Supplemental material

In this supplement, we present technical details omitted from the main text. In section S.I, we derive the qubitphoton Hamiltonian within the low-energy continuum approximation. In section S.II, we discuss the ultraviolet cutoff. In section S.III, we derive Eq. (8) for the curvature-limited correlations in the limit $L=1$. In section S.IV, we derive the bound-state equations for a single qubit and for two qubits. In section S.V, we derive the spontaneous emission rate of an excited qubit within the continuum approximation-Eq. (9) from the main text.

S.I. HAMILTONIAN WITHIN THE CONTINUUM APPROXIMATION

In this section, we derive the qubit-photon Hamiltonian within the low-energy continuum approximation developed in Ref. [S1].

We embed the hyperbolic lattice into the Poincare disk $\mathbb{D}=\{z \in \mathbb{C},|z|<1\}$. Sums over lattice sites can be approximated by integrals in the continuum using the following relation

$$
\begin{equation*}
\sum_{i} \rightarrow \frac{28}{\pi} \int \frac{d^{2} z}{\left(1-|z|^{2}\right)^{2}} \tag{S1}
\end{equation*}
$$

The discrete bosonic operator a_{i} (satisfying $\left[a, a^{\dagger}\right]=1$) can then be approximated by a continuum field operator

$$
\begin{equation*}
a\left(z_{i}\right)=\sqrt{\frac{28}{\pi}} a_{i} \tag{S2}
\end{equation*}
$$

which satisfies the commutation relation

$$
\begin{equation*}
\left[a(z), a^{\dagger}\left(z^{\prime}\right)\right]=\left(1-|z|^{2}\right)^{2} \delta^{2}\left(z-z^{\prime}\right) \tag{S3}
\end{equation*}
$$

As shown in Ref. [S1], the tight-binding Hamiltonian from Eq. (1) of the main text is well-approximated by

$$
\begin{equation*}
\hat{H}_{\mathrm{ph}}=-t \sum_{<i j>\in \mathcal{G}} a_{i}^{\dagger} a_{j} \rightarrow \int \frac{d^{2} z}{\left(1-|z|^{2}\right)^{2}} a^{\dagger}(z)\left(-3 t-t \frac{3}{4} h^{2} \Delta_{g}\right) a(z) \tag{S4}
\end{equation*}
$$

where $\Delta_{g}=\left(1-|z|^{2}\right)^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$ is the hyperbolic Laplacian.
The full Hamiltonian from Eq. (1) is then given by

$$
\begin{align*}
\hat{H} & =\Delta \sum_{i \in \mathcal{S}}|\uparrow\rangle\left\langle\left.\uparrow\right|_{i}+\tilde{g} \sum_{j \in \mathcal{S}}\left(\sigma_{j}^{+} a\left(z_{j}\right)+\text { h.c. }\right)+\hat{H}_{\mathrm{ph}}\right. \tag{S5}\\
\hat{H}_{\mathrm{ph}} & =\int \frac{d^{2} z}{\left(1-|z|^{2}\right)^{2}} a^{\dagger}(z)\left(-3 t-t \frac{3}{4} h^{2} \Delta_{g}\right) a(z) \tag{S6}
\end{align*}
$$

where $\tilde{g}=g \sqrt{\frac{\pi}{28}}$.
We will also need the Hamiltonian in Fourier space, valid for the infinite system $(L=1)$. In that case, we have the following Fourier transform relations [S2]:

$$
\begin{align*}
a(z) & =\int \frac{d^{2} k}{(2 \pi)^{2}} \tanh \left(\frac{\pi k}{2}\right) \psi_{K}(z) a(K) \tag{S7}\\
a(K) & =\int d^{2} z \frac{1}{\left(1-|z|^{2}\right)^{2}} \psi_{K}^{*}(z) a(z) \tag{S8}
\end{align*}
$$

