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Emergent equilibrium in many-body optical bistability
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Many-body systems constructed of quantum-optical building blocks can now be realized in experimental
platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface
between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At
this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues
as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior
and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of
numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving.
Despite being a lattice version of optical bistability, a foundational and patently nonequilibrium model of
cavity QED, the steady state possesses an emergent equilibrium description in terms of a classical Ising model.
We establish this picture by making new connections between traditional techniques from many-body physics
(functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion—
organized around the experimentally relevant limit of weak interactions—the full quantum dynamics reduces to
nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-
Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that
canonical behavior associated with the Ising model manifests readily in simple experimental observables.
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I. INTRODUCTION

While systems described by cavity quantum electrody-
namics (QED) often contain many interacting degrees of
freedom, they are unconventional from the standpoint of
traditional many-body physics for two primary reasons. First,
the mediation of interactions through a small number of
delocalized cavity modes generally leads to extremely long-
ranged interactions [1], which suppress the role of fluctuations
and often enable accurate mean-field descriptions. In this sense
they are simpler than conventional solid-state realizations
of many-body physics, in which short-range interactions
promote both quantum and thermal fluctuations to an important
role, especially in low spatial dimensions [2,3]. Second,
cavity-QED systems are typically driven and dissipative; as
a result, even if they reach a time-independent steady state
they will generally not be in thermal equilibrium [4]. In this
sense they are more complicated than conventional solid-state
realizations of many-body physics, in which coupling to a
thermal reservoir is typically assumed and well justified,
leaving the system in thermal equilibrium and enabling the
powerful tools of statistical mechanics to be employed [5].

In recent years, experimental advances in quantum optics
have begun to blur the first of these distinctions [6–9], with
platforms including exciton-polariton fluids in semiconductor
quantum wells [10–15], circuit QED [16–20], optical fibers,
waveguides, and photonic crystals [21–26], small-mode-
volume optical resonators [27,28], and Rydberg ensembles
[29–32] all making progress towards realizing large-scale ar-
rays of short-range coupled quantum-optical building blocks.

These developments have led many researchers to revisit
fundamental questions surrounding the fate of nonequilibrium
quantum-optical systems in situations where, due to the
importance of either dissipative or quantum fluctuations, a
mean-field description is insufficient [7,15,33–44]. The pri-
mary goal of this paper is to elucidate the physics of a canonical
many-body model made relevant by these developments—
the driven-dissipative Bose-Hubbard model [45–48]—which
furnishes a minimal description of, e.g., coherently driven
exciton-polariton fluids confined in coupled microcavities or
other patterned semiconductor devices [14,15,49–51]. In that
context, the weak-coupling limit of the model is by far the most
experimentally relevant. However, as will be discussed, neither
perturbation theory nor mean-field theory are sufficient for
capturing the weak-coupling physics, even qualitatively, nor
can it be inferred from the well-studied equilibrium physics of
the Bose-Hubbard model.

Nevertheless, by exploiting connections between ideas
from many-body physics (functional-integral treatments of
nonequilibrium field theory) and quantum optics (phase-space
techniques and the system-size expansion), we identify a
quantitatively accurate mapping of the weak-coupling limit of
the driven-dissipative Bose-Hubbard model onto a field theory
governing the equilibrium physics of the finite-temperature
classical Ising model. In this way (cf. our main results in
Sec. V), we are able to make quantitative predictions for
the steady-state phases and phase transitions of the model
in a parameter regime that is highly relevant to ongoing
experiments with exciton-polariton fluids [14,15].
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Much of the previous work on the driven-dissipative Bose-
Hubbard model has grown out of early proposals to simulate
the equilibrium Bose-Hubbard model in photonic systems,
either in the transient regime of very weakly dissipative sys-
tems [45,52], or through clever strategies to mitigate the effects
of particle loss [53–55]. In this context, the driven-dissipative
model has been considered in an attempt to understand the
corruption of equilibrium physics by nonvanishing dissipation
in realistic systems, and to identify qualitative signatures of
equilibrium Bose-Hubbard physics—e.g., fermionization for
strong interactions [46,56] or the incompressibility of the
zero-temperature Mott-insulating phase [57–59]—that survive
in steady state. The general spirit of this approach is to
start from the intuitions and expectations appropriate for
the equilibrium Bose-Hubbard model, and to build outward
toward an understanding of the driven-dissipative dynamics;
numerous interesting connections to the equilibrium physics
of the Bose-Hubbard model [34,46,60], as well as a variety
of surprising and genuinely nonequilibrium effects [17,46,61–
64], have been discovered in this manner. But there are many
reasons to expect that the search for universal features of
the driven-dissipative model benefits from, and perhaps even
requires, a fundamentally different approach. For example,
the ground-state and thermal phase transitions of the Bose-
Hubbard model are intimately related to U(1) symmetry and
the associated particle-number conservation [65]. While the
former can be preserved in a driven-dissipative context by
pumping the cavities incoherently [6], the latter remains
absent [66], calling into question whether—in the sense
of phase transitions and universality—any properties of the
Bose-Hubbard model can survive the presence of driving and
dissipation [42].

Here, we instead pursue an understanding of the driven-
dissipative Bose-Hubbard model from the ground up, start-
ing from the well-understood nonequilibrium physics of a
single cavity, namely optical bistability [67], and adopting
a functional-integral formalism that is well suited to extending
the essential single-cavity physics to a many-body setting
[7,34,39,68]. As we show, the breaking of conservation laws
and symmetries at the microscopic level leads to universal
properties of the steady state that bear essentially no re-
semblance to the equilibrium physics of the Bose-Hubbard
model [57], but neither do they retain the fundamentally
nonequilibrium character of optical bistability. Instead, the
steady state of the driven-dissipative Bose-Hubbard model
admits an emergent equilibrium description in terms of a
finite-temperature classical Ising model [69]. Specifically (see
Fig. 1), two collective mean-field steady states are inherited
from the optical bistability of the individual cavities; they play
the role of the two local minima in the Ising model’s mean-
field free energy, while dissipation (i.e., vacuum fluctuations)
plays the role of thermal fluctuations, setting the effective
temperature. By explicitly and quantitatively connecting two
canonical and minimal models of many-body physics—one
a cornerstone of nonequilibrium quantum optics and one a
cornerstone of traditional equilibrium many-body physics—
this paper provides a particularly simple and concrete example
of the way in which equilibrium can emerge very naturally
from an a priori nonequilibrium many-body problem, even
when (a) mean-field theory fails and (b) the model with respect

FIG. 1. Summary of the correspondence between many-body
optical bistability and the classical Ising model that serves as its
effective equilibrium description. The two possible magnetizations
of the Ising model correspond to the bright and dark mean-field
steady states of the optically bistable cavities. All parameters and
variables are defined in the manuscript. In the bottom row, N is
a parameter controlling the density scale, i.e., |ψ |2 ∼ N . Hence
the low-temperature limit of the Ising model corresponds to a
semiclassical (large density) limit of optical bistability.

to which equilibrium emerges is not simply connected to the
equilibrium physics of the underlying Hamiltonian.

We note that our conclusions are enabled by a unification of
ideas from nonequilibrium field theory (originally applied to a
similar model in Ref. [69]) and quantum optics. In particular,
we identify a small parameter 1/N related to the inverse
“system size” (in the sense of the system-size expansion often
employed in quantum-optics studies of systems with only a
few degrees of freedom), which controls the overall scale of
fluctuations, and thus the effective temperature. In the limit of
weak fluctuations, the qualitative predictions of Ref. [69] can
be justified, made quantitative, and even verified numerically.
In this way, we not only identify the model with respect
to which an effective thermal description emerges, but also
semiquantitatively obtain the phase boundaries, effective tem-
perature, and near-critical dynamics in terms of microscopic
parameters. Crucially, the limit in which these methods are
accurate—weak coupling and large density—coincides with
the limit of the model that is most accessible experimentally.
Thus, in addition to establishing a universal perspective on
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the physics of the driven-dissipative Bose-Hubbard model, the
techniques established here can be used to make quantitative
predictions for ongoing experiments with exciton-polariton
fluids.

Before proceeding, we caution that the emergence of an
effective equilibrium description as detailed in this paper,
while potentially reasonably generic, should not be taken for
granted; other more genuinely nonequilibrium situations can
and do arise in other models [35,39,41,70–72]. Ultimately, the
goal of this paper is not only to provide a detailed view into the
mechanisms by which thermal equilibrium can emerge from
the microscopically nonequilibrium setting of many-body
cavity QED, nor by any means to insist that one must emerge,
but also to establish and clarify deep connections between
many-body physics and quantum optics that may elucidate
more unusual behaviors made possible by the strong-coupling
regime of quantum optics. It is natural to expect that analyses of
prototypical situations in which equilibrium does emerge will
play an important role in anticipating more exotic situations in
which it does not.

