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Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid
dephasing in many-body Rydberg ensembles [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016)].
Such broadening has serious implications for many proposals to coherently use Rydberg interactions, particularly
Rydberg dressing proposals. The dephasing arises as a runaway process where the production of the first
contaminant atoms facilitates the creation of more contaminant atoms. Here we study the time dependence of
this process with stroboscopic approaches. Using a pump-probe technique, we create an excess “pump” Rydberg
population and probe its effect with a different “probe” Rydberg transition. We observe a reduced resonant
pumping rate and an enhancement of the excitation on both sides of the transition as atoms are added to the
pump state. We also observe a time scale for population growth that is significantly shorter than predicted by
homogeneous mean-field models, as expected from a clustered growth mechanism where high-order correlations
dominate the dynamics. These results support earlier works and confirm that the time scale for the onset of
dephasing is reduced by a factor which scales as the inverse of the atom number. In addition, we discuss several
approaches to minimize these effects of spontaneous broadening, including stroboscopic techniques and operating
at cryogenic temperatures. It is challenging to avoid the unwanted broadening effects, but under some conditions
they can be mitigated.
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I. INTRODUCTION

The dense level spacing of Rydberg atoms can be both
a blessing and a curse. The strong polarizability of these
highly excited states gives rise to giant interactions which,
along with extended lifetimes, make them appealing candi-
dates for engineering a variety of many-body Hamiltonians.
Strong interactions are central to many-body experiments,
including quantum magnetism [1,2] and quantum information
processing [3–5]. Numerous proposals with varying levels
of controllability and time scales use Rydberg interactions
[1,6–14]. Importantly, Rydberg dressing proposals aim to
engineer long-lived, interacting states by weakly admixing
a Rydberg state with the ground state using off-resonant
laser coupling [9–19]. While Rydberg dressing has been
demonstrated for small atomic ensembles (100 atoms or
fewer) and for short time scales [20,21], in the many-body
regime success at coherent off-resonant dressing has been more
elusive [22–26].

A major limitation not addressed by these proposals is a
blackbody-induced avalanche dephasing effect, where the run-
away production of atoms in strongly interacting contaminant
states of opposite parity significantly decreases the available
coherence time [20,22–24]. Given the potential applications of
coherent Rydberg control, it is crucial to take such dissipative
dynamics into account. Therefore, charting the properties of
this source of decoherence is important for the development
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of Rydberg-based quantum computation and simulation. This
work is such an effort, focusing on the dephasing’s time
dependence and impact on current research.

In order to study the time dependence of this broadening
mechanism, we use a pump-probe technique where excitation
to a “pump” Rydberg state induces broadening on a separate,
“probe” Rydberg transition. Additionally, we study the early-
time dynamics on a single Rydberg transition using both
a stroboscopic approach and photon-counting measurements
and show that homogeneous mean-field assumptions under-
estimate the speed of the avalanche process by an order of
magnitude. This is a strong indication of the highly correlated,
locally seeded nature of this avalanche process [27,28], which
is relevant to the question of bistability in large, strongly
interacting systems [29]. Both this correlated turn-on and
the observation of a giant steady-state broadening rely on
antiblockade mechanisms [29,30]. Finally, we discuss experi-
mental parameters that might be tuned to extend coherence
times, including operation at cryogenic temperatures and
stroboscopic application of the excitation light.

II. EXPERIMENT

In a room-temperature radiation environment, a Rydberg
atom has a significant probability to undergo a blackbody-
stimulated transition to a Rydberg state of opposite parity
[31,32], most probably changing the principal quantum num-
ber by 0 or 1. A single atom in such a state has extremely
strong dipole exchange interactions with subsequently excited
Rydberg atoms of the original parity [33–36]. For two atoms
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FIG. 1. Interaction mechanism: Blackbody-dominated decay
from the Rydberg state produces nearby p states (|p〉), which trigger
an off-diagonal dipole-exchange interaction of the form |p,s ′〉 →
|s ′′,p′〉. This creates a dipole-dipole exchange interaction between
two different Rydberg s states. For some orientation and distance r
between the dipoles, this brings atom 2 into resonance and the excita-
tion is enhanced (antiblockade). This energy shift inhomogeneously
broadens the transition in the sample, as represented by the gray
shading on |s ′〉 and |s ′′〉. If |s〉 = |s ′〉, we are in the “self-broadening”
situation where a single s-state transition is broadened via the p states
created from it.

separated by r , the interaction energy has the form [37,38]

V̂dd (r) = 1

4πε0

d̂1 · d̂2 − 3(d̂1 · n)(d̂2 · n)

|r|3 , (1)

with n = r/|r|, and where d̂i is the electric dipole operator
of atom i. Because of the strength of the dipole interaction
(scaling with the fourth power of the principal quantum
number) and the 1/r3 long-range character, a single perturber
atom can affect many other atoms, potentially the entire
sample. The contaminant atom shifts the transition energies
of the atomic ensemble and modifies the remaining atoms’
spectroscopic properties.

Figure 1 illustrates the generic case where p states orig-
inating from the decay of one s-state population dephase a
different s-state transition (“cross broadening”). In the case
where there is only one s state involved (|s〉 = |s ′〉 = |s ′′〉 in
Fig. 1), that state is dephased by the product of its own decay
(“self-broadening”).