Here, $K=k e^{\mathrm{i} \beta}$ or $\mathbf{k}=k(\cos \beta, \sin \beta)^{T}$, and

$$
\begin{equation*}
\psi_{K}(z)=\psi_{\mathbf{k}}(z)=\left(\frac{1-|z|^{2}}{\left|1-z e^{-\mathrm{i} \beta}\right|^{2}}\right)^{\frac{1}{2}(1+\mathrm{i} k)} \tag{S9}
\end{equation*}
$$

is an eigenfunction of the hyperbolic Laplacian with eigenvalue $-\left(1+k^{2}\right)$. The Fourier transformed operators satisfy

$$
\begin{equation*}
\left[a(K), a^{\dagger}\left(K^{\prime}\right)\right]=\frac{(2 \pi)^{2}}{\tanh \left(\frac{\pi k}{2}\right)} \delta^{2}\left(K-K^{\prime}\right) \tag{S10}
\end{equation*}
$$

The Hamiltonian then becomes

$$
\begin{align*}
\hat{H} & =\Delta \sum_{i \in \mathcal{S}}|\uparrow\rangle\left\langle\left.\uparrow\right|_{i}+\tilde{g} \sum_{j \in \mathcal{S}} \int \frac{d^{2} k}{(2 \pi)^{2}} \tanh \left(\frac{\pi k}{2}\right)\left(\psi_{K}\left(z_{j}\right) a\left(z_{j}\right) \sigma_{j}^{+}+\text {h.c. }\right)+\hat{H}_{\mathrm{ph}}\right. \tag{S11}\\
\hat{H}_{\mathrm{ph}} & =\int \frac{d^{2} k}{(2 \pi)^{2}} \tanh \left(\frac{\pi k}{2}\right) \omega(k) a^{\dagger}(K) a(K) \tag{S12}
\end{align*}
$$

where

$$
\begin{equation*}
\omega(k)=-3 t+t \frac{3}{4} h^{2}\left(k^{2}+1\right) \tag{S13}
\end{equation*}
$$

S.II. ULTRAVIOLET CUTOFF

In this section, we discuss the ultraviolet (UV) cutoff.
Let us first fix the UV cutoff Λ in

$$
\begin{equation*}
G\left(z, z^{\prime}, \lambda\right)=-\int_{k \leq \Lambda} \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} \tanh \left(\frac{\pi k}{2}\right) \frac{\psi_{K}(z) \psi_{K}^{*}\left(z^{\prime}\right)}{\lambda-\left(k^{2}+1\right)} \tag{S14}
\end{equation*}
$$

We insert $z=z^{\prime}=z_{1}$ and find

$$
\begin{equation*}
G\left(z_{1}, z_{1}, \lambda\right)=-\int_{k \leq \Lambda} \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} \frac{\tanh \left(\frac{\pi k}{2}\right)}{\lambda-\left(k^{2}+1\right)} \tag{S15}
\end{equation*}
$$

Compare this to the continuum approximation result [S1]

$$
\begin{equation*}
G_{i j}(\omega)=M \frac{\pi}{28} G\left(z_{i}, z_{j}, \lambda=M(\omega+3)\right) \tag{S16}
\end{equation*}
$$

where $M=\frac{4}{3 h^{2}}=17.529$ for the $\{7,3\}$ lattice. We conclude that the lattice Green function for $L \rightarrow 1$ can be approximated by

$$
\begin{equation*}
G_{11}(\omega)=-M \frac{\pi}{28} \int_{k \leq \Lambda} \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} \frac{\tanh \left(\frac{\pi k}{2}\right)}{M(\omega+3)-\left(k^{2}+1\right)} \tag{S17}
\end{equation*}
$$

To fix Λ, we insert $\omega=-3$, which is below the band edge and so leads to a finite integral. We define

$$
\begin{equation*}
C(\ell)=G_{11}(-3) \stackrel{!}{=} M \frac{\pi}{28} \int_{k \leq \Lambda} \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} \frac{\tanh \left(\frac{\pi k}{2}\right)}{k^{2}+1} \tag{S18}
\end{equation*}
$$

As a function of the number ℓ of rings we have:

ℓ	1	2	3	4	5	6
$C=G_{11}(-3)$	0.448	0.649	0.707	0.728	0.736	0.739
Λ	4.59	8.87	10.7	11.4	11.7	11.9
Λ_{1}	4.06	7.89	9.52	10.2	10.5	10.6

