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This supplemental material contains an inductive proof of the localization of operators in the models consid-
ered, and also a proof that, under conditions specified in the manuscript and reiterated below, the Liouvillians
we consider possesses a finite dissipative gap. In particular, the dissipative gap of the Liouvillian L is bounded
below by that of the dissipator D in the absence of a Hamiltonian. The first section presents the proof by in-
duction of Eq. (6) in the manuscript. The second section briefly introduces formalism that is helpful for proving
the existence of a dissipative gap, the third section discusses the structure of the Liovillians considered in the
manuscript in the language of this formalism, and the final section contains the proof of a dissipative gap.

A. Inductive proof of the localization of operators

In this section we begin with the time-series expansion of O(t) given in the manuscript,

O(t) =

∞∑
n=0

tn

n!
Tr

[
ρ̂0Ôn

]
, (S1)

and inductively prove the exact reduction to Eq. (6) of the manuscript,

O(t) = TrA ⋃
B

[
Ô exp(LAB)ρ̂AB

]
. (S2)

To begin, we decompose the Hamiltonian as Ĥ = ĤAB + ĤV , where ĤAB contains all terms in Ĥ that have support on A ,
and ĤV contains all terms that do not (note that, by the definition of B, ĤAB is supported on A

⋃
B, while ĤV is supported

on B
⋃

C ). Similarly, we decompose the Heisenberg-picture dissipator as D‡ = D
‡

AB
+ D

‡

V , where D‡
AB

only contains
jump operators supported on A

⋃
B and D‡V only contains jump operators supported on C . Writing L‡ = L

‡

AB
+ L

‡

V , with
L
‡

AB
(?) = i[ĤAB, ?] +D

‡

AB
(?) and L‡V (?) = i[ĤV , ?] +D

‡

V (?), we can write O(t) as

O(t) = TrA ⋃
B

[
TrC

[
ρ̂0

∞∑
n=0

tn

n!
Ôn

]]
, (S3)

where Ôn = (L‡
AB

+ L
‡

V )nÔ. The structure of Eq. (S3) can now be simplified by induction. Suppose that Ôn satisfies the
following two conditions:

(A) Ôn is supported on A
⋃

B.

(B) Ôn is diagonal on B.

Note that both conditions are satisfied trivially for Ô0 = Ô, since we have assumed that Ô is fully supported on A . We
will show that the operator Ôn+1 = (L‡

AB
+ L

‡

V )Ôn also satisfies these conditions, thereby proving that all Ôn do. Toward
this end, we first show that L‡V (Ôn) = i[ĤV , Ôn] + D

‡

V (Ôn) vanishes by the assumptions. The first term vanishes because
ĤV is diagonal and supported on B

⋃
C , while Ôn is diagonal on B

⋃
C by conditions (A,B), giving [ĤV , Ôn] = 0. The

second term vanishes because D‡V only contains jump operators supported on C , implying (together with condition A) that
D
‡

V (Ôn) = 0. Thus L‡V (Ôn) = 0 as claimed, giving Ôn+1 = L
‡

AB
(Ôn). Now we note that, because ĤAB and the jump operators

in D‡
AB

are supported on A
⋃

B, L‡
AB

(Ôn) must also be supported on A
⋃

B, and Ôn+1 therefore satisfies condition (A).
Furthermore, because L‡

AB
is diagonality preserving, Ôn+1 continues to satisfy condition (B). Therefore, by induction, we

deduce that Ôn = (L‡
AB

)nÔ, and is supported on A
⋃

B. Plugging this result into Eq. (S3), using the isolated support of Ôn to
carry out the trace over C , and defining ρAB = TrC [ρ̂0], we obtain

O(t) = TrA ⋃
B

[
ρ̂AB

∞∑
n=0

tn

n!
(L‡

AB
)nÔ

]
. (S4)

Converting to the Schrödinger picture and resumming the series, we then obtain Eq. (S2).
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B. Parametrization of density matrices and superoperators

An arbitrary density matrix of N spin- 1
2 ’s can be expanded as

ρ̂ =
∑

{µ1,...,µN }

ρµ1,...µN σ̂
µ1
1 ⊗ · · · ⊗ σ̂

µN
N ; µ j ∈ {1, x, y, z}, (S5)

where the coefficients ρµ1,...,µN are real numbers and σ̂1
j = 1̂ j is the identity operator on site j. For convenience we also introduce

a more compact notation in which the set of indices {µ1 . . . µN} is replaced by a single collective index µ (which runs over
all possible assignments of values 1, x, y, z to all N sites), the basis element σ̂ µ1