We focus first on the simpler self-broadening mecha-
nism: an off-resonant excitation (central to Rydberg dressing
proposals) can resonantly excite atoms in the presence of
contaminants, facilitating production of more contaminant
Rydberg population [39] on both sides of the resonance.
The process results in a rapid dephasing of the sample
[40]. The interacting, dynamical excitation process can be
complicated [28,29], but since it is triggered by the first
blackbody decay, its onset occurs on a time scale that is
N times faster than the single-atom scattering rate would
indicate; here, N is the total number of atoms [20,24]. The
subsequent runaway excitation quickly reaches steady-state
Rydberg populations, effectively broadening the transition.
Previous work explored the impact of similar, controlled

contaminant Rydberg populations [31,33–35]. However, the
systematic appearance of uncontrolled contaminants has only
recently been recognized [20,24] and a dynamic description
was missing.

Since the resonant dipole interaction with the contaminant
atoms exists for any of the various Zeeman or hyperfine states,
cross broadening should occur between transitions to two
different Rydberg states, as shown in Fig. 1. Contaminant
population in state |p〉 produced by blackbody decay from |s〉
can broaden subsequent excitation to a separate state |s ′〉. This
suggests the possibility to study the broadening mechanism
using a strong “pump” excitation to create contaminant
Rydberg population, and a weak “probe” transition to measure
the population’s impact on linewidth. This approach has
the benefit that the amount and time dependence of the
contaminant population can be controlled independently from
the probing transition [30]. Here we use excitation to two
different Rydberg hyperfine states to study the broadening
mechanism.

A. Experimental details

The details of our experimental setup are described in [24]
and [41]. Briefly, the apparatus is used to create 87Rb Bose-
Einstein condensates (BECs) of N ≈ 4 × 104 atoms initially in
the |F = 1,mF = −1〉 ground state. Arbitrary fractions of the
atoms can be transferred to any other state within the ground
hyperfine manifold via microwave rapid adiabatic passage. We
quantize the interatomic distances by loading the 87Rb BECs
into a three-dimensional (3D) optical lattice made with 812
nm light, resulting in a lattice spacing of 406 nm [41]. We then
excite atoms to the 18S1/2 state using a two-photon transition
via the 5P1/2 intermediate state [Fig. 2(a)]. The van der Waals
(vdW) blockade radius is defined as the distance below which
the interactions are larger than the collective two-photon Rabi
frequency [42]: for the present experimental scheme, it is
smaller than the lattice spacing. This corresponds to a vdW
energy EvdW = 2π × 2.1 MHz. We note that the lattice is also
instrumental in suppressing superradiant Rayleigh scattering
[43]. The 485 nm light coupling 5P to 18S is common to both
(pump and probe) two-photon transitions. The intermediate-
state detuning is |�/2π | ≈ 240 MHz and the single-photon
Rabi frequencies are independently calibrated: �1/2π = 0 to
10 MHz (on the 5S − 5P transition) and �2/2π ≈ 25 MHz
(on the 5P − 18S transition). The two lasers are stabilized to
the same high-finesse optical cavity with <10 kHz linewidth,
and are polarized and tuned to couple the ground hyperfine
states to the desired |18S1/2,Fi,mF i〉 states (where i = {probe,
pump}). Separate pump and probe excitation laser beams at
the 5S − 5P transitions can be applied, while we apply only
one 5P − 18S beam. The two-photon detunings δi and Rabi
frequencies �i = �1,i�2,i/2� are independently tunable for
each transition. The postexcitation populations in all of the
ground hyperfine states (including those optically pumped to
states different from |g〉 and |g′〉, the pump and probe states)
are separated in time of flight with a Stern-Gerlach magnetic
field gradient and measured via absorption imaging. We scan
the various parameters and count the fractional population
remaining in the ground states |g〉 and |g′〉 to obtain spectra
of the transitions. The values and uncertainties of the widths
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FIG. 2. Cross-state broadening. (a) The ground state is divided
into a fraction f in the “probe state” |g′〉 (highlighted by a green
square), leaving 1 − f in the “pump state” |g〉. Here f = 0.25,
so that contaminant p atoms come predominantly from the pump
while leaving enough atoms participating in the probe transition
for a sufficient signal to noise ratio. The excitation to 18S is done
via a two-photon transition with the 5P1/2 intermediate state: the
intermediate detuning � is much greater than the single-photon
Rabi frequencies and than the two-photon detuning δprobe (not to
scale on this figure). The pump population is driven resonantly
to |s〉 = |18S,2,−2〉 with two-photon Rabi frequency �pump. (b)
Example of broadening due to the presence of pump-induced Rydberg
population. The blue (red) curve is the probe spectrum with the pump
turned off (on). The fits are Lorentzian and are used to estimate the
resonant rates R0, the widths �, and their uncertainties throughout
this work. (c) Probe transition widths and resonant excitation rates
as a function of the fraction of |g〉 that was pumped to other states
during the 300 μs excitation. We observe a doubling of � and a
significant decrease of R0 between no pump and the maximum
pumped population.

presented in this work are derived from fits of these spectra,
each containing at least 50 data points.

