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In nonrelativistic quantum theories with short-range Hamiltonians, a velocity v can be chosen such that
the influence of any local perturbation is approximately confined to within a distance r until a time t ∼ r=v,
thereby defining a linear light cone and giving rise to an emergent notion of locality. In systems with power-
law (1=rα) interactions, when α exceeds the dimension D, an analogous bound confines influences to
within a distance r only until a time t ∼ ðα=vÞ log r, suggesting that the velocity, as calculated from the
slope of the light cone, may grow exponentially in time. We rule out this possibility; light cones of power-
law interacting systems are bounded by a polynomial for α > 2D and become linear as α → ∞. Our results
impose strong new constraints on the growth of correlations and the production of entangled states in a
variety of rapidly emerging, long-range interacting atomic, molecular, and optical systems.
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Though nonrelativistic quantum theories are not explic-
itly causal, Lieb and Robinson [1] proved that an effective
speed limit v emerges dynamically in systems with short-
ranged interactions, thereby extending the notion of cau-
sality into the fields of condensed-matter physics, quantum
chemistry, and quantum information science. Specifically,
they proved that when interactions have a finite range or
decay exponentially in space, the influence of a local
perturbation decays exponentially outside of a space-time
region bounded by the line t ¼ r=v, which therefore plays
the role of a light cone [Fig. 1(a)]. However, many of the
systems to which nonrelativistic quantum theory is rou-
tinely applied—ranging from frustrated magnets and spin
glasses [2,3] to numerous atomic, molecular, and optical
systems [4–8]—possess power-law interactions and, hence,
do not satisfy the criteria set forth by Lieb and Robinson.
Many questions about the fate of causality in such systems
lack complete answers: Can information be transmitted
with an arbitrarily large velocity [9], and if so, how quickly
(in space or time) does that velocity grow? Under what
circumstances does a causal region exist, and when it does,
what does it look like [9–14]? The answers to these
questions have far reaching consequences, imposing speed
limits on quantum-state transfer [15] and on thermalization
rates in many-body quantum systems [16], determining the
strength and range of correlations in equilibrium [17], and
constraining the complexity of simulating quantum dynam-
ics with classical computers [18].
The results of Lieb andRobinsonwere first generalized to

power-law (1=rα) interacting systems in D spatial dimen-
sions byHastings andKoma [17], with the following picture
emerging. For α > D [19], the influence of a local pertur-
bation is bounded by a function ∝ evt=rα, and while a light
cone can still be defined as the boundary outside of which
this function falls below some threshold value, yielding

t ∼ log r, that boundary is logarithmic rather than linear
[Fig. 1(b)]. Improvements upon these results exist,
revealing, e.g., that the light cone remains linear at inter-
mediate distance scales [12], but all existing bounds con-
sistently predict an asymptotically logarithmic light cone.
An immediate and striking consequence is that the maxi-
mum group velocity, defined by the slope of the light cone,
grows exponentially with time, thus suggesting that the
aforementioned processes—thermalization, entanglement
growth after a quench, etc.—may in principle be sped up
exponentially by the presence of long-range interactions. In
this Letter, we show that this scenario is not possible. While
light cones can potentially be sublinear for any finite α, thus
allowing a velocity that grows with time, for α > 2D they
remain bounded by a polynomial t ∼ rζ, and ζ ≤ 1
approaches unity for increasing α [Fig. 1(c)]. Though the
range of α over which our results are valid is reduced

FIG. 1 (color online). (a) In a short-range interacting system,
perturbing a single spin at t ¼ r ¼ 0 can only influence another
spin (green connection) if it falls within a causal region bounded
by a linear light cone (t ∼ r) [1]. (b) Existing bounds for power-
law interacting systems [12,17] result in a logarithmic light cone
(t ∼ log r) at large distances and times, and thus the maximum
velocity grows exponentially in time. (c) We show that light
cones of power-law interacting systems are bounded by a
polynomial which becomes increasingly linear for shorter-range
interactions.
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(relative to the results in Ref. [17]), they apply to a number of
experimentally relevant systems, e.g., dipolar interactions in
one dimension (1D) (as can be realizedwithmagnetic atoms,
polar molecules, or trapped ions) or van der Waals-type
interactions between Rydberg atoms in 1D or 2D.
Model and formalism.—We assume a generic spin model

with time-independent Hamiltonian [20]

H ¼ 1

2

X

μ;y;z

Jμðy; zÞVyμVzμ; ð1Þ

where Vyμ is a spin operator on site y with ∥Vyμ∥ ¼ 1
(where ∥O∥ denotes the operator norm of an operator O,
which is the magnitude of its eigenvalue with largest
absolute value). The non-negative coupling constants
satisfy

