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In this supplemental material, we give expressions for the output probabilities in the distribution
DU in a boson sampling experiment. We then explicitly present the algorithm and derive the
expression for DDP . We then derive an upper bound to the variation distance between them,
proving lemma 3 of the main text.

Expression for output probabilities.— In this section, we describe the standard boson sampling set-up and derive
an expression for the output probabilities of a boson sampling experiment that define the distribution DU . First, let
us represent the input and output states pictorially and develop some notation.

|r〉 = 1

1

2 3 4

2

5 6 7 8

3

9

|s〉 = 1 2

1

3 4 5

2

6

3

7 8 9

FIG. 1. A representation of input and output basis states in 1-D.

In Fig. 1, the top line denotes the input state |r〉 and the bottom line the output |s〉. Each filled circle denotes a
boson occupying the corresponding lattice site, which is labeled below the circles. The numbers marked in orange
above each boson label the bosons from left to right (more generally, this is in a nondecreasing order of the site index).
We will call this the boson index.

A given configuration (basis state) is completely specified by specifying the boson number in each site, such as
r = (1, 0, 0, 0, 1, 0, 0, 0, 1) and s = (0, 1, 0, 0, 1, 1, 0, 0, 0) in the above. It can also be specified by listing the site index
for every boson index, i.e. the occupied sites. Thus the input state can be represented as in = (1, 5, 9), the output
state as out = (2, 5, 6).

All n! permutations of the boson indices represent valid paths that the bosons can take to the output state, and
correspond to the n! terms in the permanent of the matrix. In cases where there are two or more bosons in a particular
site at the input or output, there are n!

r!s! paths (and terms in the amplitude). Here, r! := r1!r2! . . . rm! and similarly
s!. By taking repeated rows and columns of R, this has the effect of still giving n! terms in total, which we identify
with the n! permutations in the boson indices. The expression for the probability of an outcome s is (here, bi := ai(t)):
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where Rij describes the action of Û on the annihilation operators at a site: bi = ai(t) =
∑
k R
†
ik(t)ak(0). Now define

the matrix A† to be the one obtained by taking si copies of the i’th row and rj copies of the j’th column of R†.
For concreteness, this can be done by first considering the rows and repeating a row i of R† whenever si > 1, or not
picking it if si = 0, to convert it into an n ×m matrix. We can then do the same with columns to convert it into
an n × n matrix. However, the order ultimately does not matter since the quantity that emerges, the permanent, is
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symmetric under exchange of rows or columns. We have
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where the sum is over all permutations σ. This finally gives us
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where Per(A) is the permanent of A.

Algorithm.— The sampling algorithm is given below. It is easy to see that it implements one step of a Markov
process of n distinguishable bosons walking on a lattice.

Algorithm 1: Sampling algorithm

Input: Unitary R(t), tolerance ε
Output: Sample s drawn from DDP , a distribution that is close to DU .

1 Pkl = |R(t)|2kl
2 for i ∈ {1, 2, . . . n}, do
3 Select site l from the distribution Pini,l for the boson at ini to hop to.
4 Increment output boson number of site l by 1: sl → sl + 1 (or equivalently, assign outi = l)

5 end
6 return configuration s (or out), a sample from DDP .

Note that P from line 1 is a doubly stochastic matrix describing the classical Markov process. To see that the
runtime is polynomial in n, note that the loop is over n boson indices. Line 3 takes time O(m logm) = Õ(nβ), giving
a total runtime of Õ(nm) = Õ(n1+β). The notation Õ suppresses factors of log n.

Bound on variation distance.— Here we derive a bound on the variation distance ‖DU −DDP ‖ = 1
2

∑
s |PrDU (s)−

PrDDP (s)|. Rewriting the actual probability in terms of the amplitudes, we have
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where A is the n × n matrix formed by taking the appropriate number of copies of each row and column of Rm×m.
We have set r! = 1 since our input state has bosons in distinct sites. Continuing,
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The probability distribution DDP that the algorithm samples from is given by the first line of Eq. (S10):

Pr
DDP

(s) =
1

s!

∑
σ

Pin1,outσ(1)Pin2,outσ(2) . . .Pinn,outσ(n)
, (S11)

where the sum is over all the n! ways of assigning the n input states to the n output states. As before, the s! is to
account for overcounting when two distinct permutations in the boson index refer to the same site index in the output
state.
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The expression for the probability is proportional to the permanent of the matrix with the positive entries Pini,outj ,
and can hence be efficiently approximated [S1]. Note that the algorithm does not explicitly calculate this probability
but only samples from the distribution. We can now prove Lemma 3 of the main text.

