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We study the complexity of classically sampling from the output distribution of an Ising spin model, which
can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct
a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces
a particular output configuration with probability very nearly proportional to the square of the permanent of a
matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from
the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity
theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a
classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers)
large enough so that classical sampling of the output distribution is classically difficult in practice may be
achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical
sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result
holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of
quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of
the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics
(Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness
classification of two-qubit commuting Hamiltonians.
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I. INTRODUCTION

It is often taken for granted that quantum computers can
efficiently perform certain computational tasks that classical
computers cannot. However, finding a quantum task that,
on the one hand, admits compelling complexity-theoretic
arguments against efficient classical simulation and, on the
other hand, admits experimental demonstration with technol-
ogy that is feasible in the near future, remains an important
and challenging task in the field of quantum information
science [1,2]. An extremely exciting line of work, starting
with results of Terhal and DiVincenzo [3] and Bremner
et al. [4], has shown that quantum computers are capable of
sampling from distributions that cannot be sampled exactly by
randomized classical algorithms. The boson sampling protocol
[5], proposed by Aaronson and Arkhipov, gives a hardness
of sampling result that may be within reach for near-term
quantum experiments. The basic idea is to send photons
through a network of linear optical devices, arranged in such
a way that the probabilities of typical output configurations of
the photons are proportional to the squares of permanents of
matrices with independent and Gaussian-distributed random
entries. Given reasonable assumptions about the hardness
of computing permanents of such matrices, the ability to
efficiently classically sample from any distribution even close
(in total variation distance) to this distribution would imply
extremely unlikely complexity theoretic consequences.

A number of proof-of-principle experiments implementing
boson sampling have already been carried out [6–9]. However,
it remains experimentally challenging to build linear-optical
systems that are large enough and clean enough to realize
boson sampling instances for which classical sampling is
actually difficult (theoretically, an ongoing challenge is to de-

termine what minimally constitutes “clean enough” [10,11]).
By comparison, state preparation and readout of individual
spins can be done with high fidelity and relative ease, and
the ability to massively parallelize spin-spin interactions
between large numbers of qubits is reasonably sophisticated;
experiments have successfully implemented some simple
instances of the Ising model with system sizes ranging from
tens [12] to many hundreds of spins [13]. Moreover, recent
developments in ion-trapping experiments raise the exciting
prospect of implementing arbitrary Ising interaction graphs in
systems of (potentially) many tens of trapped ions [14]. It is
therefore highly desirable to identify scenarios in which, under
extremely plausible assumptions about classical complexity
theory, the dynamics of commuting spin Hamiltonians cannot
be efficiently simulated by a classical system [4,15,16].

Our goal in this paper is to show that the dynamics of
an experimentally implementable commuting spin model, the
Ising model with no transverse field, can induce an output
distribution over the spin states that is hard to sample from
classically. The general strategy, which will be elaborated on
below, is to divide a set of Ising spins into two mutually
interacting registers, each having N spins (see Fig. 1). The
N spins in the first and second registers can be placed in
correspondence with the N row and column labels, respec-
tively, of an N × N matrix J ; each of the N2 pairwise Ising
couplings Ji,j between a spin (i) in one register and a spin
(j ) in the other is a matrix element of J . By initializing
the system in a spatially homogeneous product state and
then letting it evolve under Ising interactions for a short
time, it can be shown that a single probability of the output
distribution induced by measurement is proportional to the
square of the permanent of J , plus an o(1) correction. This
is enough, using a tool known as Stockmeyer counting [17],
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FIG. 1. Schematic of the model. Spins in sublattice A (red, σ̂i)
are coupled to spins in sublattice B (blue, τ̂j ) via Ising couplings
σ̂ x

i τ̂ x
j and all of them start off in |↓⟩. To lowest order in time, the

matrix element of the time-evolution operator between an initial state
with all spins initialized in |↓⟩ and a final state with all qubits in |↑⟩
receives contributions in which each spin is flipped precisely once
(one such contributing term, between the spin on the second site of
A and the spin on the first site of B, is shown).

to imply a hardness of exact sampling result: No efficient
classical randomized algorithm can sample from exactly this
distribution, under a ubiquitous hardness assumption (namely,
that the polynomial-time hierarchy does not collapse). Much
like other exact sampling results, our result also demonstrates
hardness to classically sample from any distribution in which
all probabilities are within a constant multiplicative factor
of the ideal quantum distribution. However, unlike boson
sampling, a recent proposal of Bremner, Montanaro, and
Shepherd (sometimes called IQP sampling), and quantum
Fourier sampling, it is not yet clear whether the distributions
we consider can be used to show an approximate-sampling
hardness result [4,5,18]. This would show something far
stronger: There is no classical algorithm that can sample
from any distribution inverse polynomial in total variation
distance from the ideal quantum distribution. Establishing
strong approximate hardness results is the most important
problem left open in this work. However, in the meantime
we strongly believe exact sampling results are worthwhile.
They provide necessary, but not sufficient, evidence that these
systems will be unable to be simulated by classical means.
Indeed, several other such exact sampling results already exist
in the literature (see, e.g., [4,19–21]).