P
μJμðy; zÞ≡ Jðy; zÞ ≤ J=dðy; zÞα for y ≠ z, with

dðy; zÞ the distance between lattice sites y and z, and
Jμðy; yÞ ¼ 0. Our goal is to bound the size of an unequal-
time commutator of two unity-norm operators A and B
initially residing on sites i and j, respectively,

CrðtÞ ¼ ∥½AðtÞ; B%∥ ≤ CrðtÞ; ð2Þ

where r ¼ dði; jÞ. Since spin operators on different sites
commute, CrðtÞ captures the extent to which an operator A
has “spread” onto the lattice site j during the time
evolution. As a result, it bounds numerous experimentally
measurable quantities, for example, connected correlation
functions after a quantum quench [12–14,21]. In general, a
light cone can be defined by setting CrðtÞ equal to a
constant and solving for t as a function of r. A natural way
to parametrize the shape of the light cone is to ask whether
it can be bounded by the curve r ¼ tβ (with β ≥ 0) in the
large t limit, which is true whenever limt→∞CtβðtÞ ¼ 0.
Defining 1=ζ to be the smallest value of β for which this
limit vanishes, we can say that t ∼ rζ is the tightest possible
polynomial light cone. The original work by Lieb and
Robinson proved that ζ ¼ 1 when interactions are finite
ranged or exponentially decaying. However, the generali-
zation of their results to power-law interacting
Hamiltonians [17] yields CrðtÞ ∼ evt=rα, and thus
limt→∞CtβðtÞ never vanishes for finite β. Though
Ref. [12] demonstrated that a linear light cone can still
persist at intermediate distance scales, the true asymptotic
shape of the light cone was nevertheless logarithmic. Thus,
the consensus of all previously available bounds is that
ζ → 0, and the light cone is not bounded by a polynomial.
In what follows, we first give a detailed physical picture
(based on an interaction-picture representation of the short-
range physics) of why a logarithmic light cone cannot exist,
and then we present a formal proof that the light cone is
indeed polynomial. The technical details supporting our
main formal results, Eqs. (10)–(12), are deferred to the
Supplemental Material [22].
Strategy.—To prove the existence of a polynomial light

cone, we begin by breaking H into a short-range and a
long-range contribution H ¼ Hsr þHlr, separated by a

cutoff length scale χ. Defining Jsr½lr%μ ðy; zÞ ¼ Jμðy; zÞ if
dðy; zÞ ≤ χ½> χ% and 0 otherwise, we can write

Hsr½lr% ¼ 1

2

X

μ;y;z

Jsr½lr%μ ðy; zÞVyμVzμ: ð3Þ

We then move to the interaction picture [24] of Hsr, where

CrðtÞ ¼ ∥½U†ðtÞAðtÞUðtÞ; B%∥: ð4Þ

Here,AðtÞ ¼ expðitHsrÞA expð−itHsrÞ [and all other script
operators except UðtÞ] is evolving under the influence of
Hsr, and the interaction-picture time-evolution operator
UðtÞ is a time-ordered exponential

UðtÞ ¼ Tτ exp
!
−i

Z
t

0
dτHlrðτÞ

"
; ð5Þ

where

HlrðτÞ ¼ 1

2

X

μ;y;z

Jlrμðy; zÞVyμðτÞVzμðτÞ≡
X

y;z

WyzðτÞ: ð6Þ

The plan is now to treat the short-range physics,
responsible for the time dependence of interaction-picture
operators AðtÞ and WyzðτÞ, and the long-range physics,
captured by the remaining interaction-picture time-
evolution operator UðtÞ, with two independent bounds.
The basic physical picture to have in mind is shown in
Fig. 2. The original Lieb-Robinson approach is to work in
the Heisenberg picture, expressing CrðtÞ as series of terms
connecting sites i and j by repeated applications of H
[1,12,17,25] [Fig. 2(a)]. We will instead bound the dynam-
ics induced by UðtÞ by a series of terms connecting sites i
and j by repeated applications ofHlrðτÞ [Fig. 2(b)]. Though
HlrðτÞ is not a sum of local operators, the VyðτÞ that
comprise it are still approximately contained within a ball
of (time-dependent) radius RðtÞ ¼ χv × t [gray shaded
disks in Fig. 2(b)], which is the light cone of the short-
range Hamiltonian. Here, v would be the Lieb-Robinson
velocity for a nearest-neighbor Hamiltonian with coupling
strength J and must be multiplied by χ to account for the
longest-range terms in Hsr.
Our approach is motivated by the following observation:

If we assume the existence of a logarithmic light cone, we
can choose the cutoff χ to scale in such a way that CrðtÞ
does not grow exponentially in time, which contradicts the
assumption. To see this, we first note that the existence of a
logarithmic light cone allows us to choose χ to scale with
any power of t while satisfying the following inequality
along the light-cone boundary (at sufficiently long times),

RðtÞ ¼ χv × t ≪ r ∼ evt: ð7Þ

Physically, this inequality ensures that the point r falls well
outside the short-range light-cone distance RðtÞ, and as a
result both the operator AðtÞ and the VyðτÞ comprising
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Hlrðτ ≤ tÞ appear nearly local when viewed on the length
scale r. We therefore expect that the time evolution induced
by UðtÞ [Fig. 2(b)] should be qualitatively similar—up to
the possibility of a different velocity—to that induced by U
[Fig. 2(a)]. The velocity can be estimated by considering
the following expansion of AðtÞ,

AðtÞ ¼ AðtÞ þ i
X

yz

Z
t

0
dτ½WyzðτÞ;AðtÞ% þ…: ð8Þ

Because of the quasilocality of interaction-picture opera-
tors, a general commutator ½WyzðτÞ;AðtÞ% is exponentially
suppressed unless either y or z resides within a distance
2RðtÞ of site i. Ignoring (for now) the exponentially small
corrections from outside the short-range light cone, we can
restrict the summation to run over y and z such that either
dði; yÞ ≤ 2RðtÞ or dði; zÞ ≤ 2RðtÞ, giving

∥
X

y;z

Z
t

0
dτ½WyzðτÞ;AðtÞ%∥ ≲ t × RðtÞDλχ : ð9Þ

Here, λχ ¼
P

zJ
lrðy; zÞ ∼ χD−α, with Jsr½lr%ðy; zÞ ¼

P
μJ

sr½lr%
μ ðy; zÞ. The coefficient of t on the right-hand side

of Eq. (9) suggests a velocity vχ ∼ RðtÞDλχ ∼ tDχ2D−α,
which can be made small for large χ whenever α > 2D.
An important achievement of this Letter is a proof that

the parametrically small velocity vχ also controls the
higher-order contributions from the interaction-picture
time-evolution operator. Therefore, in moving from the
Heisenberg picture to the interaction picture, we are

able (loosely speaking) to make the replacement CrðtÞ∼
expðvtÞ=rα → expðvχtÞ=rα. By letting χ grow with t in
such a way that vχt stays constant in time [which can
always be done in a manner consistent with Eq. (7)], the
exponential time dependence is suppressed, violating our
assumption of a logarithmic light cone. Indeed, as we will
show, a proper scaling of χ will enable us to change the time
dependence from exponential to algebraic, which in turn
enables the recovery of a polynomial light cone.
Derivation.—In order to formalize the above picture, we

must first take a step back and treat the interaction-picture
operators more carefully. First, we denote the set of
points within a radius RlðtÞ≡ RðtÞ þ lχ of the point i
by B(i; RlðtÞ) and the complement of this set by
B̄(i; RlðtÞ). Now we can obtain an approximation to
AðtÞ, supported entirely on B(i; RlðtÞ), by integrating
over all unitaries on B̄(i; RlðtÞ) with respect to the
Haar measure [21] (Supplemental Material [22]),
Aðl; tÞ ¼

R
B̄(i;RlðtÞ) dμðUÞUAðtÞU†. It is important to

note that for large l, Aðl; tÞ is a good approximation to
AðtÞ at all times, since its time-dependent support radius
RlðtÞ remains a distance lχ outside of the short-range light
cone. Because Aðl; tÞ tends to AðtÞ as l → ∞, we can
rewrite AðtÞ ¼

P∞
l¼0A

lðtÞ, with A0ðtÞ ¼ Að0; tÞ and
Al>0ðtÞ ¼ Aðl; tÞ −Aðl − 1; tÞ. Each operator AlðtÞ is
supported on B(i; RlðtÞ) and is expected to become small
for large l, since both Aðl; tÞ and Aðl − 1; tÞ are becom-
ing better approximations to AðtÞ and, hence, must be
approaching each other. Formally, by applying a standard
short-range Lieb-Robinson bound toHsr, one can show that
∥AlðtÞ∥ ≤ ce−l, with c a constant (Supplemental Material
[22]). The ability to write AðtÞ as the sum of a sequence of
operators with increasing support but exponentially
decreasing norm is the mathematical basis for the intuition
that interaction-picture operators are quasilocal. A similar
construction enables us to write WyzðτÞ ¼