After presenting the model and reviewing the well-known
solution of the single-cavity case in Sec. II, our general strategy
for the many-body problem is laid out in Sec. III. Our approach
is based on a well-established exact mapping of the master
equation onto a functional integral. Although it imposes some
additional notational burden, the functional-integral formalism
has the virtue of (1) being a convenient starting point for the
identification of approximation schemes, including controlled
strategies for going beyond mean-field theory [68], and (2) en-
abling powerful techniques such as the renormalization group
to be applied [7]. Here, we use the functional integral to quickly
identify an exactly solvable limit of the problem, around which
a semiclassical expansion (related to the system-size expansion
of quantum optics) can be made. To leading nontrivial order in
this expansion, we obtain a quantitatively accurate mapping
of the many-body quantum master equation onto classical
nonequilibrium Langevin equations, with a small parameter
controlling the strength of the noise. In Sec. IV we analyze
the mean-field equations of motion near the mean-field critical
point, which possess an emergent Z2 symmetry in the spirit
of Ref. [73]. We show how the complex order parameter
decomposes into two real components, one of which stays
massive at the critical point and one of which does not. By
adiabatically eliminating the massive component, we arrive
at a time-dependent Landau-Ginsburg equation for a scalar
field, which supports two different homogeneous solutions
within the bistable region. Near the critical point and inside
the bistable region, we are able to analytically obtain the profile
and velocity of domain walls separating domains of these
two different phases, and the vanishing of the domain-wall
velocity gives a zeroth-order approximation to the location of
a true (first-order) phase transition in more than one spatial
dimension. In Sec. V we consider the effects of fluctuations in
both one and two spatial dimensions by (a) arguing that—near
the critical point and for weak noise—the nonlinear Langevin
equations become equivalent to model A of the Hohenberg-
Halperin classification, and (b) solving the nonequilibrium
Langevin equations numerically, which is valid even away
from the critical point. As our earlier analysis would suggest,
the numerical results are qualitatively consistent with the

expected equilibrium physics of a classical Ising model in
a longitudinal field. In one dimension, domains are seeded
by fluctuations, and the dynamics of their unbound domain
walls smooths the mean-field transition into a crossover. In
two dimensions the domain walls exhibit a surface tension,
enabling a line of true first-order phase transitions terminating
at a critical point.

II. MODEL

The model we consider can arise in a variety of contexts,
but for concreteness we consider either a one-dimensional
(1D) chain or a two-dimensional (2D) rectangular array
of semiconductor microcavities supporting exciton-polaritons
(see, e.g., Ref. [14]). We assume that the on-site energies of
exciton-polaritons are spatially uniform and equal to ω0, and
that the cavities are driven coherently and in phase by a laser
with frequency ωL. Upon making a unitary transformation to
remove the time dependence of the driving, we obtain the
Hamiltonian

Ĥ = −J
∑

⟨j,k⟩
â
†
j âk − δ

∑

j

â
†
j âj + U

2

∑

j

â
†
j â

†
j âj âj

+$
∑

j

(âj + â
†
j ). (1)

Here, â
†
j (âj ) creates (annihilates) an exciton-polariton in the

j th cavity, J parametrizes the strength of a coherent coupling
of exciton-polaritons between neighboring cavities, δ = ωL −
ω0 is the detuning of the laser from cavity resonance, U sets the
two-body interaction energy for exciton-polaritons confined in
the same cavity, and $ is the amplitude of the coherent driving.
The notation ⟨j,k⟩ implies that the sum should be taken over all
nearest-neighbor pairs of sites j and k. The driving is necessary
to stabilize a nontrivial steady state in the presence of particle
loss out of the cavities at a rate κ . If the loss of exciton-
polaritons is treated in the Born-Markov approximation, the
dynamics of the combined unitary evolution under Ĥ and loss
is described by a Markovian master equation [4],

dρ̂

dt
= −i[Ĥ ,ρ̂] + κ

2

∑

j

(2âj ρ̂â
†
j − ρ̂â

†
j âj − â

†
j âj ρ̂). (2)

More generally, Eqs. (1) and (2) provide a natural (though
certainly not unique) generalization of the Bose-Hubbard
model to the driven ($) and dissipative (κ) setting of quantum
optics.

The case of a single cavity has been thoroughly studied
in the quantum-optics literature, where it serves as a minimal
model for dispersive optical bistability [67,74]. A mean-field
description of the problem can be obtained by writing down the
equation of motion for ψ ≡ ⟨â⟩ and assuming that expectation
values of normal-ordered operator products factorize (i.e.,
making the replacement ⟨â†ââ⟩ → |ψ |2ψ), giving

iψ̇ = −(δ + iκ/2)ψ + U |ψ |2ψ + $. (3)

The steady-state equation ψ̇ = 0 can be recast as a cubic
equation for the mean-field density n = |ψ |2,

n[(δ − Un)2 + κ2/4] = $2. (4)
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FIG. 2. (a) The mean-field phase diagram for a single cavity is
divided into regions that support either one or two dynamically stable
solutions. For this plot and those that follow, all parameter values
are given in units of δ, and U = 0.1. (b) κ = 0.6: A cut through
the bistable region of the mean-field phase diagram, showing both
the mean-field (dashed blue curve) and exact (solid orange curve)
solution for the density. (c) κ = 0.6 and $ = 1.2: Full counting
statistics of the exact steady-state density matrix, together with that
of both mean-field solutions (i.e., coherent-state distributions, with
the relative normalization used as a fitting parameter). (d) κ = 0.6
and $ = 1.2: One trajectory obtained from a quantum-trajectories
simulation of Eq. (2) for a single cavity, showing switching between
two mean-field-like states; the densities associated with the two
dynamically stable mean-field solution are shown as dashed lines.

This equation has either one or two solutions that are
dynamically stable to small perturbations, leading to the
mean-field phase diagram shown in Fig. 2(a).

For a single cavity, the full quantum solution of the
master equation can be obtained efficiently in a variety of
ways, for example by direct numerical integration of Eq. (2)
within a truncated Hilbert space. Steady-state expectation
values can even be obtained analytically by mapping the
single-cavity version of Eq. (2) onto phase-space equations in
the complex-P representation [67,75]. Reference [67] provides
a comprehensive discussion of the solution, and here we
simply summarize its main features, focusing primarily on
the relationship between the exact and mean-field solutions.
While the mean-field equations of motion can support two
dynamically stable steady states, the exact steady-state density
matrix of Eq. (2) is always unique, as are all observables
calculated from it [for example, see Fig. 2(b)]. While there are
never two truly stable steady states, two important signatures
of mean-field bistability do survive in the limit of large cavity
occupancy [76,77]: (1) The full-counting statistics of the exact
solution exhibits a bimodal structure within the parameter
regime yielding mean-field bistability, with the probability of
observing different photon numbers clustering around the two
mean-field stable values of the density [Fig. 2(c)]. Outside of
the bistable region, this bimodality disappears and the exact
counting statistics becomes similar to that corresponding to
the one stable mean-field solution; in this sense, the exact
solution interpolates between the two mean-field steady states
within the bistable region. (2) If the system is initialized in

one of the mean-field steady states, it will only explore the
phase space in the vicinity of that solution on the natural time
scales of the problem (i.e., those associated with energy scales
appearing explicitly in the master equation), and will only
sample the phase space in the vicinity of the other mean-field
solution on much longer time scales [Fig. 2(d)]. This slow
time-scale for switching between mean-field-like steady states
is associated with a small gap of the exact quantum Liouvillian,
which vanishes inside the bistable region in the limit of large
photon occupancy [48,78,79]. In this limit, which plays a role
analogous to the “thermodynamic limit” of a spatially extended
system [80], mean-field bistability can therefore be identified
with the existence of a (zero-dimensional) dissipative phase
transition.

III. FUNCTIONAL-INTEGRAL FORMULATION
AND THE SYSTEM-SIZE EXPANSION

To analyze the steady-state behavior of many coupled
cavities, it is convenient to recast the master equation in terms
of an equivalent functional integral [81],

Z =
∫

Dψ(t)Dϕ(t)W(ψ0,t0)eiS , (5)

with action

S = 2i
∑

j

∫ ∞

t0

dt(ϕ̄∂tψ − ϕ∂t ψ̄)

−
∑

j

∫ ∞

t0

dt(Hw(ψ + ϕ) − Hw(ψ − ϕ))

+iκ
∑

j

∫ ∞

t0

dt (2ϕ̄ϕ − ϕψ̄ + ϕ̄ψ). (6)

The functional integral in Eq. (5) is over all unconstrained
paths for the variables ψj (t) and ϕj (t), the spatiotemporal
dependence of which has been suppressed in Eqs. (5) and (6)
[82]. The factor W(ψ0,t0) in Eq. (5) is the Wigner function
at the initial time t0, with ψ0 being shorthand for the set of
field variables ψj (0) at the initial time. In this paper we only
concern ourselves with steady-state properties, and so we can
safely set t0 = −∞ in the integral limits of Eq. (6) and exclude
the dependence on W(ψ0,−∞) from Z . From here forward
the integral limits of ±∞ in the action are implied and not
shown.

The classical Hamiltonian Hw in Eq. (6) is the Weyl
symbol of the Hamiltonian in Eq. (1) [83,84]; this should
be contrasted with the usual appearance of the Q symbol
in the Keldysh functional integral. The appearance of the
Weyl symbol is a consequence of the way in which Eqs. (5)
and (6) are derived. In particular, we do not apply the usual
Keldysh rotation to a coherent-state path integral, but rather
provide a direct construction of Z in terms of the variables
ϕ and ψ (see Appendix A for a detailed derivation). This
constructive approach has the benefit of elucidating the deep
connections between the functional-integral treatment of open
quantum systems—which is widely employed, and reviewed
in Ref. [7]—and more traditional phase-space methods. These
differences notwithstanding, the present approach is perfectly
consistent with the appearance of the Q function in the usual
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Keldysh approach; the difference is compensated by a slightly
different set of rules for computing equal-time observables.

While the master equation can be used to compute arbitrary
averages of time-dependent system operators via the quantum-
regression formula [4,85], the functional integral in Eq. (5) is
suited to calculating products of operators that are ordered
along a closed-time (Keldysh) contour [86,87]. It is worth
noting, however, that the restriction to calculating a particular
class of time-ordered operators is not required in order to
formulate the problem via a functional integral; rather, it
enables the functional integral to be formulated along a
particularly simple (Keldysh) time contour. The simplicity
afforded by Keldysh time ordering also manifests itself in
more traditional quantum-optics approaches to computing
time-dependent observables: The observables made accessible
via a functional integral formulated on the Keldysh contour
are precisely the same as those computable via the quantum-
regression formula without evolving the density matrix back-
wards in time.