Figure 2(a) describes the pumping scheme: In the ground
state, the atomic sample is divided into a small probe popula-
tion (fractional density f ) in a state |g′〉 = |5S,F = 2,mF = 1〉
within the ground manifold, and a large pump population
(fractional density 1 − f ) in the state |g〉 = |5S,F = 2,mF =
−2〉. The atoms are then excited to their respective pump or
probe Rydberg state within the 18S hyperfine manifold via
two-photon excitation: the pump is tuned to the |g〉 → |s〉 =
|18S,F = 2,mF = −2〉 transition, while the probe is tuned
near the |g′〉 → |s ′〉 = |18S,F = 1,mF 〉 transition, which is
shifted by the 18S hyperfine splitting �HF = 2π × 10 MHz.
Here, mF = {1,0,−1} depends on the choice of probe laser
polarization. We can pulse both 795 nm beams (probe and
pump), which can be delayed by �t relative to one another
[see Fig. 3(a)]. The 485 nm light is kept on for the entire pulse
sequence.

We also have access to the time-resolved total density of
18S atoms, through collection of the fluorescence photons
emitted on the 5P3/2 − 5S1/2 transition [24]. The fluorescence
scales with the optical pumping signal and is proportional to
the number of 18S atoms. It is collected by a lens relay system
(NA = 0.12) with an interference filter to block the 5S − 5P1/2

excitation light, detected by a single-photon avalanche diode,
time tagged with 21 ns resolution, and summed over many
repetitions. For technical reasons, including the fact that this
method cannot discriminate between different states of the 18S

hyperfine manifold, we use it to gain insight into the dynamics
of the dephasing for a single transition (i.e., for the case of
self-broadening).

B. Cross broadening

We first explore the cross broadening using the |g′〉 →
|s ′〉 = |18S,1,−1〉 probe transition, shown in Fig. 2(a). With
a fixed two-photon probe Rabi frequency �probe = 2π ×
14 kHz � �0 and a single, simultaneous (�t = 0) excitation
time tp = 300 μs for both transitions, we take excitation
spectra on the probe transition at different pump Rabi fre-
quencies �pump. �0/2π = 45 kHz is the linewidth of the 18S

transition, including blackbody radiation. Example spectra are
shown in Fig. 2(b) for two cases: with and without pump
excitation. The cross-broadened spectra are reasonably well
described by Lorentzian functions, and we fit the data to
extract the Lorentzian width � and the amplitude (along with
their uncertainties). The average resonant excitation rate R0 of
probe atoms is determined from the fitted amplitudes, given
the excitation time and the branching ratios to other states in
the ground hyperfine manifold.

The probe spectra show a significant modification of both
the resonant excitation rate and the width as a function of
�pump. We note that the range of available �pump is limited
by the constraint that the excitation time tp must be long
enough to give good signal to noise on the weakly excited
probe transition. On the other hand, �pump should not be so
large as to significantly deplete the pump-state population in
|g〉, in which case the steady-state population in Rydberg state
|s〉 would decay during the probe pulse.
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FIG. 3. Delayed pulses experiment. (a) To observe cross-
broadening effects, we chop both 795 nm beams (probe and pump)
into pulses, which can be delayed relative to one another. The 485 nm
light is kept on. (b) Pump-induced slowdown of resonant excitation,
visible in the number of atoms remaining in the probe ground state as
a function of excitation time NpT . The two examples here, fitted with
exponentials, are for �t = 0 μs (red) and �t = 40 μs > tp (blue).
We observe rates of R�t=0 μs = 1.8 ± 0.13 ms−1 and R�t=40 μs =
3.3 ± 0.14 ms−1. (c) Following the sequence in (a), we observe a
broadening that depends on the overlap of the pulses. We focus on
the turn on time (probe before pump, corresponding to negative δ for
a pump pulse at �t = 0 μs). The red zones represent the pump pulse,
while the green bands show the probe pulse width. The gray dashed
line is the (self-broadened) width obtained when the pump is turned
off. Spectra corresponding to a high p population are obtained for
�t � 0 μs and spectra corresponding to no pump population (pump
turned off, marked by the dashed line) are recovered for |�t | � tp .
This is visible around �t = −40 μs, when the probe is delayed well
beyond the lifetime of the Rydberg states. The red line is the result
of the nonlinear mean-field theory.

Figure 2(c) shows the probe width � and excitation rate R0

for different �pump/2π ranging from 0 to 20 kHz, plotted as
a function of the fraction of atoms pumped out of the state
|g〉 during the excitation time tp. Note that this is proportional
to the number of steady-state contaminant atoms, at least for
small fractions. The width observed on the probe transition
without pump is �/2π � 10�0/2π = 450 kHz, indicating
some self-broadening. This is a constant effect for fixed �probe

and is compatible with the steady-state � scaling observed
previously [24] on a single transition,

� � �
√

βρ0, (2)

where ρ0 is the density of ground-state atoms and β is an
effective interaction volume inherent to the Rydberg state
defined as

β =
∑ ∣∣C(nP)

3

∣∣bnP�
-1
nP, (3)

where the sum is over the nP states that have substantial
dipole interactions with, and branching ratio from, the 18S

state. Here, bnP are the branching ratios to the nP states, �nP

are their decay rates, and C
(nP)
3 are effective dipole interaction

strengths (including the root-mean-squared average of the
angular dependence of C3 [24]). When the pump is on, the
width of the probe transition is increased by up to a factor
of two, while the amplitude is reduced by four, showing that
the pump creates a significant cross broadening due to the
p-state population. The enhanced off-resonant excitation rate
in the presence of the pump is indicative of pump-induced
facilitation dynamics [30]. The observation of broadening
between independent populations with independent transitions
provides evidence for interaction between atoms and rules out
superradiant broadening effects.