We evaluate the integral and find

$$
\begin{equation*}
C=\frac{M}{56} \int_{0}^{\Lambda} \mathrm{d} k k \frac{\tanh \left(\frac{\pi k}{2}\right)}{k^{2}+1} \tag{S19}
\end{equation*}
$$

which determines Λ. If we neglect the tanh term, then

$$
\begin{equation*}
C \approx \frac{M}{56} \int_{0}^{\Lambda_{1}} \mathrm{~d} k k \frac{1}{k^{2}+1}=\frac{M}{112} \log \left(1+\Lambda_{1}^{2}\right) \tag{S20}
\end{equation*}
$$

which defines

$$
\begin{equation*}
\Lambda_{1}=\sqrt{e^{112 C / M}-1} \simeq e^{56 C / M} \tag{S21}
\end{equation*}
$$

Hence the generic value for $\Lambda \simeq \Lambda_{1}$ is 10 , and we have $\sqrt{M}=4.2$, and so

$$
\begin{equation*}
\Lambda \gtrsim 2 \sqrt{M} \tag{S22}
\end{equation*}
$$

S.III. CURVATURE-LIMITED CORRELATIONS

In this section, we derive Eq. (8) for the curvature-limited correlations in the limit $L=1$. As shown in Ref. [S1], the correlation function $G\left(z, z,{ }^{\prime} \omega\right)$ for $L=1$ only depends on the hyperbolic distance $d\left(z, z^{\prime}\right)$. It is given by

$$
G\left(z, z^{\prime}, \omega\right)=\frac{1}{2 \pi} \operatorname{Re}\left[Q_{\nu}\left(\cosh \left(d\left(z, z^{\prime}\right) / \kappa\right)\right)-\mathcal{C}(\omega) P_{\nu}\left(\cosh \left(d\left(z, z^{\prime}\right) / \kappa\right)\right)\right]
$$

where $P_{\nu}\left(Q_{\nu}\right)$ are Legendre functions of the first (second) kind, $\nu=\frac{1}{2}\left(-1+\mathrm{i} \sqrt{\mathrm{M}\left(\omega+3-\frac{1}{\mathrm{M}}\right)}\right)$, and $\mathcal{C}(\omega)$ is a constant. We use the fact that the lower band edge is located at $E_{0}=-3+\frac{1}{M}+\mathcal{O}\left(h^{3}\right)$ for $L=1$ and write $\nu=\frac{1}{2}\left(-1+\mathrm{i} \sqrt{\mathrm{M}\left(\omega-\mathrm{E}_{0}\right)}\right)$. We neglect the $\mathcal{O}\left(h^{3}\right)$ corrections in the following.

Let us first consider the special case $\omega=E_{0}$ and show that the correlation length remains finite. We have $\nu=-1 / 2$ and find that $\mathcal{C}\left(E_{0}\right)=-\mathrm{i} \pi / 2$ is purely imaginary while $P_{-1 / 2}(y)$ is purely real. Hence the term $\mathcal{C} P_{\nu}$ does not contribute to the Green function for $\omega=E_{0}$. We have $\operatorname{Re} Q_{-1 / 2}(x) \sim \pi / \sqrt{2 x}$ for $x \rightarrow \infty$, or

$$
\begin{equation*}
\operatorname{Re} Q_{-1 / 2}(\cosh (d / \kappa)) \sim \pi e^{-d /(2 \kappa)} \tag{S23}
\end{equation*}
$$

as $d / \kappa \rightarrow \infty$. Consequently, for $\omega=E_{0}$, the correlation length satisfies $\xi\left(E_{0}\right)=\kappa$, which is finite.
Now consider frequencies $\omega<E_{0}$ below the band edge. We observe that $\nu=-\frac{1}{2}\left(1+\sqrt{M\left(E_{0}-\omega\right)}\right)$ is real and negative. The function $\operatorname{Re} Q_{\nu}(x)$ scales like x^{ν} for $x \rightarrow \infty$. Hence

$$
\begin{equation*}
\operatorname{Re} Q_{\nu}(\cosh (d / \kappa)) \approx \cosh (d / \kappa)^{\nu} \approx e^{d \nu / \kappa} \tag{S24}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{\xi(\omega)} \approx \frac{1}{\kappa}\left(1+\sqrt{M\left(E_{0}-\omega\right)}\right) . \tag{S25}
\end{equation*}
$$

We independently verified this scaling behavior numerically from fitting the long-distance decay of $G(r, 0, \omega)$ for $\omega \lesssim E_{0}$.

