
the output photon rate; however the qualitative behavior is still
present. For higher number of atoms N = 60 the time traces
converge.
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