C. Cross-broadening dynamics

Atoms in s and p states can obviously only interact when
present simultaneously. To demonstrate the simultaneous
nature of the cross broadening, we chopped the 795 nm
excitation light for both excitations into pulse trains and studied
the effect of nonoverlapping pump and probe light. Each
pulse had a length of tp = 30 μs ∼ 10τ0 separated by a dark
time of tdark = 3tp, such that the total period was T = 4tp =
120 μs. For fixed Rabi frequencies �probe = 2π × 15 kHz and
�pump = 2π × 20 kHz (corresponding to the largest width
seen in Fig. 2), we vary the delay �t between the probe and
the pump pulse trains. We chose tp to be long compared to the
onset of the avalanche dephasing, and the dark time following
each pulse in both excitation (probe and pump) to be long
with respect to the lifetime (3–10 μs) of the various s and p

Rydberg populations.
As expected, the cross broadening and cross saturation

are absent when the probe and pump pulses are out of
phase. Figure 3(b) shows the resonant decay of |g′〉 at fixed
δprobe = δpump = 0 for two delays: �t = 0 μs (overlap) and
�t = 40 μs (no overlap). The total excitation time is varied
by changing the number of pulses, and the rates are extracted
from exponential fits. The observed rate for simultaneous
excitation (R�t=0 μs = 1.8 ± 0.13 ms−1) is slower than for
nonoverlapping excitation (R�t=40 μs = 3.3 ± 0.14 ms−1).
Figure 3(c) shows the extracted width for probe spectra taken
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at different �t . We observe a variation of the linewidth as a
function of the delay. For �t = 0 μs, we recover the same
result as with the maximum p population in Fig. 2(c). We
also observe the same width as without any pump light when
the two pulse trains are nonoverlapping and separated by long
enough dark times for their Rydberg populations to decay.

To study the dynamics of contaminant p-state popula-
tion, we measured the probe spectral width as a function
of pump-probe delay �t over a full period T . For this
experiment, we chose |s ′〉 = |18S,F = 1,mF = 1〉 as a probe
state. The �mF = 3 between the probe and the pump s

states implies a process of the type |p,s ′〉 ↔ |s ′′,p′〉, where
|mF,p − mF,s ′′ | � 1 and |mF,s ′ − mF,p′ | � 1, and where |p〉 
=
|p′〉 and |s ′〉 
= |s ′′〉( since |mF,p − mF,s ′ | � 2). In order to
get a significant two-photon Rabi frequency for both pump
and probe transitions, we used as before an intermediate-state
detuning � ≈ 2π × 240 MHz, but this time blue detuned of
the |5S,F = 2〉 → |5P1/2,F = 2〉 transition [Fig. 4(a)]. Here,
tp = 20 μs and T = 80 μs. Figure 4(b) shows the width as
a function of the delay. The largest value is observed for
overlapping pulses, here too indicating that the pump pollutant
population dephases the probe population. We note that the
strength of the dipole exchange is almost the same as for
the |18S,F = 1,mF = −1〉 probe state, despite the fact that
�mF = 3.

The shape and amplitude of the time-dependent signal are
captured by a nonlinear rate-equation model, described below.
It uses a single fit parameter, i.e., the effective interaction
strength Ccross

3 between the pump p state (s state) and the probe
s state (p state). Interestingly, the model is consistently ∼10 μs
delayed with respect to the experiment; see the red solid lines in
Figs. 3(c) and 4(b). As discussed below, this is likely a failure of
the model’s homogeneous mean-field assumptions to capture
early-time dynamics due to strong local correlations (cluster
dynamics) from which the pollutant population is seeded.

The cluster dynamics suggests a finite growth time.
Therefore, for an excitation pulse short enough to avoid
the p-state creation, the self-broadening might be avoided.
Using a single |5S → 18S,F = 2,mF = −2〉 transition, we
measured the linewidth as a function of pulse width tp, using
pulse trains in a similar fashion as shown in Fig. 3(a) but
without probe light. Spectra were taken at different tp while
keeping the total excitation time tpNp constant (where Np

is the number of pulses). To allow all excited population
to decay in between pulses, the dark time was kept long
compared to τ0: tdark � 20τ0 � 10�−1

nP . The observed width
is presented in Fig. 5. There is a clear decrease of the width
at short times, up to three times narrower than the steady-state
observations. At very short pulse widths, however, Fourier
broadening begins to dominate, and the narrowing is limited
to pulse times tp � 2 μs. We observe a time of about 10 μs
to reach the steady state and infer a time scale of a few
hundreds of nanoseconds for the onset of the broadening. The
nonlinear rate-equation model (described below) captures the
steady-state dephasing (outside the plot range) and the global
shape of the time evolution. The speed at which the steady
state is approached is, however, consistently underestimated
by the model. As discussed below, this slow rise time is likely
the result of the homogeneous mean-field assumption used
here.