1 ⊗ · · · ⊗ σ̂
µN
N is denoted simply by µ̂, and the

density operator ρ̂ (or any other operator) is denoted with a modified ket notation as |ρ〉〉. In this notation, Eq. (S5) becomes
|ρ〉〉 =

∑
µ ρµ|µ〉〉. The ρµ must be real because the density matrix is Hermitian, and the basis elements all are Hermitian, but it

is nevertheless useful to consider complex coefficients. In this notation a general (not-necessarily Hermitian) operator Â and
its Hermitian conjugate Â† become, respectively, |A〉〉 =

∑
µ Aµ|µ〉〉 and 〈〈A| =

∑
µ A∗µ〈〈µ|. The basis elements |µ〉〉 form a vector

space (Liouville space) endowed with the inner product 〈〈A|B〉〉 ≡ 2−NTr(Â†B̂) = 2−N ∑
µν A∗µBνTr(µ̂ν̂) =

∑
µ A∗µBµ, where we

have used the fact that µ̂† = µ̂ and Tr(µ̂ν̂) = 2Nδµ,ν. We denote the action of a superoperator on an operator, B̂ = S(Â), with
the notation |B〉〉 = S|A〉〉. The superoperator S inherets a matrix representation from the equation |B〉〉 = S|A〉〉 by expanding
|A〉〉 =

∑
ν Aν|ν〉〉 and left multiplying both sides of the equation by 〈〈µ|, giving Bµ =

∑
ν SµνAν, where Sµν ≡ 〈〈µ|S|ν〉〉. Note that

a physical Liouvillian must be hermiticity preserving, which implies that its matrix elements in a basis of Hermitian operators
(such as the operators µ̂ defined above) are always real.

C. Structure of the Liouvillian

For our purposes below, an important property of each basis element |µ〉〉 is the number of operators σ̂x
j and σ̂y

j that appear
[see Eq. (S5)], which we denote by d. In literature on nuclear-magnetic resonance Liouville space can be decomposed into a
direct sum of subspaces with fixed d, and we denote the basis elements of these subspaces by |d, µd〉〉, with the understanding
that the index µd enumerates only the basis elements in this subspace. An arbitrary vector within this subspace is denoted by
|d, v〉〉 =

∑
µd

vµd |d, µd〉〉. If we define Pd as a superoperator that projects onto the subspace spanned by |d, µd〉〉, then we can
expand S =

∑
d,d′ PdSPd′ ≡

∑
d,d′ S

dd′ , which has a matrix representation Sdd′
µdνd′

= 〈〈d, µd |S
dd′ |d′, νd′〉〉.

The Liouvillian superoperator can be decomposed as L = D + iH , where H(?) = −[Ĥ, ?]. Because D and iH are each
(independently) hermiticity preserving, they both have real-valued matrix representations in the chosen basis. The dissipators
we consider in the manuscript obey the condition Tr

[
σ̂z

jD(σ̂±j )
]

= Tr
[
1̂ jD(σ̂±j )

]
= 0 [Eq. (3) of the manuscript], which in the

language used here implies that Ddd′ = 0 whenever d < d′. In fact, because the dissipator is constructed of local terms, it is
straightforward to see thatDdd′ vanishes unless either d = d′ or d = d′ + 1. It is also readily verified thatH is block diagonal in
the d-subspace decomposition, and thatH00 = 0 (the latter condition following because Ĥ commutes with all basis elements in
the d = 0 sector). Hence the complete Liouvillian has the block-lower-triangular structure (dropping subscripts)

L =



D00 0 0 · · · 0 0

D10 D11 + iH11 0 · · · 0 0

0 D21 D22 + iH22 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · DN,N−1 DNN + iHNN


. (S6)