P
m;nWξðτÞ,

where the index ξ ¼ fy; z;m; ng describes the location y½z%
and support m½n% of the operators Vm

y ðτÞ½Vn
z ðτÞ% comprising

WξðτÞ. Once again, the size of these operators decreases
exponentially in the radius of their support (Supplemental
Material [22]),

∥WξðτÞ∥ ≤ c2Jlrðy; zÞe−ðmþnÞ=2; ð10Þ

but algebraically in the separation dðy; zÞ.
Now wewould like to constrain the time evolution due to

UðtÞ, which further expands the support of AðtÞ in Eq. (4).
As suggested in Fig. 2, our bound is comprised of terms in
which sites i and j are connected by repeated applications
of the interaction-picture HamiltonianHlrðτÞ. Employing a
generalization of the techniques originally used by Lieb
and Robinson, we obtain (Supplemental Material [22])

CrðtÞ ≤
X∞

l¼0

∥½AlðtÞ; B%∥þ 4c
X∞

a¼1

ta

a!
J aði; jÞ; ð11Þ

FIG. 2 (color online). Schematic illustration of a Lieb-Robin-
son-type bound. (a) Heisenberg picture. The time evolution of an
operator A is bounded by a series in which repeated applications
of the Hamiltonian connect site i to site j. (b) Interaction picture.
A similar series can be used to bound the dynamics induced by the
interaction-picture time-evolution operator, but now the operator
A and the interaction terms in the Hamiltonian are spread out over
a light-cone radius of the short-range Hamiltonian.
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where

J aði; jÞ ¼ 4a
X

l;ξ1;…;ξa

e−lDiðξ1Þ∥Wξ1∥Dðξ1; ξ2Þ∥Wξ2∥×…

× ∥Wξa−1∥Dðξa−1; ξaÞ∥Wξa∥DfðξaÞ: ð12Þ

Here, Dðξ1; ξ2Þ is unity whenever B(z1; Rn1ðtÞ) ∩
B(y2; Rm2

ðtÞ) ≠ ∅ and vanishes otherwise, thus con-
straining the points z1 and y2 in the progression
…∥Wξ1∥Dðξ1; ξ2Þ∥Wξ2∥… to be near each other, as
shown in Fig. 3(a). Similarly, Diðξ1Þ is unity when
B(i; RlðtÞ) ∩ B(y1; Rm1

ðtÞ) ≠ ∅ and vanishes otherwise,
whileDfðξaÞ is unity when j ∈ B(za; RnaðtÞ) and vanishes
otherwise, thus constrainingWξ1 to originate from near the
point i and Wξa to terminate near the point j.
Equation (12) can be simplified by first carrying out the

summations over indices m1;…; ma and n1;…; na, which
were necessary to account for the exponentially decaying
contribution to interaction-picture operators outside the
short-range light cone. For example, considering the
intersection shown in Fig. 3(a), one can show that
X

n1;m2

∥Wξ1∥Dðξ1;ξ2Þ∥Wξ2∥

≤ κ2
c2e−m1

2
Jlrðy1; z1ÞKðz1; y2ÞJlrðy2; z2Þ

c2e−n2

2
; ð13Þ

(with κ a constant), where Kðz1; y2Þ decays exponentially
in dðz1; y2Þ (Supplemental Material [22]), directly reflect-
ing the quasilocality of the interaction-picture operators.
Using this inequality repeatedly in Eq. (12), we obtain

J aði; jÞ ≤ κ2ð2κ2c2Þa
X

y1 ;…;ya
z1 ;…;za

Kði; y1ÞJlrðy1; z1ÞKðz1; y2Þ ×…

× Jlrðya−1; za−1ÞKðza−1; yaÞJlrðya; zaÞKðza; jÞ: ð14Þ

Every term in Eq. (14) connects sites i and j by repeated
applications of K’s and J’s, which capture, respectively,
physics below and above the cutoff length scale χ [see

Fig. 3(b)]. The summations over indices y1;…; ya can then
be carried out by bounding the discrete convolutionP

y2Kðz1; y2ÞJlrðy2; z2Þ ≤ ð2κλχÞFðz1; z2Þ to give [22]

J aði;jÞ≤2κ2ð4κ3c2λχÞa
X

z1;…;za

Fði;z1Þ×…×Fðza;jÞ: ð15Þ

Because K decays exponentially while J decays only
algebraically, their convolution is dominated [at large
dðz1; z2Þ] by terms where y2 is much closer to z1 than
to z2, and therefore F inherits the long-distance algebraic
decay of Jlr [26],