FIG. 4. The �mF = 3 case. (a) Pumping scheme for two states
separated by �mF = 3. The pump population is driven resonantly
to |s〉 = |18S,2,−2〉, while the probe transition is driven to |s ′〉 =
|18S,1,+1〉. (b) Time dependence of the pump-probe experiment.
The red zones represent the times the pump is on, while the green
bands show the probe pulse width. The gray dashed line is the (self-
broadened) width obtained when the pump is turned off. Again we
observe a spectral width increase when in phase, relative to out of
phase. This plot spans the full period T and shows an asymmetry
between having the probe after (0–40 μs) or before (40–80 μs) the
pump. A rate-equation theory [see Eqs. (5)–(8)] shows (red line) the
correct shape, including asymmetry, but consistently has a delay of
∼10 μs.

D. Nonlinear rate-equation model

We compare the self-broadening data to a simple ho-
mogeneous nonlinear rate-equation model, which is a good
approximation for situations with strong decoherence [27,44].
We approximate the system with three coupled populations
[ground (g), Rydberg (18S), pollutant (nP)], treating all the
pollutant states as a single effective state:

Ṅg = (N18S − Ng)R + �0b1N18S + �nPb3NnP, (4)

Ṅ18S = (Ng − N18S)R − �0N18S, (5)

ṄnP = b2�0N18S − �nPNnP, (6)
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FIG. 5. Stroboscopic excitation on a single transition. Observed
self-broadened width (blue) of the pump transition as a function
of the individual pulse width. Here a single |18S,2,−2〉 population
is excited with a Rabi frequency � = 2π × 66 kHz. Below tp ≈
3τ0 (where τ0 is the 18S lifetime), the broadening decreases, with
a reduction of the width by a factor of ∼3. However, the natural
linewidth (black dashed line) cannot be recovered via this scheme due
to the fundamental Fourier limit (red line, delimiting the forbidden
region in gray). Here too the homogeneous mean-field prediction
(green line) is slower than observed. The dashed green line shows the
prediction for homogeneous mean-field plus Fourier broadening.

where b1 = 0.49 is the branching ratio from the 18S states
back to |g〉 = |5S,F = 2,mF = −2〉, b2 = ∑

nP bnP
2 = 0.18 is

the branching ratio of the decay from |18S,F = 2,mF = −2〉
to the effective pollutant state, and b3 = 0.55 is the branching
ratio from the effective pollutant state back to |g〉. Decay of
the total population represents atom loss and optical pumping
to detection ground states. The interactions are modeled under
a homogeneous mean-field assumption that the 18S dephasing
rate depends on the typical density of pollutant atoms,

�(t) = �0 + C3ρ0NnP(t), (7)

where ρ0 is the density of atoms (in any state), NnP is
the fraction of these atoms in the pollutant state, and C3 �
2π × 35 MHz μm3 is the average of the C

(nP)
3 interaction

strengths used in Eq. (2). The dephased excitation rate,
including broadening and saturation, is then taken to be the
time-dependent form

R(t) = �(t)

2

2�2

4δ2 + �2(t)
. (8)

This model is consistent with the steady-state limit presented
in Eq. (2). As shown in the Appendix, the model used for
the cross-broadening experiment consists of a pair of such
three-level systems coupled to each other by adding a cross-
interaction term Ccross

3 ρ0N
pump (probe)
nP in the systems’ respective

dephasing rates �probe (pump).
To compare with the experiment, we calculated (both for the

self- and cross-broadening cases) the time dependence of the
populations, starting with all atoms in the ground state(s). The
optically pumped population that serves as our experimental
signal is determined from the number of atoms remaining in

the probe ground state at the end of the pulses, Ng(t). This
is repeated at a range of detunings to construct a simulated
spectrum, from which we determine a width by fitting a
Lorentzian.

For the delayed-pulse cross-broadening experiment, the
model’s results are shown as a red line in Figs. 3(c) and
4(b). It correctly predicts the overall time dependence with
only one free parameter, Ccross

3 , for which the extracted value
is Ccross

3 � C3/10 = 2π × 3.5 MHz μm3. It also captures the
observed asymmetry on turn on and turn off of the pump in
Fig. 4(b), but is delayed relative to the data by ∼10 μs. We note
that the time scale for relaxation to the probe-only width takes
somewhat longer than the nP lifetime, which is indicative of
the dynamics of facilitated excitation [29].

To gain better insight into this behavior, we look at the
model’s result for a pump-only pulsed excitation and compare
it to the equivalent self-broadening experiment. This is shown
as the green line in Fig. 5. Although the model tends to
capture the late-times widths [24,28] (the experimental value
is recovered at long times, outside of the plot range in Fig. 5), it
consistently gives slower dynamics than observed experimen-
tally. Since the growth of the pollutant population is expected
to occur through an aggregation process similar to [39], strong
correlations arise quickly after the first pollutant atom is
created. A single atom in an nP state can shift some fraction
of surrounding atoms into resonance, leading to fast excitation
in an antiblockade, clustered dynamic [29,30]. Therefore,
as recently highlighted [28], inhomogeneity and high-order
correlations likely account for the faster experimental time
scale.