S.IV. BOUND STATES

In this section, we derive the bound-state equations for a single qubit and for two qubits-Eqs. (6) and (12) in the main text.

A. Bound state for a single qubit

Working directly in the continuum and in Fourier space (valid for $L=1$), we can write down the single-excitation wavefunction

$$
\begin{equation*}
|\psi\rangle=\left[\int_{K} u(K) a^{\dagger}(K)+c_{1} \sigma_{1}^{+}\right]|\downarrow 0\rangle \tag{S26}
\end{equation*}
$$

where $\int_{K} \equiv \int \frac{d^{2} k}{(2 \pi)^{2}} \tanh \left(\frac{\pi k}{2}\right)$. Schroedinger's equation $\left(\hat{H}\left|\psi_{B}\right\rangle=E_{B}\left|\psi_{B}\right\rangle\right)$ yields an equation for the bound-state energy:

$$
\begin{align*}
E_{B} & =\Delta+\Sigma\left(E_{B}\right) \tag{S27}\\
\Sigma\left(E_{B}\right) & =\tilde{g}^{2} \int_{K} \frac{1}{E_{B}-\omega(k)}=-\frac{4 \tilde{g}^{2}}{3 t h^{2}} G\left(z, z ; \lambda=\frac{4}{3 t h^{2}}\left(3 t+E_{B}\right)\right) \tag{S28}
\end{align*}
$$

and for the photonic component of the wavefunction

$$
\begin{equation*}
u(K)=c_{1} \tilde{g} \frac{\psi_{K}^{*}\left(z_{1}\right)}{E_{B}-\omega(k)} \tag{S29}
\end{equation*}
$$

The remaining coefficient c_{1} is determined by the normalization condition.
Using the Fourier transform relation in Eq. (S7), the bound-state wavefunction can also be written in real space and is given in Eq. (6) of the main text.

B. Two qubits

For two qubits (at positions 1 and 2, respectively), the single-excitation wavefunction can be written as

$$
\begin{equation*}
|\psi\rangle=\left[\int_{K} u(K) a^{\dagger}(K)+\sum_{i=1,2} c_{i} \sigma_{i}^{+}\right]|\downarrow \downarrow 0\rangle \tag{S30}
\end{equation*}
$$

Schroedinger's equation can be written as

$$
\begin{equation*}
G^{-1}\left(E_{B}\right)\binom{c_{1}}{c_{2}}=0 \tag{S31}
\end{equation*}
$$

where the Green function is

$$
G\left(E_{B}\right)=\left(\begin{array}{cc}
E_{B}-\omega_{q}-\Sigma_{11}\left(E_{B}\right) & -\Sigma_{12}\left(E_{B}\right) \tag{S32}\\
-\Sigma_{21}\left(E_{B}\right) & E_{B}-\omega_{q}-\Sigma_{22}\left(E_{B}\right)
\end{array}\right)^{-1}
$$

and the self energies are

$$
\begin{equation*}
\Sigma_{i j}\left(E_{B}\right)=\int_{K} \frac{\tilde{g}^{2} \psi_{K}\left(z_{i}\right) \psi_{K}^{*}\left(z_{j}\right)}{E_{B}-\omega(k)}=-\frac{4 \tilde{g}^{2}}{3 t h^{2}} G\left(z_{i}, z_{j} ; \lambda=\frac{4}{3 t h^{2}}\left(3 t+E_{B}\right)\right) \tag{S33}
\end{equation*}
$$

Eq. (S32) can be written as follows:

$$
G\left(E_{B}\right)=\left(\begin{array}{cc}
E_{B}-\omega_{q}-\Sigma_{11}\left(E_{B}\right) & -\Sigma_{12}\left(E_{B}\right) \tag{S34}\\
-\Sigma_{21}\left(E_{B}\right) & E_{B}-\omega_{q}-\Sigma_{22}\left(E_{B}\right)
\end{array}\right)^{-1}=\left[\left(E_{B}-\Delta-\Sigma_{11}\left(E_{B}\right)\right) \mathbb{1}-\Sigma_{12}\left(E_{B}\right) \sigma_{x}\right]^{-1}
$$

where $\mathbb{1}$ is the 2×2 identity matrix and σ_{x} is the Pauli x matrix. The eigenstates are $\binom{c_{1}}{c_{2}}=\binom{1}{1}$ and $\binom{c_{1}}{c_{2}}=\binom{1}{-1}$. Hence, the bound-state energies $E_{B}^{ \pm}$of the symmetric and antisymmetric bound states are given by the poles of

$$
\begin{equation*}
\frac{1}{E_{B}^{ \pm}-\Delta-\Sigma_{11}\left(E_{B}^{ \pm}\right) \mp \Sigma_{12}\left(E_{B}^{ \pm}\right)} \tag{S35}
\end{equation*}
$$