Proof of Lemma 3. The variation distance is given by
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where ρ = τ−1 ◦ σ 6= Id, the identity permutation. The last equality comes from rearranging the terms in
|Routτ(1),in1 . . . Routτ(n),inn | so that the terms involving Rini,outσ(i) and Routσ(i),j (for some j) are together:∑
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Summing over all outcomes s (or configurations out), Eq. (S14) is equivalent to
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where the sum j is over ordered tuples (j1, . . . jn), representing the intermediate lattice sites that the bosons in
positions (in1, . . . inn) jump to, before jumping back to positions (inρ(1), . . . inρ(n)).

We can proceed to break the sum in Eq. (S16) based on the number of fixed points of the permutation ρ, that is,
the number of indices i such that ρ(i) = i. We bound these quantities separately as follows:∑

ji,ρ
ρ(i)6=i

|Rini,ji ||Rji,inρ(i) | = Ci ≤ c ∀ i and

∑
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The variation distance is therefore bounded above:
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where the sum is over subsets IC of the indices representing the input state, in. ID is the complement of IC and |ID|
is the number of fixed points. Suppose we find an upper bound c for Ci in Eq. (S17), we then have
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In Lemma 4, we show that c = ηLd−1e(vt−L)/ξ for some constant η. Continuing from Eq. (S19),

ε ≤ 1

2
[(c+ 1)n − nc− 1] (S20)

=

(
n

2

)
(1 + h)n−2c2 for some h ∈ [0, c] (by Taylor′s theorem) (S21)

ε ≤ exp [2 log n+ (n− 2) log(1 + c) + 2 log c] (S22)
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Now, plugging in the value of c and assuming that vt ≤ 0.9L and β > 1, we get

ε ≤ O
(
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ξ

+ 2(d− 1) logL

])
(S23)
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In the first line, we use the inequality log(1 + x) ≤ x and in the second, exp
[
(n− 2)× ηLd−1e(vt−L)/ξ

]
= O(1) since

vt < L and |vt− L| = Ω(nβ−1). This completes the proof of Lemma 3.

Lemma 4. For all constant dimensions d, c = ηLd−1e(vt−L)/ξ.

Proof. Recall that

Ci =
∑
ji
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|Rini,ji |
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Since we are looking for a bound that applies for all i, let us, for convenience, make the following changes in notation:
ini → i, ji → j, inρ(i) → k, denoting a boson starting at position i, jumping to j and then to k, where i and k 6= i are
site indices belonging to in. We split the sum in Ci based on the distance between i and j, `ij =: `.
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Consider the first term:
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≤ abe(vt−L)/ξLd/2. (S30)

Here in the first line, we have used the Lieb-Robinson bound Eq. (2) of the main text. In the second line, we use
the Cauchy-Schwarz inequality and the fact that ` = `ij ≤ L. In the second line, ~xk is the position vector of site k
relative to site i, re-scaled by 2L. Therefore the sum over ~xk is over all vectors with integer coordinates. In the last
line, we use Lemma 6, to be proven below. a and b are constants independent of n that depend on the dimension d
and the length scale ξ.

Now, in the second term for Ci in Eq. (S26), the intermediate site j is not necessarily close to i. Therefore, there
are terms where j is close to k 6= i and one has to treat these terms carefully. For these terms, we use the trivial

Lieb-Robinson bound of 1 in Eq. (2) rather than exp
(
vt−`jk
ξ

)
> 1.
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≤
(

1 + be(vt−L)/ξ
)∑

j
`>L

|Ri,j | (S33)

≤
(

1 + be(vt−L)/ξ
)

evt/ξ
∑
j

`>L

e−`/ξ (S34)

≤
(

1 + be(vt−L)/ξ
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In the second line, we use 1 as a Lieb-Robinson bound for |Rj,k| when k = k∗, the site belonging to in that is closest
to j. All other k’s have distances from j bounded below by 2L‖~xk‖−L, where ~xk is now the re-scaled position vector
of a site k with the origin at k∗. We apply Lemma 6 in the third line and Lemma 5 in the fifth. Collecting everything,
we have

Ci ≤ abe(vt−L)/ξLd/2 +
(

1 + be(vt−L)/ξ
)
b̃Ld−1e(vt−L)/ξ (S36)

≤ e(vt−L)/ξηLd−1 for large enough L. (S37)

Lemma 5 (d-dimensional sum). The sum
∑
‖~x‖≥L e−‖~x‖/ξ over points ~x with integer coordinates is upper bounded by

ae−L/ξ
(
ξLd−1

)
for large enough L

ξ for some dimension-dependent constant ad.