Writing the so-called classical (ψ) and quantum (ϕ) fields
as (ψ1,ψ2) ≡ (ψ̄,ψ) and (ϕ1,ϕ2) ≡ (ϕ̄,ϕ), and writing cre-
ation and annihilation operators as (â1,â2) ≡ (â†,â), Keldysh-
ordered correlation functions can be computed as (restoring
spatiotemporal indices and defining µ = 1,2)

〈
TK

(
· · · âµ

j (t±) · · ·
)〉

=
〈
· · ·

(
ψ

µ
j (t) ± ϕ

µ
j (t)

)
· · ·

〉
Z . (7)

On the left-hand side of Eq. (7) the expectation value is
taken with respect to the initial density matrix, and the
operators evolve in the Heisenberg picture [88]. The symbol
TK time-orders all operators whose time arguments have a “+”
superscript, and anti-time-orders those with time arguments
that have a “−” superscript, placing all of the latter to the
left of all of the former. On the right-hand side of Eq. (7)
the expectation value is taken with respect to the functional
integral Z; i.e., it is computed by inserting the relevant fields
into the integrand of Eq. (5) (Z is normalized to unity by
construction, as it expresses the trace of the density matrix).
In the calculations that follow, we exploit a semiclassical limit
in which the quantum field is, in a sense to be made precise,
parametrically smaller than the classical field; thus we are
primarily interested in correlations of the classical field alone,
which can be converted into operator expectation values by
inverting Eq. (7),

〈
ψ

µ1
j1

(t1) · · · ψµn

jn
(tn)

〉
Z = 1

2n

∑

σ=±

〈
TK

(
â

µ1
j1

(
tσ1
1

)
· · · âµn

jn

(
tσn
n

))〉
.

(8)

While it may appear that such correlation functions can be
discontinuous at coinciding times due to the associated change
of operator ordering on the right-hand side of Eq. (8), it
is straightforward to show that this is not actually the case.
Instead, when the times approach each other (t1, . . . ,tn → t),
the limit of an arbitrary n-point correlation function of the
classical field ψ smoothly approaches the equal-time value

〈
ψ

µ1
j1

(t) · · ·ψµn

jn
(t)

〉
Z =

〈(
â

µ1
j1

(t) · · · âµn

jn
(t)

)
s

〉
, (9)

where (· · · )s symmetrizes (i.e., Weyl-orders) products of
creation and annihilation operators [4]. In other words, equal-
time correlation functions of the classical field reproduce

the average of Weyl-ordered operator products. For example,
the density can be computed from the two-point correlation
function

⟨ψ̄j (t)ψj (t)⟩Z = ⟨(â†
j (t)âj (t))s⟩ = 1

2 ⟨â†
j (t)âj (t) + âj (t)â†

j (t)⟩

= ⟨n̂(t)⟩ + 1
2 . (10)

The Weyl symbol of Ĥ is given by (ignoring additive
constants, which do not affect correlation functions)

Hw(α) =
∑

j

(
−ᾱj (J∇2 + µ + U )αj

+ U

2
|αj |4 + $(ᾱj + αj )

)
. (11)

Here ∇2αj ≡ −zαj +
∑

⟨k,j⟩ αk is the discrete Laplacian, the
lattice coordination number z = 2D in D dimensions, and
µ = δ + zJ . Inserting Eq. (11) into Eq. (6) yields the action

S = 2
∑

j

∫
dt ϕ̄

(
i∂tψ +

(
J∇2 + µ + i

κ

2

)
ψ

− $ − U |ψ |2ψ
)

+ c.c. + 2iκ
∑

j

∫
dt ϕ̄ϕ

+ 2U
∑

j

∫
dt (ϕ̄ϕ + 1)(ψϕ̄ + ψ̄ϕ). (12)

Because the functional integral is Gaussian for U = 0, and
because optical bistability at the mean-field level can occur
at arbitrarily small values of U , one might hope that some
aspects of the relevant physics can be captured by doing
perturbation theory in U . However, this is not the case; while
optical bistability can indeed occur for small U , it always
occurs when the typical interaction energy seen by a particle,
U |ψ |2, is comparable to the other energy scales of the problem.
Nevertheless, the action can still be organized around a small
parameter that enables a controlled approximation. To this end,
we define rescaled fields and parameters

+ ≡ ϕ
√
N , , ≡ ψ/

√
N , ω ≡ $/

√
N , u ≡ UN ,

(13)

in terms of which the action can be rewritten

S = 2
∑

j

∫
dt +̄

(
i∂t, +

(
J∇2 + µ + i

κ

2

)
,

−ω − u|,|2,
)

+ c.c. + 1
N

∑

j

∫
dt (2iκ+̄+)

+ 1
N 2

∑

j

∫
dt 2u(+̄+ + N )(,+̄ + ,̄+). (14)

The dimensionless parameter N implicitly identifies a one-
dimensional family of actions at fixed values of ω, u, κ ,
µ, and J , one limit of which (large N ) will be shown to
admit a tractable analysis. Note that the limit N → ∞ at
fixed u and ω is not the same thing as the limit U → 0, even
though the coupling U does become small in this limit. Rather,
increasing N amounts to increasing the drive strength $ while
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simultaneously decreasing the coupling U in such a way that
the typical interaction energy per particle, U |ψ |2, remains
constant.

To see this, we first evaluate the functional integral in the
limit N → ∞, in which only the first term in the action
survives. The functional integral over + can be carried out and
yields a functional δ function of the term inside parentheses,
thereby enforcing the mean-field equation of motion

i∂t, = −J∇2, − (µ + iκ/2), + ω + u|,|2,. (15)

Note that at this level of approximation, varying N with
ω and u held fixed leaves the equation of motion for ,
invariant. Therefore, as discussed above, the typical interaction
energy seen by each particle, U |ψ |2 = u|,|2, stays fixed. The
only consequence is that the actual density, |ψ |2 = N |,|2, is
enhanced by a factor of N , which therefore sets the overall
density scale [79].

For N large but finite, the final term on the second
line of Eq. (14) suppresses contributions to the functional
integral unless + ! N 1/2. The final term can therefore be
estimated as +3N−2 + +N−1 ! N−1/2 and can be safely
ignored in the large-N limit. At this level of approximation,
the functional integral can no longer be solved exactly, but it
can be mapped onto stochastic classical equations by standard
techniques. Decoupling the term that is quadratic in + with a
Hubbard-Stratonovich transformation,

e−(2κ/N )|+|2 = 2N
κπ

∫
d2ζe2i(+ζ̄++̄ζ )e−2N |ζ |2/κ ,

the action again becomes linear in +. This time, for fixed ζ ,
the functional integral over + enforces the equation of motion

i∂t, = −J∇2, − (µ + iκ/2), + ω + u|,|2, + ζ. (16)

The remaining functional integral over ζ with a Gaussian
weight exp(−2N |ζ |2/κ) indicates that we should interpret
Eq. (16) as a stochastic differential equation, with ζ being
complex, Gaussian white noise of variance (restoring spatial
and temporal indices)

ζ̄j (t1)ζk(t2) = 1
N

κ

2
δj,kδ(t1 − t2). (17)

Hence the dynamics of the rescaled classical field ,, to this
order in 1/N , is governed by a stochastic and dissipative
Gross-Pitaevskii equation with parametrically weak noise
[89]. Equation (16) can also be derived using phase-space
techniques; in this context, it would arise as the so-called
truncated Wigner approximation, an approximation to the
(otherwise-exact) multidimensional partial-differential equa-
tion governing the time evolution of the Wigner function.
However, the functional-integral approach used here makes
the identification and justification of this approximation very
transparent and has the advantage that one can assess the
consequences of the approximations that lead to Eq. (16)
within the framework of the renormalization group. In par-
ticular, as discussed in Ref. [69], Eq. (16) should reproduce
the correct critical exponents for the phase transition exhibited
by the exact steady state of Eq. (2). Unlike in Ref. [69],
however, here we have explicitly identified a limit (large
N ) in which Eq. (16) yields asymptotically exact results
for microscopic observables and thus can be used to make

quantitative predictions about the behavior of correlation
functions at the lattice scale (rather than just qualitative
predictions about their long-distance asymptotics). Moreover,
the existence of this limit furnishes a more formal justification
for perturbative renormalization-group analyses.

It is important to realize that, even for a single cavity,
Eqs. (15) and (16) must be interpreted with some care in order
to correctly extract steady-state properties in the large-N limit.
In particular, there is a sense in which mean-field theory makes
incorrect predictions about the steady-state even in the limit
of large N . The difficulty can be seen by returning to the
full functional integral; there, it can be shown that the limits
N → ∞ and t → ∞ do not commute when the parameters
are tuned to be inside the mean-field bistable region [90].
Indeed, if we take the limit N → ∞ first, Eq. (15) is exact
at all times, and we are led to conclude (on the same basis as
the analysis in Sec. II) that there are two stable steady states.
If we instead take the large-t limit first, we would find [based
on the analysis of 1/N corrections contained in Eq. (16)] that
there is a unique steady state at any finite value of N , which
is a fluctuation-induced admixture of the two stable steady
states computed by reversing the order of limits. If we now
take the large-N limit, one of those steady states is generally
preferred over the other, in the sense that it alone determines all
steady-state expectation values. Thus we encounter a sudden
(first-order) phase transition between a bright and a dark state
when traversing through the mean-field bistable region.

IV. MEAN-FIELD THEORY

From the above considerations it is clear that, at least
in the large-N limit, the steady state can be understood by
solving the mean-field equations of motion in the presence
of parametrically weak noise. Thus we expect a detailed
understanding of the mean-field dynamics in the absence of
noise to form a useful starting point for understanding the
dynamics of Eq. (16). At the level of Eq. (15), and assuming
that only uniform steady states exist, the steady-state phase
diagram is identical to that of single-cavity optical bistability,
up to the replacement of δ by µ. In terms of the rescaled field ,
and a rescaled density N ≡ |,|2 = N−1|ψ |2, Eq. (4) becomes

N ((µ − uN )2 + κ2/4) = ω2. (18)

Straightforward analysis of Eq. (18) shows that upon entering
the bistable region from outside of it, the additional solution
does not in general emerge continuously from the existing
one. However, if one enters the bistable region through the
cusp located at (see Fig. 3)

{κc,ωc} = µ{(4/3)1/2,(2/3)3/2(µ/u)1/2}, (19)

the two solutions do emerge continuously from a single
solution, ,c = e−iπ/3√2µ/3u (with critical density Nc =
|,c|2 = 2µ/3u). Therefore, we can identify the cusp of
the bistable region as a mean-field critical point locating a
continuous phase transition from one to two steady states.