Note that the classical complexity of simulating short-time
evolution of XY spin Hamiltonians was recently considered
in Ref. [15]. However, these spin Hamiltonians are not com-
muting and map directly onto the boson sampling problem. In
particular, through the Holstein-Primakov transformation they
map exactly onto a variant of the boson sampling problem in
which the modes are constrained to be occupied by at most a
single boson (spin flip). When the spin state is chosen such that
the corresponding boson sampling problem has sufficiently
dilute mode occupation, the constraint turns out not to be
important and the dynamics generates a unitary evolution that
is essentially the same as that considered in boson sampling.
To the contrary, our work encounters the permanent in a
fundamentally different way than in boson sampling or the
closely related spin sampling of Ref. [15], as elaborated on
below. An important difference is that our results do not rely
on a diluteness criterion and thus N is set by (as opposed to
much less than) the number of physical qubits.

II. MODEL

The model we consider consists of 2N spin-1/2 particles,
which we divide into two sublattices of N spins each, denoted
by A and B (red and blue spins in Fig. 1). We consider quench
dynamics under an Ising Hamiltonian with exclusively two-
body intersublattice interactions (but no interactions within
either sublattice), which can take arbitrary integer values,

H =
∑

i,j

Ji,j σ̂
x
i τ̂ x

j . (1)

Here Pauli operators σ̂ act on the spins of sublattice A, while
Pauli operators τ̂ act on the spins of sublattice B. These spins
could be, for example, two subsets of ions in a Paul trap, where
the |↓⟩ and |↑⟩ are, respectively, the electronic ground state
and some long-lived metastable state (in general, either an
excited hyperfine level of the electronic ground-state manifold
or a dipole-forbidden optical excitation). The Ising interactions
can then be implemented via a spatially structured Mølmer-
Sørensen interaction [14,22,23].

We consider a quantum quench in which the system is
initialized at time t = 0 with all of the spins (in both registers)
in the spin-down state along the z direction,

|ψ(0)⟩ =
⊗

i∈A
|↓⟩i

⊗

j∈B
|↓⟩j . (2)

We then allow the system to evolve under the Hamiltonian in
Eq. (1) for a time t .

III. OUTPUT DISTRIBUTION

After evolution for a time t under the action of H, mea-
surement in the z basis samples from the induced probability
distribution

Pt (σ1, . . . ,σN,τ1, . . . ,τN )

=|⟨σ1, . . . ,σN,τ1, . . . ,τN | exp(−iHt) |↓ , . . . ,↓⟩|2, (3)

where σj ,τj =↓ ,↑. We are interested in just one such
probability

Pt ≡ Pt (↑ , . . . ,↑) = |⟨↑ , . . . , ↑|

exp(−itH) |↓ , . . . ,↓⟩|2 ≡ |Mt |2,

to end in the state with all spins in both registers pointing up.
By writing an individual term in the Hamiltonian as

σ̂ x
i τ̂ x

j = σ̂+
i τ̂+

j + σ̂+
i τ̂−

j + σ̂−
i τ̂+

j + σ̂−
i τ̂−

j , (4)

it is straightforward to see that repeated applications of H,
and thus time evolution, generates population in all possible
spin states in the z basis. Expanding e−iHt as a power series
in time, the lowest-order-in-time nonvanishing contribution
to the matrix element Mt = ⟨↑ , . . . ,↑| exp(−itH) |↓ , . . . ,↓⟩
arises at order tN , because every spin needs to be flipped at
least once. The contributing terms contain exactly N powers
of operators σ̂+

i τ̂+
j , with no repetitions of the indices i and j ,

so that each qubit gets flipped from |↓⟩ to |↑⟩ exactly one time;
see Fig. 2 for an illustration of such a term for N = 3. It is
straightforward to show that, to order tN , the matrix element

032324-2



EXACT SAMPLING HARDNESS OF ISING SPIN MODELS PHYSICAL REVIEW A 96, 032324 (2017)

FIG. 2. Example of a single term contributing to the matrix
element Mt at lowest order in time (tN , here with N = 3). Here,
all spins are flipped from down to up by a particular pairing off of
the spins between the A and B sublattices. The depicted process
contributes a term (J1,2 × J3,1 × J2,3) × (t3/3!) to Mt . The set of
all possible ways to pair the spins in sublattice A with the spins
in sublattice B is in one-to-one correspondence with terms in the
permanent of the matrix Ji,j and thus Mt is proportional to this
permanent.