This is confirmed by comparing the calculated 18S popula-
tion dynamics to the corresponding experimental observation,
obtained with fluorescence photon counting. The detected
fluorescence (proportional to 18S population) vs time is
presented in Fig. 6 for detunings δ/2π = 0, ±2.1, and
3.9 MHz on a single transition (pump only). Here we chose
� = 2π × 140 kHz. In all the data, the dephasing’s effect
appears earlier than in the homogeneous mean-field theory. For
detuned light [Figs. 6(b) and 6(c)], the calculated facilitated
excitation in the model happens on a time scale at least twice as
long as in the experiment. For the resonant case [Fig. 6(a)], the
decrease of the pumping rate (blockade effect) also happens
later in the model, which manifests itself as a large overshoot at
early times. This overshoot is also present in the data, but with
a lower amplitude, indicating that the correlated dynamics
starts the dephasing earlier. It is important to note that the
presence of an overshoot in the data implies a finite time for the
dephasing to occur. This demonstrates the existence of a third
state (or set of states), since 18S − 18S interactions cannot
produce such an overshoot. This state, the existence of which
is directly demonstrated here, is necessarily the nP population,
as verified by the experimental observations [20,22,24,45] in
which it was originally inferred.

III. APPROACHES TO MITIGATE BROADENING

Given the range of applications of Rydberg atoms, it is
worthwhile to consider possible approaches to minimize the
impact of this decoherence mechanism.
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FIG. 6. Photon counting on a single transition. Observed 5P3/2 −
5S fluorescence (blue trace) vs time. The detected fluorescence
is proportional to the 18S population. Here a single |18S,2,−2〉
population is excited with a Rabi frequency � = 2π × 140 kHz
(light red areas). The red line is the model. (a) Resonant case: an
overshoot is visible in both the data and the model, signaling the
presence of the nP population. Since the model is slower to produce
pollutants, the overshoot in the model has more time to grow at
the full single-particle rate than in reality. (b),(c) Detuned case:
since the facilitated excitation relies on a pollutant population, the
18S population is slower to rise in the model than experimentally
observed, confirming the faster-than-homogeneous mean-field prop-
erty of the avalanche dephasing. Since the experimentally observed
broadening is symmetric, the sign of the detuning does not change
these observations.

A. Stroboscopic excitation

The fast but delayed turn on of the broadening shown in
Figs. 5 and 6 indicates that the contaminant dephasing might
be partially avoided by pulsing the Rydberg coupling on a
short enough time scale tp, followed by sufficiently long dark
time tdark. To allow for decay of any detrimental population,
tdark = Aτ0, with A � 1 (to avoid the runaway process on the
next pulse). The average time τc until the first contaminant-
state atom appears provides an estimate of the actual coherent
time available before the avalanche excitation is triggered.
The associated rate τ−1

c is roughly the number of atoms in the

Rydberg state, N ( �
2δ

)
2
, times the rate at which this state decays

to contaminant states. Therefore, given a sample with a total
of N atoms participating in the dressed excitation, an estimate
for τc is [24]

τc

τ0
= 4δ2

�2

1

bnLN
≡ Nc

N
, (9)

where bnL is the sum of the branching ratios from the general
nL Rydberg-dressed state (with n the principal quantum
number and L = S,P,D, . . . the angular momentum) to the

contaminant states contributing to the effective interaction
volume β. Nc = 4δ2/�2bnL is the number of atoms above
which stroboscopic approaches will start to significantly
diminish the dressing potential strength. The effective N may
be suppressed (at short times) for systems in which a significant
fraction of atoms is within a |s〉 − |s〉 van der Waals blockade
distance. However, the |s〉 − |p〉 dipole-dipole interaction is
much stronger and longer ranged than the van der Waals
interaction, and once the contaminant |p〉 states are produced,
the dipole broadening mechanism dominates. We note that
since τ0 increases with principle quantum number n (and bnL

increases weakly with n), increasing n will improve the overall
time scale [42] before decoherence starts. Nevertheless, the
decrease of τc with increasing atom number N is still present
even at large n. Additionally, the situation is reversed after the
first pollutant has appeared: C3 increases with n and therefore,
once started, the dephasing is stronger at higher n.

For experiments where the observable does not rely on
correlations being preserved during the dark time and is
on a much longer time scale than the total stroboscopic
period T (which will not always be the case), the dressed
interaction during tp < τc could be averaged across many
pulses. In principle, it would then be possible to avoid the
avalanche dephasing. The available average interaction for a
given coupling � and detuning δ would be decreased, however,
by the duty cycle tp/T < τc/(τc + Aτ0). The short-distance
dressed interaction energy U = �4

8δ3 [17] is then limited to

U ∗ �
(

�4

8δ3

)
Nc/N

A + Nc/N
. (10)

For Nc/N � A, the stroboscopic approach gives a time-
averaged interaction energy only slightly suppressed, U ∗ �
U . In the opposite limit Nc/N � A (which includes N �
Nc since A � 1), the average interaction scales as U ∗ �
UNc/AN � U . For experimentally reasonable parameters of
δ/� � 10 and bnL � 0.2, Nc � 2000. Fourier broadening pro-
vides a further fundamental limit to the stroboscopic approach.
Avoiding Fourier-broadened excitation requires δ−1 � tp <

τc, which sets the additional constraint N � Ncδ/�0.