Proof. We can view the sum over a lattice of vectors with integer coordinates as a Riemann sum and bound the
corresponding d-dimensional integral. Consider the quantity

g =

∫
‖~x‖≥L

e−‖~x‖/ξdd~x =
2πd/2

Γ(d2 )
ξdΓ

(
d,
L

ξ

)
, (S38)

where Γ(d, x) =
∫∞
x
yd−1e−ydy is the incomplete Γ function. We can lower bound the integral by the Riemann sum∑

∆ V∆e−‖~y‖/ξ, where the sum is over cells ∆ with volume V∆ centered at lattice points ~x. ~y is the point in the cell
∆ with the highest norm ‖~y‖. Further, the point with the highest norm is not too distant from the one at the center:

‖~y‖ ≤ ‖~x‖+
√
d

2 . Therefore, we have

f :=
∑
‖~x‖≥L

e‖~x‖/ξ ≤ g × e
√
d/(2ξ). (S39)

We now need an upper bound on the incomplete Γ function Γ(d, x) for large x [S2]:

Γ(d, x)→ xd−1e−x
(

1 +O

(
1

x

))
as x→∞. (S40)

Combining Eq. (S38) and Eq. (S39), we get:

f ≤ O
(
ξLd−1 exp

[
−L
ξ

])
. (S41)

Using a similar method, we also get bounds on a related sum.
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FIG. 2. Part of the lattice of vectors with integer coordinates. The black dots are the points in the cell with the maximum
norm ‖~y‖ and the exponential is evaluated at these points. The white ones do not enter the Riemann sum and are related to
fd−1, the corresponding quantity in one lower dimension. The arrows show which point in the cell is picked to lower bound the
Riemann sum.

Lemma 6. For ~x ∈ Zd, fd :=
∑
‖~x‖≥1 e−2L‖~x‖/ξ ≤ bd exp[− 2L

ξ ] for some dimension-dependent constant bd.

Proof. We prove the statement by induction on the dimension d. For d = 1, the statement is seen to be true since the
sum evaluates exactly:

f1 =
∑
|x|≥1

e−2L|x|/ξ = 2

∞∑
x=1

e−2Lx/ξ =
2e−2L/ξ

1− e−2L/ξ
≤ 2.1× e−2L/ξ. (S42)

For the inductive step, consider the integral g(d) =
∫∞
‖~y‖≥1

e−2L‖~y‖/ξdd~y. This is lower bounded by the Riemann

sum represented in Fig. 2. The white dots represent vectors with at least one zero coordinate and do not enter the
Riemann sum according to this way of dividing the region of integration into cells. In the following, the set of points
with at least one zero coordinate is denoted Øcc. We have:

g(d) =

∫ ∞
‖~y‖≥1

e−2L‖~y‖/ξdd~y ≥
∑
~x/∈Øcc

e−2L‖~x‖/ξ∆~x, (S43)

where ∆~x is the volume of the cell associated with the lattice vector ~x. In Fig. 2, the volume of most cells (whose
center is at distance 1.5 or beyond from the origin) is 1. The cells near the origin have some volume αd < 1 that
depends on the dimension. Lower bounding all volumes ∆~x by αd,

∑
~x/∈Øcc

e−2L‖~x‖/ξ <
g(d)

αd
(S44)

=
2πd/2

αdΓ(d2 )

(
ξ

2L

)d
Γ

(
d,

2L

ξ

)
. (S45)

Now it remains to upper bound the contribution from summing over the points Øcc. Notice that the sum over these
points is upper bounded by the sum over d hyperplanes of dimenson d− 1. From the inductive hypothesis,

∑
~x∈Øcc

e−2L‖~x‖/ξ ≤ dfd−1 (S46)
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since there are d hyperplanes of dimension d− 1. Adding Eqs. (S45) and (S46), we get

∑
~x

e−2L‖~x‖/ξ = fd < dfd−1 +
2πd/2

αdΓ(d2 )

(
ξ

2L

)d
Γ

(
d,

2L

ξ

)
. (S47)

≤ dbd−1 exp

[
−2L

ξ

]
+

2πd/2

αdΓ(d2 )

(
ξ

2L

)
exp

[
−2L

ξ

]
(S48)

fd < bd exp

[
−2L

ξ

]
, (S49)

proving the lemma. In the second line we have expanded the incomplete Γ function for large L/ξ.
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