Mt is given by

Mt = (−it)N

N !
× N !

∑

σ

N∏

j=1

Jσ (j ),j + O(tN+2)

= (−it)NPer(J ) + O(tN+2), (5)

where the summation is over all permutations σ of the integers
i = 1, . . . ,N . As a result, defining P = |Per(J )|2, we have

Pt = t2N [P + O(t2)]. (6)

We next aim to place a constraint on how t must scale with N in
order to ensure that the O(t2) additive error to the permanent
is o(1) with respect to the system size N . Because J is an
integer-valued matrix, estimation of P up to this small additive
error is equivalent (for large N ) to an exact calculation of P , a
#P-hard problem. As we will show, however, demanding such
a small additive error will require us to consider time evolution
under H for a time that is inverse exponential in the number
of spins.

IV. HIGHER ORDERS IN TIME

As discussed above, the lowest-order-in-time contribution
to the matrix element Mt comes at order N . It is not hard
to see that all other contributing terms occur at order m such
that m − N is a positive even integer. In particular, take N+−
to be the number of times an operator σ̂+

i τ̂−
j occurs inside

the matrix element, and similarly for N−+, N++, and N−−,
such that N++ + N−− + N+− + N−+ = m. Since we need to
flip the same number of qubits in both registers, we must have
N+− = N−+. Also, the total number of flipped qubits is equal
to 2(N++ − N−−), and since all qubits need to be flipped, we
have N++ − N−− = N . Now defining p(n) to be the parity of
the integer n, we have

p(m) = p(N++ + N−− + 2N+−)

= p(N++ + N−−)

= p(N++ − N−−)

= P (N ), (7)

which shows that m − N is an even integer. The matrix element
in question can therefore be expanded as

Mt =
∞∑

α=0

⟨↑ , . . . ,↑| (−itH)N+2α

(N + 2α)!
|↓ , . . . ,↓⟩ ≡

∞∑

α=0

M
(α)
t ,

(8)

and from above we have

M
(0)
t = (−it)NPer(J ). (9)

Defining δMt =
∑∞

α=1 M
(α)
t such that Mt = M

(0)
t + δMt , we

can write

Pt =
∣∣M (0)

t

∣∣2 + 2 Re
[
M

(0)
t δMt

]
+ |δMt |2

= t2N (P + ηt ), (10)

where

ηt ≡
(
2 Re

[
M

(0)
t δMt

]
+ |δMt |2

)/
t2N

! |δMt |
(
2
∣∣M (0)

t

∣∣ + |δMt |
)/

t2N. (11)

For notational simplicity, here we will assume that the entries
of J are drawn from the set {−1,0,1}; note that nothing about
our argument would change if arbitrary integers were used,
except that the time t would be rescaled in the bounds below by
max(Ji,j ). Using ⟨↑ , . . . ,↑|Hm |↓ , . . . ,↓⟩ ! N2m∥σ̂ x∥2m =
N2m, M (α)

t can be bounded as |M (α)
t | ! (N2t)N+2α/(N + 2α)!.

Therefore,

∣∣M (0)
t

∣∣ ! (N2t)N

N !
, (12)

|δMt | ! (N2t)N

N !

∞∑

α=1

(N4t2)α ! 2
(N2t)N

N !
(N4t2). (13)

The final inequality in Eq. (13) is valid for t2 ! 1/(2N4), be-
cause 0 ! ∑∞

α=1 xα ! 2x whenever 0 ! x ! 1/2. Plugging
Eqs. (12) and (13) into Eq. (11) leads to

ηt ! 4N4t2 N4N

(N !)2
(1 + N4t2) (14)

! 6N4t2 N4N

(N !)2
! t2poly(N)e2N(ln N+1), (15)

with the final inequality obtained by Stirling’s approxima-
tion. It follows immediately that ηt = o(1) is guaranteed as
long as

t = o(e−2N ln N ). (16)

Notice that for this exponentially short time, approximate
sampling is classically easy, since the resulting distribution
is exponentially close in total variation distance to the initial
distribution, with all probability mass on a computational basis
state. However, there remains hope that we could obtain such
approximate hardness results by considering longer times. In
this case, higher-order-in-time terms will contribute to the
outcome probability we care about, resulting in a nontrivial
additive approximation to the permanent. While in the worst
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case the sizes of these terms may overwhelm the value of
the permanent, it is likely that a better understanding of their
concentration could be used to upper bound the size of these
contributions for a typical matrix in a random ensemble. We
leave this as an open direction for future work.

V. HARDNESS OF SAMPLING

Here we prove our main theorem, establishing a very
unlikely complexity-theoretic consequence that would arise
naturally from the presumed existence of a classical algorithm
that samples exactly from the output distribution described in
the prior sections. Similar arguments to the one sketched here
are implicit in other works on quantum hardness of sampling
results starting with the boson sampling proposal [5].