It is straightforward to show that one can only enter
the bistable region through the critical point along the line
(κ − κc) =

√
8u/µ(ω − ωc). It is convenient in what follows

to define new coordinates in the κ-ω parameter space that
naturally parametrize deviations from the mean-field critical

043826-6



EMERGENT EQUILIBRIUM IN MANY-BODY OPTICAL . . . PHYSICAL REVIEW A 95, 043826 (2017)

FIG. 3. (a) Coordinates used to parametrize passage through the
mean-field critical point and into the bistable region; r and h control
deviations in a nonorthogonal coordinate system spanned by the
dashed arrow. (b) Setting h = 0 and scanning r from positive to
negative causes the order parameter to undergo a cusp bifurcation, at
which the solution outside the bistable region goes unstable (dashed
line) and two new dynamically stable steady states (solid lines)
emerge continuously. In both plots u = µ, and energies are given
as dimensionless ratios with µ.

point along and away from this line,

r = 1
2

(κ − κc), h = 4√
3

(ω − ωc) −
√

2µ

3u
(κ − κc). (20)

Note that this parameter transformation is designed so that
only r varies as we enter the bistable region through the critical
point—the overall normalization of r and h is arbitrary, and
chosen to make the formulas that follow simpler. These new
variables can be visualized as parametrizing deviations from
the mean-field critical point in the nonorthogonal coordinate
system shown in Fig. 3(a). For h = 0, moving from r > 0 to
r < 0 causes the mean-field solution outside of the bistable
region to undergo a cusp bifurcation [Fig. 3(b)]. For r < 0,
sweeping h from negative to positive traverses the bistable
region in such a way that the system goes from supporting
only a low-density solution, to having coexisting low-density
and high-density solutions, and then eventually to supporting
only a high-density solution. This behavior is in close analogy
to that of an Ising model: If the dark and bright solutions
are identified with the up-down-symmetry-related free-energy
minima, then r plays the role of the reduced temperature and
h plays the role of a symmetry-breaking (longitudinal) field,
causing one to be preferred over the other. The remainder of
Sec. IV formalizes this analogy, and in Sec. V we argue that it
continues to hold even when fluctuations are included.

A. Near-critical dynamics

We are particularly interested in the effects of fluctuations
in the vicinity of the mean-field critical point, which requires
that we first understand the mean-field response when (a) the
parameters are tuned close to the mean-field critical point (both
r and h are small) and (b) the order parameter , is perturbed
weakly from its steady-state value. First working directly at the
critical point (r = h = 0, with steady-state solution , = ,c)
and assuming that , = ,c + δ, is uniform and close to the
critical value, we expand Eq. (15) to first order in δ, to obtain

∂tδ, = −µ

2
[(

√
3 + i)δ, + (

√
3 − i)δ,̄]. (21)

The right-hand side (rhs) of Eq. (21) is purely real, and thus
only the real part of δ, decays; the dynamics stops when
the rhs vanishes, i.e., when arg(δ,) = π/2 − arg(

√
3 + i) =

π/3. This observation motivates the following decomposition
of the complex-valued δ, into two real components,

δ, = ϱ + eiπ/3σ, (22)

with the expectation that ϱ and σ will relax quickly and
slowly, respectively, in the vicinity of the mean-field critical
point. Inserting this decomposition into Eq. (15) but now
keeping all orders in ϱ and σ , we obtain coupled nonlinear
differential equations for ϱ and σ (see Appendix B for a
detailed discussion). The fast variable ϱ can be adiabatically
eliminated by solving ∂tϱ = 0 for ϱ (perturbatively in r and
h) and inserting the solution into the equation of motion for σ .
In this way, to lowest nontrivial order in r we obtain

∂tσ = J√
3
∇2σ − rσ − u√

3
σ 3 − h

2
. (23)

Note that we have also dropped higher-order derivative terms
for σ that arise from the adiabatic elimination of ϱ; this
omission turns out to be justified (to lowest nontrivial order
in r) near the mean-field critical point, where the fields vary
slowly in space, even when J is not small compared to the
other energy scales in Eq. (23) (the perturbative adiabatic
elimination of ϱ is explained in detail in Appendix B).
Restoring spatial indices and defining parameters

K = J/
√

3, g = u/
√

3, (24)

Eq. (23) can be rewritten as

∂tσj = −∂H (σ )
∂σj

, (25)

where the effective Hamiltonian H (σ ) is defined as

H (σ ) = 1
2

∑

j

(
K|∇σj |2 + rσ 2

j + 1
2
gσ 4

j + hσj

)
. (26)

Note that, as anticipated, H (σ ) is precisely the energy
functional defining the Landau theory of a classical Ising
model, with σ playing the role of the magnetization. Equation
(25) indicates that the dynamics of the slow field in the vicinity
of the critical point is purely relaxational, evolving towards the
minimum of the effective potential H (σ ).

B. Domain walls

At the level of mean-field theory there are two truly stable
homogeneous solutions within the bistable region. However, it
is clear that if we place the system in one of the two mean-field
steady states, the inclusion of fluctuations will seed defects of
the other steady state; whether these defects shrink or grow will
depend on the dynamics of the domain wall separating them
from the bulk, and will determine which of the two mean-field
steady states is preferred over the other. Thus the identification
of a point in the bistable region where the mean-field velocity
of a domain wall vanishes gives a first approximation to the
location of the phase transition when fluctuations are included.

It is difficult to analytically extract domain-wall dynam-
ics directly from Eq. (15), so to proceed we make three
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assumptions: (1) the parameters are tuned to be inside the
bistable region and close to the mean-field critical point, (2)
the domains are smooth, such that a continuum approximation
is justified, and (3) if D > 1, the domains are large and thus
have vanishing curvature. The first assumption justifies the use
of Eq. (25) to calculate the dynamics. The second assumption
requires that J is large compared to the local energy scales
of the problem, e.g., to the characteristic time scale associated
with dynamics in the potential part of the Hamiltonian

U (σ ) = 1
2

(
rσ 2 + 1

2gσ 4 + hσ
)
. (27)

Note that near criticality, this only requires that J is large
compared to r and h, and not that J is large compared to the
energy scales ω and γ . The third assumption is made because
the phase that is favored in the limit of weak fluctuations is
the one in which asymptotically large defects of the opposite
phase are unfavored (i.e., tend to shrink).

The dynamics of a flat domain wall is effectively one-
dimensional and can be ascertained from a one-dimensional
continuum version of Eq. (25),

∂tσ (x,t) = K∂2
xσ (x,t) − rσ (x,t) − gσ (x,t)3 − h

2
. (28)

When h = 0, the symmetry of Eq. (28) under inversions σ →
−σ implies that domain walls must be stationary; both uniform
phases have the same effective potential, and relaxational
dynamics cannot prefer one over the other. Therefore, the
line h = 0 provides a first approximation to the dividing line
between parts of the bistable region in which the bright phase
is more stable and parts in which the dark phase is more stable.

For h small but nonzero, the domain-wall velocity can be
estimated in the following manner [91]. Making a traveling
wave ansatz σ (x,t) = σ (τ ), with τ ≡ x − vt , and denoting
derivatives with respect to τ by dots, Eq. (28) becomes

K σ̈ = −vσ̇ + ∂U (σ )
∂σ

. (29)

Equation (29) can be interpreted as Newton’s equation for a
particle with position σ and mass K , moving in the inverted
potential −U (σ ) and subject to a linear drag with friction
coefficient v. Inside the mean-field bistable region (r < 0)
there are two stationary solutions of Eq. (29) associated with
the two local maxima of the potential energy −U (σ ) (Fig. 4);
these correspond to the two spatially uniform mean-field
steady states. To zeroth order in h, these solutions are located at

FIG. 4. (a) Domain-wall dynamics near the critical point. Since
the dynamics is relaxational, the domain wall moves in such a
direction that the lower-energy domain increases in size. (b) This
dynamics can be mapped onto the motion of a fictitious particle in an
inverted potential.

FIG. 5. (a) Numerically determined location of the domain-wall
velocity zeros (red disks), together with the analytical estimate of
the zero-velocity line, h = 0, valid near the critical point (red line).
The size of the disks reflects the largest expected uncertainty in the
numerical determination of these points. Inset: Exploded view of the
main plot near the critical point, now in terms of the parameters h and
r . The dashed blue line is an improved estimate of the zero-velocity
line obtained by extending Eq. (23) to next leading (quadratic) order
in r . (b) Numerically extracted domain-wall velocity (red disks) as
a function of h [taken along the black dotted line shown in the inset
of (a)], compared with the estimate in Eq. (30) (black dashed line).
Note that the black dashed line does not vanish at h = 0. While its
slope is taken from Eq. (30), it has been shifted by an amount that
we determine by extending Eq. (23) to next-to-leading order in the
deviations from the critical point [i.e., the same correction used to
produce the blue dashed line in the inset of (a)], which clearly agrees
well with the numerically calculated shift of the zero-velocity point.

σ± = ±σ0, with σ0 =
√

|r|/g. In addition to the two stationary
solutions, a solution can be found that interpolates from the
higher local maximum to the lower one, which for h > 0
is located at σ = +σ0. The friction coefficient v must be
determined self-consistently such that the particle comes to
rest at the lower local maximum. Standard analysis of the
solutions of Eq. (29) based on conservation of energy yields,
to first order in h (see Appendix C for details),

v ≈ h
3
2

√
Kg

2r2
. (30)

The analysis above is corroborated by brute-force numerical
integration of Eq. (15). The true zero-velocity line can be
determined numerically by solving Eq. (15) with a domain
wall inserted at t = 0, and agrees with the h = 0 line near
the critical point [Fig. 5(a)]. Also, as shown in Fig. 5(b),
Eq. (30) agrees well with the numerically extracted domain-
wall velocity.