The wavefunctions are given by

$$
\begin{equation*}
\left|\psi_{ \pm}\right\rangle=c_{ \pm}\left[\tilde{g}^{2} \int_{K} \frac{\psi_{K}^{*}\left(z_{1}\right) \pm \psi_{K}^{*}\left(z_{2}\right)}{E_{B}^{ \pm}-\omega(k)} a^{\dagger}(K)+\left(\sigma_{1}^{+} \pm \sigma_{2}^{+}\right)\right]|\downarrow \downarrow 0\rangle \tag{S36}
\end{equation*}
$$

where $c_{ \pm}$are normalization constants. The real-space version is given in the main text, in Eq. (12).

S.V. SPONTANEOUS EMISSION AND $j(\omega)$

In this section, we derive the spontaneous emission rate of an excited qubit within the continuum approximationEq. (9) from the main text.

We consider a single qubit and work in the continuum approximation in Fourier space (for $L=1$). For weak coupling g, the photons can be integrated out within a Born-Markov approximation, giving rise to a Lindblad master equation for the reduced density matrix of the qubit described by (neglecting the Lamb shift)

$$
\begin{equation*}
\partial_{t} \rho=-i[\Delta|\uparrow\rangle\langle\uparrow|, \rho]+\Gamma \sigma^{-} \rho \sigma^{+}-\frac{\Gamma}{2}\left\{\sigma^{+} \sigma^{-}, \rho\right\} . \tag{S37}
\end{equation*}
$$

The decay rate Γ is given in terms of the spectral function as follows:

$$
\begin{equation*}
\Gamma=\frac{j(\Delta)}{2} \tag{S38}
\end{equation*}
$$

where the spectral function is defined as (this can also be obtained from Fermi's golden rule)

$$
\begin{equation*}
j(\omega)=\pi \sum_{K}\left|g_{K}\right|^{2} \delta\left(\omega-\omega_{k}\right) \tag{S39}
\end{equation*}
$$

Here, ω_{k} describes the dispersion of the photons, given in Eq. (S13), whereas g_{K} can be read off from Eq. (S11), giving $g_{K}=g \sqrt{\frac{\pi}{28}} \psi_{K}(z)$.

Explicitly, we find

$$
\begin{align*}
j(\omega) & =\pi g^{2} \frac{\pi}{28} \int \frac{d^{2} k}{(2 \pi)^{2}} \tanh \left(\frac{\pi k}{2}\right)\left|\psi_{K}\right|^{2} \delta\left(\omega-\omega_{k}\right) \tag{S40}\\
& =\pi g^{2} \frac{\pi}{28} \int_{0}^{\infty} \frac{d k}{2 \pi} k \tanh \left(\frac{\pi k}{2}\right) \delta\left(\omega-E_{0}+k^{2} / M\right) \tag{S41}\\
& =\pi g^{2} \frac{\pi}{28} \int_{0}^{\infty} \frac{d k}{2 \pi} k \tanh \left(\frac{\pi k}{2}\right) \frac{\delta\left(k-\sqrt{\left(\omega-E_{0}\right) M}\right)}{2 \sqrt{\left(\omega-E_{0}\right) M} / M} \tag{S42}\\
& =\frac{\pi}{28} g^{2} \tanh \left(\frac{\pi \sqrt{\left(\omega-E_{0}\right) M}}{2}\right) \frac{M}{4} \tag{S43}
\end{align*}
$$

[1] Igor Boettcher, Przemyslaw Bienias, Ron Belyansky, Alicia J. Kollár, and Alexey V. Gorshkov, "Quantum sim-
ulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry," Phys. Rev. A 102, 32208 (2020).
[2] Sigurdur Helgason, "Non-Euclidean Analysis," in NonEuclidean Geometries, edited by Andras Prekopa and Emil Molnar (Springer, 2006).