B. Cryogenic temperatures

The time τc before the first contaminant-state atom appears
depends on the ambient temperature through bnL and τ0.
This is shown in Figs. 7(a) and 7(b) for the example of
87Rb nS Rydberg states. These plots were obtained using the
estimates from Ref. [46] and the quasiclassical formulas in
Ref. [47]. It is clear that lowering the ambient temperature
increases τc, as well as increases the value of Nc for the
stroboscopic approach. This is mainly due to the reduction of
the branching ratio to nearby states bnL. At room temperature,
there is significant blackbody-driven decay to nearby states
rather than by radiative decays to low-n states, due to the
small energy difference between neighboring Rydberg states.
Suppressing blackbody radiation at low temperatures makes
the spontaneous decay to low-lying states the dominant
channel.

Avalanche dephasing limits the coherence below the
single-particle scattering time when τc < 4δ2

�2 τ0. For a given
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(a) (b)

(c)

FIG. 7. Temperature scaling. (a) Temperature dependence of the
sum of branching ratios b from the different nS states to the
contaminant nP states playing a significant role in the avalanche
dephasing process. (b) Effective lifetime τ0 (determined by spon-
taneous emission and blackbody radiation-induced transitions) for
different nS 87Rb Rydberg states as a function of the ambient
temperature. (c) Temperature T ∗

N needed to compensate for the
dephasing effect as a function of N . The sharp drop stems from
the intrinsic branching ratio to contaminant states: even at zero
temperature, there is a nonzero chance to produce a contaminant
atom.

atom number N , we estimate the temperature T ∗
N at which

the dephasing time τc becomes smaller than the room-
temperature single-particle scattering time, namely, the tem-
perature at which τc(T ∗

N ) = 4δ2

�2 τ0(300 K). T ∗
N vs N is shown in

Fig. 7(c).
Rydberg-dressing proposals [9–12] and experiments [20]

making use of samples with N ∼ 30–100 would need an
ambient temperature near 10 K to make up for the avalanche
dephasing effect. The detrimental effects of contaminant states
on systems with even lower atom number (N ∼ 10; see
Refs. [13,14]), already small at room temperature, would
become negligible for temperatures around liquid nitrogen,
i.e., 77 K. On the other hand, avoiding contaminant dephasing
in proposals relying on N � 103, as in Ref. [24], does not
seem feasible by going to lower temperatures. This is visible
in Fig. 7(c) as a sharp drop to T = 0 K for the temperature
needed to avoid the avalanche dephasing at high atom numbers,
due to the always-finite value of spontaneous radiative decay
rates.

A possible solution would be to suppress spontaneous decay
with an off-resonant cavity in a sufficiently cold cryogenic
environment (for example, dilution refrigerator techniques
can reach T � 0.1 K), e.g., with a superconducting cavity.

For a conductor separation smaller than the spontaneous-
emission wavelength, the Rydberg excitation cannot decay to
vacuum modes and spontaneous decay is suppressed [48,49].
Suppressing both blackbody and spontaneous decay channels
has the capacity to avoid the avalanche dephasing issue, despite
substantial technical challenges.

C. Other approaches

Quenching contaminant atoms. One possibility to limit the
impact of pollutants is to significantly shorten their lifetime so
they do not live long enough to begin the avalanche process.
This could be achieved, for example, by laser coupling the
contaminant states to lower-lying, short-lived states. This
approach should work in principle, but is challenging to realize
experimentally because of the large number of states with
appreciable C3 coefficient with the targeted dressing state,
requiring quenching of many states at once. Indeed, for a nS

initial Rydberg state, there are at least four significant pollutant
states: nP1/2, nP3/2, (n − 1)P1/2, and (n − 1)P3/2, plus all
their hyperfine levels (if they are spectrally resolved). For an
initial Rydberg state with L � 1, the number of significantly
contributing neighbor states increases rapidly, requiring a large
number of quenching lasers.

EIT dressing schemes. The idea of taking a new approach
to Rydberg dressing [25] has also been discussed as a potential
way out of the avalanche dephasing [42]. The idea presented in
Ref. [25] uses resonant light in a two-atom electromagnetically
induced transparency (EIT) condition to achieve a Rydberg
dressinglike interaction potential. The double excitation to a
Rydberg level of the atom pair can be tuned to a near-dark
state (EIT condition). This reduces the Rydberg fraction of the
final state, while achieving the same hallmarks as traditional
Rydberg dressing. This method shows an increase of about an
order of magnitude in the interaction strength compared to the
usual dressing scheme for strontium, and is about as effective
as the usual dressing for rubidium.