V. LANGEVIN EQUATIONS

Mean-field theory suggests that the steady state of the
master equation in Eq. (2) undergoes an Ising-like phase
transition in sufficiently high spatial dimensions. However, in
order to understand the detailed nature of this phase transition,
and to determine its lower critical dimension, fluctuations must
be taken into account. As discussed in Sec. III, for large N
the dominant fluctuations are captured by working with the
stochastic and dissipative Gross-Pitaevskii equation (GPE) in
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Eq. (16), reproduced here for clarity:

i∂t, = −J∇2, − (µ + iκ/2), + ω + u|,|2, + ζ. (31)

At this level of approximation, expectation values of the
classical field are obtained by averaging the solution of Eq. (31)
over realizations of the noise ζ , ⟨· · · ⟩Z ≈ ⟨· · · ⟩sGPE. Note that,
unlike in mean-field treatments, Eq. (31) gives access to ap-
proximate correlation functions of operators at unequal points
in space and time via the correspondence in Eqs. (8) and (9).

Though we cannot solve Eq. (31) analytically, simple
arguments can be made to explain many features of the
steady state quantitatively near the mean-field critical point,
and qualitatively even away from it. As before, the near-
critical dynamics is simplified by decomposing the field as
, = ,c + (ϱ + eiπ/3σ ). Adiabatic elimination of ϱ can again
be performed perturbatively in h and r; the only subtlety is
that fluctuations cause ϱ to undergo a lattice version of the
Ornstein-Uhlenbeck process [92], which feeds back into the
equation of motion for σ as non-δ-correlated noise. However,
it is straightforward to show that near the critical point the
correlation time of this additional noise is short compared to
the dynamical time scales of σ , and it can be incorporated
as a perturbative renormalization of the δ-correlated noise
acting directly on σ . Details of the calculation are reported
in Appendix B, and here we simply quote the final result,

∂tσj = −∂H (σ )
∂σj

+ ξj (t). (32)

Here, H (σ ) is the same energy functional given in Eq. (26),
and ξj (t) is (real) Gaussian white noise with variance

ξj (t1)ξk(t2) = κ

3N
δj,kδ(t1 − t2). (33)

Equation (32) is a spatially discretized version of model
A in the Hohenberg-Halperin classification [93], suggesting
that the steady-state phase transition associated with optical
bistability in the driven-dissipative Bose-Hubbard model is, as
anticipated, in the universality class of the finite-temperature
classical Ising model. In particular, steady-state and static
observables generated by the stochastic dynamics in Eq. (32)
can be computed with respect to a Boltzmann weight,

P(σ ) = Z−1e−H (σ )/Teff , Z =
∫ ∏

j

dσj e
−H (σ )/Teff ,

(34)

with an effective temperature given by

Teff = κ/3N . (35)

The large-N limit was designed to suppress fluctuations in the
microscopic action and so, unsurprisingly, it corresponds to a
low-temperature limit of the effective equilibrium description
of the phase transition. Returning to the underlying micro-
scopic degrees of freedom, it is straightforward to see that the
dynamics of this effective theory is imprinted on experimen-
tally measurable observables. The connection is particularly
simple near the mean-field critical point. For example, working
to lowest nontrivial order in the deviations of the fields from
their mean-field critical values, straightforward algebra yields

the equal-time connected density-density correlation function

Cjk = ⟨n̂j (t)n̂k(t)⟩ − ⟨n̂j (t)⟩⟨n̂k(t)⟩
∝ ⟨σj (t)σk(t)⟩sGPE − ⟨σj (t)⟩sGPE⟨σk(t)⟩sGPE. (36)

The critical properties of the finite-temperature Ising model
should, therefore, control the critical fluctuations of the
intensity of light emitted from a coherently driven array of
exciton-polariton microcavities.

Before considering what happens away from the critical
point, we first briefly summarize a qualitative picture of model
A dynamics and its connection to the Ising model. Suppose that
the system is seeded in a locally random initial configuration:
We would like to know what happens to it in steady state.
At short times and for r < 0, we expect the system to form
domains of both (locally stable) phases, separated by domain
walls. In the absence of fluctuations (i.e., at Teff = 0) the pre-
ferred steady state of the system can be understood by simple
domain-wall dynamics; for h ̸= 0 one phase is preferred over
the other, and the system will eventually order in that phase.
If fluctuations are now turned on, domains of the less favored
phase will be seeded, and the consequence of these defects
depends crucially on the dimensionality. In one dimension,
the domain walls enclosing these defects move independently
of each other when they are sufficiently far apart, undergoing
a biased random walk. As a result, when h → 0 and the dy-
namics becomes unbiased, defects proliferate and the system
will be disordered at any finite temperature. In two or more
spatial dimensions, defects of the less favored phase will still be
seeded by fluctuations, but small defects contract aggressively
even as h → 0 due to a surface tension. Therefore, at least at
sufficiently small temperature, as h → 0 the system remains
ordered in a phase that depends on whether h approaches zero
from below or above, indicating a first-order phase transition.

Since the above argument relies very little on the dy-
namics being relaxational, and primarily on the existence of
domain walls that—in the absence of fluctuations and for
asymptotically large domains—have a directional preference
that changes as we move through the bistable region, it is
reasonable to expect the qualitative picture described above
to be valid even away from the critical point. Nevertheless,
because the dynamics generated by Eq. (16) does not induce an
equilibrium steady-state distribution far away from the critical
point, it is important to verify this picture numerically.

To this end, we carry out a brute-force numerical integration
of Eq. (31) in both one and two dimensions using a fixed-
time-step first-order Euler-Mayurama method. After a burn-in
time, the equations are integrated until statistical error bars
(1σ ) of fractional size 0.01 are achieved for the density.
Temporal autocorrelations on time scales of 1/10 the total
integration time are also required to fall below a similar
threshold to ensure that the averaging time is long compared
to all dynamical time scales, which can become anomalously
large near the crossover or phase transition. Exemplary results
of these numerics in one dimension are shown in Fig. 6 and
reflect the spatiotemporal dynamics of output light intensity
that would be observed if the model were realized in an array
of exciton-polariton microcavities. As expected, by sweeping
vertically through the mean-field bistable region, we change
from a dominantly dark steady state with small domains of
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FIG. 6. Real-time dynamics (after burn in) in a 1D system
with 128 sites and periodic boundary conditions, showing domain
proliferation in the vicinity of the crossover in one dimension. In all
three plots, (J,U,κ) ≈ (0.1µ,0.2µ,0.3µ). The left-hand panel is just
on the dark side of the crossover, the middle panel is roughly in the
middle of the crossover, and the right-hand panel is just on the bright
side of the crossover. The color indicates the density.

the bright phase to a predominantly bright steady state with
small domains of the dark phase. Because the domain walls
are unbound, this change manifests as a smooth crossover
rather than a true phase transition, as confirmed in the 1D
phase diagram shown in Fig. 7(a) [in particular, see the cross
section plotted in Fig. 7(c)]. Near the mean-field critical point,
the characteristic domain size at the crossover point (see, for
example, the central panel of Fig. 6) reflects the effective
temperature of the model; as κ shrinks the domains grow in
size, and the crossover becomes sharper. However, the extent to
which this behavior persists as κ → 0, and whether this limit
is strictly analogous to the T → 0 limit of the Ising model,
is difficult to say. A careful numerical analysis of density-
density correlation functions in one dimension reveals that
they always decay exponentially at the crossover point, with a
correlation length that grows monotonically with decreasing κ .
However, as κ decreases, eventually the domain size becomes
so large—and the dynamics of domain-wall diffusion becomes
so slow—that we are unable to obtain statistically converged
results. This computational limitation imposes the lower limit
on κ in the 1D phase diagram reported in Fig. 7(a).

In two dimensions [Figs. 7(b) and 7(d)], the dynamics is
qualitatively different. In sweeping from small to large drives
at sufficiently small κ , one encounters a clear first-order phase
transition between the bright and dark phases, consistent with
the expected equilibrium physics of the 2D Ising model. The
size of the discontinuity increases with decreasing κ (and
thus with decreasing effective temperature). The initial state
is a random admixture of the two mean-field steady states,
which plays the role of an infinite-temperature state. Thus
for κ below the critical point and $ chosen close to the
first-order phase transition, the initial dynamics can be viewed
(in the language of equilibrium physics) as a quench from
an infinite-temperature phase to a final temperature below
the ordering temperature. The short-time dynamics therefore
shows the expected coarsening of small domains. Eventually
the more favored phase wins out unless $ is tuned precisely

FIG. 7. Phase diagrams obtained by numerically solving Eq. (16)
on (a) a 1D chain with 128 sites and (b) a 2D square lattice with
32 × 32 sites (in both cases periodic boundary conditions were
used). For both plots, the parameters used are (J,U ) ≈ (0.1µ,0.2µ).
The solid white line locates the (near-critical) condition for a
vanishing domain-wall velocity, h = 0, while the white circles
indicate numerically obtained velocity zeros. The dashed white lines
indicate the parameter regime used for plots (c) and (d). Note that the
phase diagrams are cut off at small κ , or equivalently low effective
temperature, because statistically converged numerical solutions of
Eq. (16) require prohibitively long integration times as fluctuations
become weaker. (c) and (d) Cuts through the phase diagrams indicated
by dashed white lines in (a) and (b). In one dimension (c) the
mean-field phase transition is smoothed out into a crossover, while
in two dimensions (d) bistability leads to a true first-order phase
transition. The error bars in (c) and (d) are smaller than the size of
the plot markers.

to the phase transition, but this claim takes progressively
more averaging to establish reliably as one moves closer to
the phase-transition line. Once again, decreasing the effective
temperature by decreasing κ leads to a slowing down of the
dynamics, making it difficult to obtain statistically converged
results near the first-order phase transition and imposing a
lower limit on κ in the 2D phase diagram reported in Fig. 7(b).