Fðz1; z2Þ ¼
#
1; dðz1; z2Þ≤ 6RðtÞ
½6RðtÞ=dðz1; z2Þ%α; dðz1; z2Þ> 6RðtÞ:

ð16Þ

The remaining summations over indices z1;…; za can
be bounded by invoking a so-called reproducibility
condition [17], valid for power-law decaying
functions. In particular, we find

P
z2Fðz1; z2ÞFðz2; z3Þ ≤

gRðtÞDFðz1; z3Þ (Supplemental Material [22]), where g is a
constant and the factor of RðtÞD enters because Fðz1; z2Þ
decays algebraically only for dðz1; z2Þ ≳ RðtÞ. Utilizing
this condition repeatedly in Eq. (15), we obtain [for
r > 6RðtÞ]

J aði; jÞ ≤ κ2ðRðtÞ=rÞα × ðvχÞa; ð17Þ

where further numerical prefactors have been absorbed into
κ2, and vχ¼ϑRðtÞDλχ is a cutoff-dependent velocity (with ϑ
a constant) with the scaling predicted by Eq. (9). Plugging
Eq. (17) into Eq. (11), we obtain our final bound [27]

CrðtÞ ≤ CrðtÞ≡ 2cκ
!
evt−r=χ þ 2κ

evχ t

½r=RðtÞ%α

"
: ð18Þ

The first term is the bound one would obtain for the finite-
range HamiltonianHsr. The second term contains the effect
of Hlr, which leads to a bound similar to that of Ref. [17],
except with a velocity that is parametrically small in the
cutoff χ, and a distance r that is rescaled by the radius RðtÞ
of the short-range light cone.
Light cone shape.—Equation (18) can now be minimized

with respect to the cutoff χ, which we accomplish by letting
χ scale with time as a power law (χ ∝ tγ), thereby enforcing
the scaling RðtÞ ∼ tγþ1 and vχt ∼ tð1þDÞþγð2D−αÞ. The expo-
nential time dependence of the second term in Eq. (18)
can be suppressed by keeping vχt ∼ 1, which requires
γ ¼ ð1þDÞ=ðα − 2DÞ. Dropping prefactors (since we
only care about asymptotics at large r and t), we obtain

CrðtÞ ∼ exp½vt − r=tγ% þ tαð1þγÞ

rα
: ð19Þ

Thus, as argued earlier, the cutoff can be chosen to scale
with time in such a way that the long-range contribution to

FIG. 3 (color online). (a) Schematic representation of the term
…∥Wξ1∥Dðξ1; ξ2Þ∥Wξ2∥… in Eq. (12). Each green line represents
a single term in the interaction-picture Hamiltonian, and the
operators at the endpoints are supported over a ball or radiusRðtÞ þ
mχ (gray disks). (b) In deriving a bound, the additional summations
over the sizes of the supports of each operator generate exponen-
tially decaying connections between successive terms [Eq. (13)].
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the bound (scaling in space as r−α) has an algebraic rather
than exponential time dependence. If we now make the
substitution r ¼ tβ, we see that limt→∞CtβðtÞ vanishes
whenever β > 1=ζ, with

1=ζ ¼ 1þ ð1þDÞ=ðα − 2DÞ: ð20Þ

Thus, the light cone is bounded by a power law t ¼ rζ

(0 < ζ < 1) whenever α > 2D and becomes increasingly
linear (ζ → 1) as α grows larger.
As discussed in the introduction, our results impose

stringent constraints on the growth of entanglement after a
quantum quench. In addition, our bound implies much
stricter constraints on equilibrium correlation functions
than were previously known [17]. In particular, it follows
from Eqs. (19) and (20) that correlations in the ground state
of H decay at long distances as 1=rα, so long as the
spectrum of H remains gapped [28] (in fact, when
combined with the results of Ref. [12] our results could
be used to show that ground-state correlation functions
exhibit a hybrid exponential-followed-by-algebraic decay,
as observed recently in Refs. [29,30]). Understanding what
happens to the light cone in the intermediate regime
D < α < 2D, where our results do not apply but
Ref. [17] continues to predict a logarithmic light cone,
would be an interesting direction for future investigation.
We also note that, while we have ruled out the possibility of
a logarithmic light cone in favor of one that is a nearly
linear polynomial, it is possible that any sublinearity of the
light cone is impossible above some critical α.
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