This scheme suffers as well from the avalanche dephasing:
the dressing interaction stems from a nonzero Rydberg
fraction, which can trigger the avalanche process in large
ensembles. The data shows clear signs of early decoherence
[23,25]. The tenfold improvement in U for strontium does,
however, mean that fewer atoms are needed to achieve the
same interaction energy as with the classic scheme. This
presents an additional way to reduce somewhat the impact
of the avalanche decoherence, at least for Rydberg systems
with narrow intermediate-state transitions.

Postselection. Once triggered, the avalanche process occurs
very quickly, resulting in dramatic ground-state excitation and
loss. The authors in Ref. [20] took advantage of this fact by
postselecting the experimental runs where the avalanche never
occurred. While this approach does not effectively increase
the average time scale for the experiment or change its scaling
with N , it does allow for selecting contaminant-free data, at
the expense of a decreased data rate. In Ref. [20], even for a
relatively short experimental time t ∼ τ0(n) (the state lifetime)
and for N � 100, half the experimental runs were corrupted.
We note that postselection could increase the parameter regime
where stroboscopic approaches work, relaxing somewhat the
constraints on that approach.
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IV. CONCLUSION

In conclusion, we presented a set of experiments studying
the rapid onset of decoherence systematically observed in
large Rydberg ensembles. The data supports the proposed
explanation [24] that the runaway production of atoms in
contaminant Rydberg states, triggered by blackbody decay, is
the source of the broadening. This decoherence mechanism is
important to consider, as it should be present in any experiment
with steady-state Rydberg population, such as Rydberg dressed
systems or Rydberg-based quantum information processing.
Our results also point towards the difficulty of avoiding the
issue. We provide and discuss several ideas to reduce the
impact of this effect, among which cryogenic operation has the
highest figure of merit, especially if used in conjunction with
cavity techniques, despite the inherent technical challenges.
None of the proposed solutions, however, offer an easy way
to evade the avalanche decoherence, but a combination of
approaches may provide a way to mitigate the effect on current
experiments.

On the other hand, this mechanism can be used to explore
highly correlated, many-body dynamics [28], such as anti-
blockade on both sides of the Rydberg transition (“anomalous
facilitation” of excitation [30]), and related cluster growth
dynamics [29,50]. The large (contaminant-induced) anoma-
lous facilitation and the faster-than-homogeneous mean-field
excitation rate seen here provide a strong indication of cluster
growth dynamics in our system. In addition, such interaction-
induced dephasing may have practical applications in few
Rydberg systems, such as in the isolation of single-Rydberg
excitations for entanglement generation [51].
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APPENDIX: CROSS-BROADENING
RATE-EQUATION MODEL

As described in the main text, the simple three-level rate-
equation model was extended to six states in order to account
for the two (pump and probe) species and the cross interaction.
This more general model takes into account both the effect of

the pump on the probe and the effect of the probe on the pump.
The full set of equations is

Ṅ1,g(t) = [N1,18S(t) − N1,g(t)]R1(t) + b1,1�0N1,18S(t)

+ b3,1�nPN1,nP(t) − �1,DN1,g(t), (A1)

Ṅ1,18S(t) = [N1,g(t) − N1,18S(t)]R1(t) − �0N1,18S(t), (A2)

Ṅ1,nP(t) = b2,1�0N1,18S(t) − �nPN1,nP(t), (A3)

Ṅ2,g(t) = [N2,18S(t) − N2,g(t)]R2(t) + b1,2�0N2,18S(t)

+ b3,2�nPN2,nP(t) − �2,DN2,g(t), (A4)

Ṅ2,18S(t) = [N2,g(t) − N2,18S(t)]R2(t) − �0N2,18S(t), (A5)

Ṅ2,nP(t) = b2,2�0N2,18S(t) − �nPN2,nP(t), (A6)

with the same mean-field assumption that the 18S dephasing
rate depends on the typical density of pollutant atoms:

R1(t) = �1

2

2�2

�2
1 + 4δ2

1

, (A7)

R2(t) = �2

2

2�2

�2
2 + 4δ2

2

, (A8)

�1 = �0 + C3ρ0N1,nP + CCross
3 ρ0N2,nP, (A9)

�2 = �0 + C3ρ0N2,nP + CCross
3 ρ0N1,nP, (A10)

where b1,i is the branching ratio back to the ground state of
species i, b2,i = ∑

nP bnP
2,i is the branching ratio of the decay

from the 18S state to the pollutant states, here taken as equal
for i = 1 (pump) and i = 2 (probe), and b3,i is the branching
ratio from the effective pollutant state of species i back to
the ground state of the same species. δi is the two-photon
detuning. Since the pump is always resonant in the experiment,
we used δ1 = 0. The terms −�i,DNi,g in the two ground-
state equations correspond to the off-resonant scattering from

the 5P1/2 state, with scattering rate �i,D = (�1,i

2�i
)
2
�5P (with

�5P = 2π × 6 MHz). Here we assume that the broadening
energy scale is smaller than the hyperfine splitting and that
the cross broadening and self-broadening can be treated
independently. We set C3 � 2π × 34 MHz μm3, while Ccross

3
is a fit parameter, found to be about 2π × 3 MHz. �nP, C3, and
Ccross

3 are taken to be the same for populations 1 and 2.
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