VI. DISCUSSION

By bringing together a number of ideas from both quantum
optics and condensed-matter physics, we have identified a
limit of the driven-dissipative Bose-Hubbard model in which
the dominant fluctuations are captured by nonequilibrium
Langevin equations, enabling a quantitatively accurate and
computationally efficient determination of steady-state prop-
erties. Near the critical point, these fluctuations are thermal
and lead to an effective equilibrium description. However,
we emphasize that the Langevin description of the problem
should be asymptotically exact in the limit of N → ∞ even
away from the critical point, where an equilibrium description
is not valid. Numerically, we find that in two dimensions the
first-order phase transition expected from the mapping onto an
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Ising model remains intact far from the critical point, where
this mapping is not strictly valid. In addition, the absence
of a phase transition in one dimension is the result of the
same domain-wall phenomenology that prevents ordering of
the 1D Ising model at finite temperatures. In this way, the
numerical results reinforce and extend the assertion that the
steady-state behavior of the driven-dissipative Bose-Hubbard
model possesses an emergent description in terms of the
equilibrium physics of a finite-temperature classical Ising
model. These conclusions have direct consequences for a range
of experiments in which particle loss is countered by coherent
driving, for example a coherently driven exciton-polariton
fluid in an array of semiconductor microcavities. Here, by
tuning the laser driving strength through the mean-field
bistable regime, one should be able to observe domain growth,
hysteresis, critical fluctuations, and other generic features of
the Ising model in a longitudinal field, all by simple correlation
measurements on the output intensities of the cavities.

We caution that any claims about the universality class of
the phase transition require more than just a microscopically
accurate treatment of fluctuations—it is also important to
identify the relevance of any ignored fluctuations in the
sense of the renormalization group, even if they are para-
metrically small. In other words, there is no guarantee that
small (1/N ) quantitative errors at the scale of the lattice
spacing will not qualitatively affect the nature of the phase
transition. Renormalization-group arguments (i.e., canonical
power counting) supporting the Ising universality class as the
correct critical theory at small but finite N can be inferred
from the results of Ref. [69]. Moreover, we note that because
Eq. (32) provides an increasingly accurate approximation to
the microscopic dynamics for increasing N , Ising-like critical
behavior should manifest itself at least as an intermediate
length-scale crossover phenomenon, regardless of the true
universality class of the phase transition. We also emphasize
that the precise nature of the first-order phase transition far
away from the critical point is less clear, in particular its fate
as κ → 0. It would be worthwhile to extend the numerical
approach taken in Sec. V to confirm the universal aspects of
both the critical point and the first-order phase transition.

It would also be worthwhile to compare some of the
results in one dimension with numerically exact calculations
based on the density-matrix renormalization group [94] in
order to better understand the importance of higher-order
(in 1/N ) corrections that are not captured by the Langevin
description. In particular, at large U (small N ), mean-field
arguments suggest that the inclusion of fluctuations ignored to
leading order in 1/N may lead to richer steady-state behaviors
[47,58], including phases that spontaneously break discrete
spatial-translation symmetry [47,48]. In two dimensions, the
formalism described here could be used to compute other
dynamical aspects of the system near the first-order phase
transition; for example, it should be possible to calculate the
lifetime of the metastable phase via an instanton approach.

ACKNOWLEDGMENTS

We thank Cristiano Ciuti, Sebastian Diehl, Howard
Carmichael, Sarang Gopalakrishnan, Victor Gurarie, Ana
Maria Rey, Murray Holland, Anzi Hu, Michael Fleischhauer,

and Chih-Wei Lai for helpful discussions. M.F.M., J.T.Y., and
A.V.G. acknowledge support by ARL CDQI, ARO MURI,
NSF QIS, ARO, NSF PFC at JQI, and AFOSR. R.M.W.
acknowledges partial support from the National Science Foun-
dation under Grant No. PHYS-1516421. M.H. acknowledges
support by AFOSR-MURI, ONR, and the Sloan Foundation.

APPENDIX A: FUNCTIONAL-INTEGRAL FORMALISM

The functional integral presented in Sec. III is closely
related to the usual Keldysh functional-integral formalism,
for which there are many good references (see, for example,
Ref. [87]). However, there is a subtle difference between
the formalism used here and that typically employed in
the condensed-matter community, and it therefore seems
worthwhile to provide an explicit derivation of Eqs. (5)–(9).
For simplicity, we treat only the single-cavity case, but the
generalization to many cavities that yields Eqs. (5)–(9) follows
immediately.

In any functional-integral formulation of quantum me-
chanics, operators must be traded in for classical variables.
The usual way to do this, as is the case in the standard
approach to the Keldysh function integral, is to repeatedly
insert coherent-state resolutions of identity during the time
evolution. Operators get sandwiched between coherent states,
and if they are normal ordered they turn into functions of
phase-space variables. In the language of quantum optics,
operators are exchanged for their Q symbols. However, there
are many different ways to associate operators with functions
over phase space, and thus many ways to formulate a functional
integral. In the following derivation, we replace operators
with classical variables by working in the Weyl representation
(see, for example, Ref. [81]). In our opinion, even though
this strategy entails some additional overhead in phase-space
formalism, it is both more direct and conceptually simpler
than the usual approach to the Keldysh functional integral. In
particular, the canonical approach described in Refs. [86,87]
relies on the construction of a formal continuous-time notation
that—together with simple rules for computing equal-time cor-
relation functions—correctly reproduces the continuous-time
limit of the Green’s functions of a noninteracting Bose field.
Interactions are then included in a self-consistent fashion by
ensuring that the rules for Gaussian integration produce correct
results for the interacting theory at all orders of perturbation
theory. In the approach taken here, the functional integral is
derived constructively in such a way that an unambiguous
continuous-time notation emerges naturally from a properly
defined (i.e., discretized) functional integral.

1. Functional representation of the Wigner function

The Weyl symbol of an arbitrary operator Â, denoted
Aw(ψ), can be defined via the relation

Aw(ψ) = Tr[δw(ψ − â)Â]. (A1)

Here, the Weyl-ordered (and operator-valued) delta function
is defined by

δw(ψ − â) = 1
π2

∫
d2ϕ exp[ϕ̄(ψ − â) − ϕ(ψ̄ − â†)]. (A2)
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When convenient, the correspondence between operators and
their Weyl symbols is indicated below with the notation
Â ↔ Aw(ψ). Given the special role played by the density
operator ρ̂, it is traditional to use a special notation for its Weyl
symbol, W(ψ,t), which is also called the Wigner function; the
explicit time dependence is included because we will work
in the Schrödinger picture, where the density matrix (and
therefore the Wigner function) evolves in time.

The Weyl representation is intimately related to symmetri-
cally ordered operator products; if an arbitrary operator Â is
expanded in terms of symmetrically ordered operator products,

Â =
∑

p,q

Apq[âp(â†)q]s, (A3)

then the coefficients in this expansion determine the Weyl
symbol Aw(ψ) in a particularly natural way:

Aw(ψ) =
∑

p,q

Apqψ
pψ̄q . (A4)

Given the Wigner function at an initial time t0, we would
like to understand how it has changed a short time δt later due
to the evolution of the density matrix by the master equation.
During this time, the density matrix evolves according to
ρ̂(t0 + δt) = Vδt (ρ̂(t0)), where the infinitesimal time-evolution
superoperator Vδt satisfies

Vδt (⋆) = 1 − iδt[Ĥ ,⋆] + δt
κ

2

∑

j

(2âj ⋆ â
†
j

− ⋆ â
†
j âj − â

†
j âj⋆) + O(δt2). (A5)

This transformation induces a corresponding evolution of the
Wigner function, which for now we write formally as

W(ψ1,t0 + δt) =
∫

d2ψ0 V(ψ1,ψ0)W(ψ0,t0), (A6)

thereby implicitly defining the infinitesimal phase-space prop-
agator for the Wigner function, V .

From the structure of Eqs. (A5) and (A6), it is clear that
finding the explicit form of V requires us to compute the
Weyl symbol of products of ρ̂ with creation and annihilation
operators. To this end we define an operator-valued generating
function

Ĝ = eηâ+η̄â†
ρ̂(t0), (A7)

which can be differentiated to produce symmetrically ordered
operator products

∂p
η ∂

q
η̄ Ĝ

∣∣
η=0 = [âp(â†)q]sρ̂(t0). (A8)

Using Eqs. (A3) and (A8), we can expand the product of an
arbitrary operator with the density matrix as

Âρ̂(t0) =
∑

p,q

Apq∂
p
η ∂

q
η̄ Ĝ

∣∣
η=0, (A9)

giving us a prescription to compute the Weyl symbol of Âρ̂(t0)
from the Weyl symbol of Ĝ,

Âρ̂(t0) ↔
∑

p,q

Apq∂
p
η ∂

q
η̄Gw(ψ1)

∣∣
η=0. (A10)

Making use of the standard operator phase-space correspon-
dences [4],

âρ̂ ↔
(
ψ + 1

2∂ψ̄

)
W(ψ), â†ρ̂ ↔

(
ψ̄ − 1

2∂ψ

)
W(ψ),

ρ̂â ↔
(
ψ − 1

2∂ψ̄

)
W(ψ), ρ̂â† ↔

(
ψ̄ + 1

2∂ψ

)
W(ψ),

the commutation relations [∂ψ ,ψ] = 1, [∂ψ ,ψ̄] = 0, and the
Baker-Campbell-Hausdorff formula, the Weyl symbol of Ĝ
can be written

Gw(ψ1) = e
1
2 η∂ψ̄1

− 1
2 η̄∂ψ1 eηψ1+η̄ψ̄1W(ψ1,t0). (A11)

Inserting a standard representation of the δ function and
integrating by parts, we obtain