We begin with a very brief overview of the computational
complexity-theoretic components necessary to understand this
hardness of sampling result. Computing exactly the permanent
of an N × N matrix X with integer entries is as hard
as computing the number of satisfying assignments to a
Boolean formula. We therefore say it is a #P-hard problem, as
established by Valiant [24]. When X has non-negative integer
entries this problem is also in #P.

For our purposes, we will be interested in the complexity
of computing multiplicative estimates to the permanent. We
say an algorithm A efficiently computes a multiplicative
estimate to a function f if, given input x, the output of A is
within a 1 ± ϵ multiplicative factor of f (x) in time polynomial
in N and 1/ϵ. A famous result of Jerrum et al. gives an
algorithm for efficiently computing a multiplicative estimate
to the permanent of a matrix with non-negative entries [25].
On the other hand, it can be shown using a binary search
and padding argument that computing such an estimate to the
permanent (or even the square of the permanent) of a matrix
with general integer entries is in fact #P-hard (see, e.g., [5,26]).
Therefore, computing these estimates is as hard as computing
the permanent exactly. How powerful is #P? We know from
Toda’s theorem that any problem in the polynomial-time
hierarchy PH can be solved using the ability to solve a #P-hard
problem [27]. Being a bit more formal, Toda’s theorem tells
us that PH ⊆ P#P.

Now, for any N × N matrix X define DX to be the outcome
distribution from Sec. III that arises from starting in the
|↓ , . . . ,↓⟩ state, evolving for a particular time t under the
action of the Hamiltonian from Eq. (1) with coupling constants
Ji,j set to the entries of X, and measuring in the z basis. As
shown in Secs. III and IV, the probability of observing the
|↑ , . . . ,↑⟩ outcome at time t is proportional to the square
of the permanent of X plus an o(1) correction, provided that
t is chosen to be o(e−2N ln N ). Notice that this probability is
exponentially small. Therefore, to get any reasonable estimate
by repeated sampling we would need an exponential number
of samples. Indeed, this does not imply an efficient quantum
algorithm for computing the permanent. Nonetheless, we can
use the fact that a single exponentially small amplitude is
proportional to the permanent to argue about the classical
intractability of sampling from this distribution.

Suppose we have an efficient classical sampler that samples
from the same distribution. We define this to be an efficient
randomized algorithm that takes as input an N × N integer

matrix X and outputs a sample from the distribution DX. A
classic result of Stockmeyer gives an algorithm for computing
a multiplicative estimate to the probability of any given
outcome of an efficient classical sampler in the third level of the
PH, or (3 [17]. Using this result, together with the presumed
existence of an efficient classical sampler for our quantum
distribution, we can compute a multiplicative estimate to the
square of the permanent of an arbitrary integer matrix in the
third level of the PH. As mentioned above, this is a #P-hard
problem. This tells us we can solve any problem in #P in the
third level of the polynomial-time hierarchy, or formally that
P#P ⊆ (3. Combining this with Toda’s theorem, we have that
PH ⊆ P#P ⊆ (3 and so the entire polynomial-time hierarchy
collapses to the third level, as claimed. Therefore, it is very
unlikely that an efficient classical sampler for the distribution
with probabilities given by Eq. (3) exists.

VI. DISCUSSION AND IMPLICATIONS

These results extend several key ideas of boson sampling to
the context of spin dynamics under Ising spin Hamiltonians.
Just like noninteracting bosons, the Ising model without a
transverse field is often viewed, from the perspective of
many-body quantum physics, to be trivial, since it can be
trivially diagonalized. However, just as with noninteracting
bosons, this point of view stems from a restricted notion
of what it means to simulate a quantum system. As in the
case of noninteracting bosons, it is indeed classically efficient
to compute low-order correlation functions of operators in
the model we study [28,29], but sampling from the output
distribution is simply a more general (and less trivial)
task.

Another interesting motivation for our result comes from
the desire to classify all two-qubit commuting Hamiltonians.
Suppose we start in a computational basis state of n qubits
and can apply a fixed two-qubit Hamiltonian to any pair of
qubits. A recent result of Bouland et al. gave a hardness
of sampling classification for this model [30]. They prove,
in all cases except the one we consider (in which the two-
qubit Hamiltonian is X ⊗ X), that the corresponding exact
sampling task (which they call weak simulation) is classically
hard as long as the commuting Hamiltonian is capable of
generating entanglement from a computational basis state.
Otherwise, the output is in a product state and clearly
classically simulable. Thus our hardness result completes the
sampling hardness classification of the complete class of two-
qubit commuting Hamiltonians (see their paper for additional
details [30]).
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