Gw(ψ1) = 4
π2

∫
d2ϕ0d

2ψ0e
2ϕ0(ψ̄1−ψ̄0)−2ϕ̄0(ψ1−ψ0)

× eη(ϕ0+ψ0)+η̄(ϕ̄0+ψ̄0)W(ψ0,t0). (A12)

Note that the choice of a generating function that produced
symmetrically ordered operator products also led to all of the
derivatives appearing on the left in Eq. (A11), which enabled
the integration by parts to proceed in a particularly simple
manner to obtain Eq. (A12). Inserting Eq. (A12) into Eq. (A10)
and then using Eq. (A4), we obtain

Âρ̂ ↔ 4
π2

∫
d2ϕ0d

2ψ0e
2ϕ0(ψ̄1−ψ̄0)−2ϕ̄0(ψ1−ψ0)

× Aw(ψ0 + ϕ0)W(ψ0,t0). (A13)

Given Eq. (A13), we can now deduce Eq. (A6) from
Eq. (A5). To first order in δt we find

W(ψ1,t0 + δt) = 4
π2

∫
d2ψ0d

2ϕ0e
iδtL(ψ1,ϕ1;ψ0,ϕ0)W(ψ0,t0),

(A14)

where

L(ψ1,ϕ1; ψ0,ϕ0) = 2iϕ̄0(ψ1 − ψ0)/δt − 2iϕ0(ψ̄1 − ψ̄0)/δt

−Hw(ψ0 + ϕ0) + Hw(ψ0 − ϕ0)

+iκ(2ϕ̄0ϕ0 − ϕ0ψ̄0 + ϕ̄0ψ0). (A15)

The Wigner function at a general time t can be obtained from
the Wigner function at time t0 by iteration of Eq. (A14).
Breaking the interval [t0,t] into N segments of size δt =
(t − t0)/N , we obtain

W(ψN,t) =
∫ N−1∏

j=0

(
4
π2

d2ψj d
2ϕj

)
eiSW(ψ0,t0). (A16)

Here we have defined the discretized action

S =
N−1∑

j=0

δtL(ψj+1,ϕj+1; ψj ,ϕj ). (A17)

Defining functional-integration measures that include the
fields ψN,ϕN at the final time,

Dψ =
N∏

j=0

d2ψj , Dϕ =
N∏

j=0

4
π2

d2ϕj , (A18)
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FIG. 8. Time ordering of operators in Eq. (A20).

the trace of the Wigner function at time t can now be written

Z ≡
∫

DψDϕeiSW(ψ0,t0) = 1. (A19)

The continuous-time limit (N → ∞,δt → 0) of Eqs. (A17)–
(A19), generalized to many coherently coupled bosonic
modes, yields Eqs. (5) and (6) of the main text.

2. Expectation values

The functional-integral representation of the Wigner func-
tion lends itself naturally to calculating correlation functions
that are time ordered along the Keldysh contour (Fig. 8), e.g.,

C = ⟨TK (B̂1(t−1 ) · · · B̂n(t−n )Â1(t+1 ) · · · Âm(t+m ))⟩. (A20)

Here, C is written in the Heisenberg picture, and TK orders
operators at times with a “+” superscript such that the times
increase from right to left, and orders operators at times with a
“−” superscript such that the times increase from left to right.
Note that the Heisenberg picture is to be interpreted before
the adiabatic elimination of the reservoir, which we assume
proceeds within the Born-Markov approximation. Assuming
without loss of generality that t±j > t±j−1, insisting that the
operators be inserted at the discretized time slices chosen above
(t±j = δt × r±

j , with r±
j an integer between zero and N ), and

making the notational change Â(δtr±
j ) → Â(r±

j ), C can be
written

C = Tr(Âm(r+
m ) · · · Â1(r+

1 ) ρ̂(t0) B̂1(r−
1 ) · · · B̂n(r−

n )). (A21)

For our purposes we need to rewrite this correlation function
in the Schrödinger picture, which can be accomplished with
the help of the quantum-regression formula. For example, if
t+1 < t−1 , we have [4]

C = Tr
(
· · · Uδt(r−

1 −r+
1 )

(
Â1Uδtr+

1
(ρ̂(t0))

)
B̂1 · · ·

)
, (A22)

where Uδtj = V
j
δt is the time-evolution superoperator. The

choice of Keldysh ordering is necessary and sufficient to
guarantee that, in the quantum-regression formula, it will
never be necessary to evolve backwards in time. Using the
functional-integral expression for the Wigner function at time
t , together with the phase-space correspondences for operators
Â and B̂, we find

C =
∫

DψDϕ e−iSW(ψ0,t0) (A23)

×
(
· · ·A1

w

(
ψr+

1
+ ϕr+

1

)
B1

w

(
ψr−

1
− ϕr−

1

)
· · ·

)
(A24)

≡
〈
· · ·A1

w

(
ψr+

1
+ ϕr+

1

)
B1

w

(
ψr−

1
− ϕr−

1

)
· · ·

〉
Z . (A25)

Such correlation functions can be conveniently computed with
respect to a generating functional by adding source terms to

action,

C =
(

· · ·A1
w

(
∂

δt∂Jr+
1

+ ∂

δt∂Kr+
1

)

× B1
w

(
∂

δt∂Jr−
1

− ∂

δt∂Kr−
1

)
· · ·

)
Z( J,K )

∣∣∣∣
J,K=0

.

Here

Z( J,K ) =
∫

DψDϕ eiS( J,K )W(ψ0,t0), (A26)

and

S( J,K ) = S +
N∑

j=0

δt( J j · ψj + K j · ϕj ), (A27)

with

J j =
⎧
⎪⎪⎩Jj

J̄j

⎫
⎪⎪⎭, K j =

⎧
⎪⎪⎩Kj

K̄j

⎫
⎪⎪⎭, ψj =

⎧
⎪⎪⎩ψj

ψ̄j

⎫
⎪⎪⎭, ϕj =

⎧
⎪⎪⎩ϕj

ϕ̄j

⎫
⎪⎪⎭.

(A28)

Restricting to the special case when the operators Â and B̂ are
creation and annihilation operators, defining

1
δt

∂

∂Jj

= δ

δJ (tj )
,

1
δt

∂

∂Kj

= δ

δK(tj )
, (A29)

and taking the continuum limit δt → 0, we recover the
expressions for correlation functions in Sec. III of the main
text.

The correspondence given above can also be reversed in
such a way to rewrite expectation values of the fields ψ and
ϕ in terms of operator averages. To this end, we rearrange the
operator phase-space correspondences as

{â,ρ̂} ↔ 2ψW, {â†,ρ̂} ↔ 2ψ̄W,

[â,ρ̂] ↔ ∂ψ̄W, [â†,ρ̂] ↔ −∂ψW.

The substitutions ∂ψ ↔ −2ϕ̄ and ∂ψ̄ ↔ 2ϕ are valid under the
functional-integration sign, so long as the derivative sits to the
left of any other instances of the field ψ evaluated at the same
time (not including those occurring in the action). Thus we are
led to the identifications

ψW ↔ 1
2 {â,ρ̂}, ϕW ↔ 1

2 [â,ρ̂], (A30)

with the understanding that when products of the fields ψ and
ϕ at the same time arise, we should take the commutators after
the anticommutators in the corresponding operator expectation
values. This identification leads very directly to correlation
functions of the classical field. For example, assuming r3 >
r2 > r1 we have

〈
ψ̄r1ψr2ψ̄r3

〉
Z = Tr({â†(r3),{â(r2),{â†(r1),ρ̂(t0)}}}). (A31)

Note that if r1 = r2 = r3 ≡ r , this correlation function simpli-
fies to

⟨ψ̄rψr ψ̄r⟩Z = Tr([â†(r)â(r)â†(r)]s). (A32)

Since we just have a few fields in the correlation function, this
result can be worked out by direct comparison of the right-hand
sides of Eqs. (A31) and (A32) (using the commutation relation

043826-13



M. FOSS-FEIG et al. PHYSICAL REVIEW A 95, 043826 (2017)

[â,â†] = 1). More generally, it also follows by using the phase-
space correspondence [â†ââ†]s ↔ (ψ̄ + ϕ̄)2(ψ + ϕ). Going
back to operator expectation values by using Eq. (A30),
and remembering the rule that commutators are taken after
anticommutators when the fields ϕ and ψ are evaluated at
the same times, terms with one or more power of ϕ result
in an outer commutator that gets killed by the trace, so only
the ψ̄2ψ term survives. The generalization of Eq. (A32) to
arbitrary equal-time correlation functions of the classical field
ψ leads, in the continuum-time limit and for more than one
site, to Eq. (9) of the main text.

APPENDIX B: ADIABATIC ELIMINATION
OF THE MASSIVE FIELD

Here we describe the perturbative adiabatic elimination of
the field ϱ near the mean-field critical point. For simplicity,
we first treat the case with no fluctuations (N → ∞), and
afterwards we consider the effect of weak fluctuations.

1. Mean-field theory

Substitution of Eq. (22) into Eq. (15) yields coupled
equations for ϱ and σ that are fully equivalent to the mean-field
dynamics of ,. To simplify the following expressions we
convert all energy and time scales into dimensionless ratios
with the chemical potential µ, and in a slight abuse of notation
we do not change any of the associated symbols—the µ
dependence can be unambiguously restored by insisting on
dimensional consistency. After some algebra, we find

ϱ̇ = − 2√
3

(ϱ − ϱ0) − rϱ − J∇2

√
3

(ϱ + 2σ )

+ u√
3

(2σ 3 + 3σϱ2 + 3ϱσ 2 + ϱ3 − σ 2
√

6/u), (B1)

σ̇ = −h

2
− rσ + J∇2

√
3

(σ + 2ϱ)

− u√
3

(ϱ2
√

6/u + 2ϱ3 + 3σϱ2 + 3ϱσ 2 + σ 3), (B2)

where

ϱ0 = h
√

3
8

− r√
8u

. (B3)

Several simplifications can now be made. First, because we
are interested in dynamics near the critical point and after
the field has nearly relaxed, h, r , ϱ, and σ can all be treated
as small parameters. Though we do not know a priori how
small the fields ϱ and σ are relative to the parameters r and
h, it is perfectly consistent to keep, at any particular order
in one of the parameters, only the lowest nontrivial order
in any other parameter. Moreover, while we do not know
how small spatial derivatives of the field are, we do expect
them to be small compared to the fields themselves, which
should vary slowly in space near the critical point, and thus
we formally treat J∇2 as an additional small parameter (one
can check that this assumption is self-consistent at the end of
the calculation, where it is seen that J∇2 ∼ r). Following this

logic, and introducing the rescaled parameters K = J/
√

3 and
g = u/

√
3 used in the main text, we arrive at the simplified

equations

ϱ̇ = − 2√
3

(ϱ − ϱ0) − 2K∇2σ + O(σ 2), (B4)

σ̇ = −h

2
− rσ + K∇2(σ + 2ϱ) − gσ 3 + O(ϱ2) + O(ϱσ 2).

(B5)

Terms that are kept with the O notation are there to remind us
that we do not know for sure whether they are parametrically
small compared to other terms that are kept—they turn out to
be unimportant for reasons explained below, which is why we
do not keep track of the exact coefficients.

The justification for adiabatically eliminating ϱ near the
critical point is now clear: As r → 0, the term proportional
to ϱ in Eq. (B4) stays finite, indicating that ϱ relaxes to zero
exponentially in time even at the critical point (once µ is
restored, we see that it decays on a time scale ∼1/µ). On the
other hand, the term linear in σ in Eq. (B5) vanishes as r → 0,
indicating a divergent time scale for relaxation of σ (which
relaxes algebraically precisely at the critical point, r = 0). To
adiabatically eliminate ϱ we set the rhs of Eq. (B4) to zero,
obtaining

ϱ = ϱ0 −
√

3K∇2σ + O(σ 2), (B6)

and then substitute this result into Eq. (B5). Many derivative
terms are generated, but working to lowest order in K∇2 we
find

σ̇ = K∇2σ − rσ − gσ 3 − h

2
+ O(r2) + O(rσ 2). (B7)

Here we have implicitly assumed that |h| < |r| to write
ϱ0 = O(r), which poses no important restriction on what
follows. If we ignore the final two terms and solve Eq. (B7)
at h = 0 and r < 0 (inside the bistable region), we find two
uniform solutions at σ = ±

√
|r|/g, which sets the scale of

σ in the relevant near-critical dynamics, σ ∼
√

r . From this
scaling, it is easily seen that the final two terms in Eq. (B7) are
parametrically smaller than the others; thus we were justified
in dropping them, which results in Eq. (23) in the main text.

2. Fluctuations

Substitution of Eq. (22) into Eq. (16) yields coupled
stochastic equations for ϱ and σ that are fully equivalent to the
nonequilibrium Langevin equation for ,. In the limit of weak
noise, an expansion in ϱ and σ is still justified. Moreover, since
arbitrarily weak noise will induce arbitrarily small excursions
away from the mean-field stationary state, much of the analysis
that led to an effective relaxational description of σ (that is
approximately decoupled from ϱ) should remain valid, as it
assumed nothing more than being close to both the critical
point and the steady state. Working near the mean-field critical
point, the same assumptions that lead from Eqs. (B1) and (B2)
to Eqs. (B4) and (B5) remain justified and yield (for now
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keeping all gradient terms)

ϱ̇ = − 2√
3

(ϱ − ϱ0) − K∇2(ϱ + 2σ ) + O(σ 2) + η(τ ), (B8)

σ̇ = − h

2
− rσ + K∇2(σ + 2ϱ) − gσ 3 + O(ϱ2)

+ O(ϱσ 2) + ξ (τ ). (B9)

In order to avoid confusion regarding the noise variances, here
we have chosen a new symbol for the dimensionless time,
tµ ≡ τ (so σ̇ = dσ/dτ , etc.), even though we continue to use
the same symbols for the (now dimensionless) energies r , h,
K , and g. The real noises η and ξ are defined as

η(τ ) = ζI(t)
µ

− ζR(t)

µ
√

3
, ξ (τ ) = 2ζI(t)

µ
√

3
, (B10)

where ζR and ζI are the real and imaginary components,
respectively, of the complex Gaussian white noise ζ (t) in
Eq. (16). Thus from the variances of ζ (t) we have

ηj (τ1)ηk(τ2) = ξj (τ1)ξk(τ2) = κ

3N
δj,kδ(τ1 − τ2), (B11)

where one factor of 1/µ has been absorbed into the now
dimensionless κ and one is used to change variables from
t to τ in the δ function.

We would like to eliminate the terms in Eq. (B9) that
involve ϱ, but, strictly speaking, the adiabatic elimination
of ϱ by setting ϱ̇ = 0 in Eq. (B8) is no longer justified.
Nevertheless, for weak noise and near the critical point, there
will be a separation of time scales, length scales, and typical
sizes of the fluctuations of σ and ϱ. Because ϱ remains
massive at the mean-field critical point while σ does not,
we expect that in the presence of noise the scale of typical
fluctuations for ϱ will be small compared to the scale of
typical fluctuations for σ . Likewise, σ will relax more slowly
than ϱ near the critical point, and will exhibit fluctuations on
a longer length scale, i.e., in the presence of fluctuations it
will have a longer autocorrelation time than ϱ, and will be
roughly spatially homogeneous over the length scale on which
ϱ is correlated. On the grounds of the latter statement, it is
justified to solve Eq. (B8) at fixed σ and within a local-density
approximation (i.e., we assume that ϱ is relaxing in a locally
homogeneous environment set by the slowly varying value
of σ ), in which case ϱ simply undergoes a lattice version of
Ornstein-Uhlenbeck relaxation to the mean value

ϱ̄ = ϱ0 −
√

3K∇2σ + O(σ 2). (B12)

Straightforward analysis reveals that fluctuations of ϱ around
its mean value, ϑ(τ ) = ϱ(τ ) − ϱ̄(t), obey

ϑj (τ1)ϑk(τ2) ∼ κ

N
e−|j−k|/ℓϱe−|τ2−τ1|/τϱ , (B13)

where ℓϱ ∼
√

K and τϱ ∼ 1 are the correlation length and
correlation time of the massive field ϱ, respectively. Inserting
the solution ϱ = ϱ̄ + ϑ into Eq. (B9), and keeping for now all

terms that involve the fluctuations ϑ , we obtain

σ̇ = −h

2
− rσ + K∇2σ − gσ 3 + ξ (τ )

+ 2K∇2ϱ̄+2K∇2ϑ+O(ϱ̄2)+O(ϱ̄)ϑ+O(ϑ2). (B14)

The first and third terms on the second line, 2K∇2ϱ̄ and
O(ϱ̄2), contain terms that are either higher order in σ , in r ,
or in gradients than other terms on the first line, and thus
can be ignored. The remaining terms depend on ϑ ; because
the dynamics of σ is slow and dominated by long-wavelength
fluctuations, we can approximate ϑ as spatially uncorrelated
white noise with variance

ϑj (τ1)ϑk(τ2) ∼ κ

N
δj,kδ(τ1 − τ2). (B15)

In light of this approximation, the term K∇2ϑ acts as an
additional source of additive white noise—it can in principle
be taken into account as a (K-dependent) renormalization of
the noise ξ (τ ) that is already present, but if we work to lowest
order in K this renormalization can be ignored. The term
O(ρ̄)ϑ acts as a source of multiplicative noise; since ϱ̄ is itself
a small parameter, this noise can also be ignored in comparison
to the already present white noise ξ (τ ). The term O(ϑ2) should
be interpreted by writing ϑ(τ )2 = f (τ ) + χ (τ ), where f is the
average of ϑ2 and χ is its fluctuations. The average f ∼ κ/N
can be ignored for weak noise, while the fluctuations χ obey
(using the fact that ϑ is a Gaussian variable)

χj (τ1)χk(τ2) ∼ (κ/N )2e−2|j−k|/ℓϱe−2|τ2−τ1|/τϱ . (B16)

As with ϑ , χ can be interpreted as spatially uncorrelated
Gaussian white noise as far as the slow dynamics of σ is
concerned. Since it has a variance that is parametrically smaller
than that of ξ , it can once again be ignored. With all of the
terms on the second line of Eq. (B14) dropped, we recover
Eq. (32) of the main text.

APPENDIX C: DOMAIN-WALL VELOCITY

As described in the main text, the domain-wall velocity
can be determined by solving for the dynamics of a fictitious
particle obeying the equation of motion

K σ̈ = −vσ̇ + ∂U (σ )
∂σ

, (C1)

where

U (σ ) = 1
2

(
rσ 2 + 1

2gσ 4 + hσ
)
. (C2)

Here the domain-wall velocity v plays the role of a velocity-
dependent friction coefficient. We seek solutions of Eq. (C1)
for which the particle starts (with σ̇ = 0) at the higher local
maximum of −U (σ ) and comes to rest at the lower one. When
h is small the two local maxima have similar energies, and
the friction coefficient v must also be small for the particle
to reach the top of the lower potential maximum. Thus the
trajectory is similar to that in the case of h = 0, for which
(from conservation of energy) K σ̇ 2/2 = U (σ ) − U (σ0), such
that

σ̇ ≈
√

2[U (σ ) − U (σ0)]
K

. (C3)
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The work done along this trajectory by the friction must be
equal to the change in potential energy,

−v

∫ σ+

σ−

σ̇ dσ = U (σ+) − U (σ−) ≈ hσ0. (C4)

Inserting Eq. (C3) into Eq. (C4), taking the integral, and using
U (σ0) = r2/4g, we obtain the domain-wall velocity given in

the main text,

v ≈ h
3
2

√
Kg

2r2
. (C5)
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