Note that the block-lower-triangular structure of L of ensures that the time evolution within the d = 0 subspace, which com-
pletely determines the populations in the z-basis, is governed by a closed set of equations. The dynamics within this sector
is therefore exactly equivalent to the dynamics of a classical master equation. Note that a superficially similar situation can
arise approximately in more general quantum systems in situations where the contribution of coherences can be perturbatively
eliminated from the equations of motion for populations [1–5]. The eigenvalues of a block-lower triangular matrix are given by
the eigenvalues of the diagonal blocks, and therefore

eigs(L) = eigs(D00) ∪ eigs(D11 + iH11) ∪ · · · ∪ eigs(DNN + iHNN). (S7)

Here it is to be understood that the eigenvalues of a projected operator are computed only with respect to vectors supported on
that subspace, i.e. the eigenvalues ofD00 are given by the eigenvalues of the matrixD00

µ0,ν0
.
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D. Dissipative gap

The dissipators we consider are constructed as sums over single-site dissipators, D =
∑

jD j, each of which independently
obeys the constraints [equivalent to Eq. (3) in the manuscript]

Tr[1̂ jD j(σ̂x
j)] = Tr[1̂ jD j(σ̂

y
j)] = Tr[σ̂z

jD j(σ̂x
j)] = Tr[σ̂z

jD j(σ̂
y
j)] = 0. (S8)

Here it is understood that D j is an operator in the full Liouville space, but because it only acts nontrivially on site j we will (in
a slight abuse of notation) temporarily use the symbol D j to represent an operator acting on just the Liouville space associated
with site j, spanned by vectors |µ j〉〉; regardless of the interpretation of which space D j acts on, its eigenvalues are the same
up to degeneracies. With this interpretation in mind, we can represent D j as a 4 × 4 real matrix matrix 〈〈µ j|D j|ν j〉〉. Using the
shorthandDµν ≡ 〈〈µ j|D j|ν j〉〉 (note the temporary suppression of the index j), ordering our basis as µ = 1, z, x, y, and taking into
account the constraints onD j imposed in Eq. (S8), we have

Dµν =


0 0 0 0
Dz1 Dzz 0 0
Dx1 Dxz Dxx Dxy

Dy1 Dyz Dyx Dyy

 . (S9)

In order to prove the existence of a dissipative gap for L, we also make the following two assumptions:

(1) Each local dissipator D j has a unique steady state and a dissipative gap Γ j, and min jΓ j = Γ > 0. Since all
eigenvalues of the dissipator must have non-positive real parts, this means that for any nonzero eigenvalue λ ofD j,
we must have Re(λ) ≤ −Γ j.

(2) In addition to Eq. (S8), the local dissipators obey the further constraints:

Tr[σ̂y
jD j(σ̂x

j)] = Tr[σ̂x
jD j(σ̂

y
j)], and Tr[σ̂z

jD j(1̂ j)] = 0. (S10)

In the notation just introduced, we can restate these conditions as: (1) The matrix Dµν has a unique zero eigenvalue and a
dissipative gap Γ j, and (2) The diagonal blocks of Dµν are symmetric (Dz1 = 0 and Dyx = Dxy). Note that the Hamiltonian in
Eq. (9) of the manuscript, when rotated about the y axis and at ∆ = 0, becomes of the form in Eq. (1) of the manuscript, while the
jump operators become Ĵ j = σ̂

y
j− iσ̂z

j. It is straightforward to verify that conditions (1) and (2) are satisfied for the corresponding
dissipator, with Γ = γ.

As mentioned above, a block-lower-triangular matrix of this form shares its eigenvalues with the diagonal blocks. Let’s
denote the set of eigenvalues of the upper-left block by E 0

j = {0, ε0}, and the set of eigenvalues of the lower-right block by
E 1

j = {ε1
a, ε

1
b} (it is straightforward to see that the upper-left block must have a zero eigenvalue). By conditions (1) and (2),

we know that the three non-zero eigenvalues are real, and that ε0, ε1
a, ε

1
b ≤ −Γ j. Because each D j is supported on a single

site, the eigenvalues of the full dissipator D =
∑

jD j are simply sums of eigenvalues from each D j. Eigenvalues of the
projected dissipatorDdd can be constructed as follows: Defining Jd to be a set containing d sites, and also defining the notation
A + B = {a + b : a ∈ A , b ∈ B}, we have

eigs(Ddd) =
⋃
Jd

( ∑
j∈Jd

E 1
j +

∑
j<Jd

E 0
j

)
. (S11)

We can draw two immediate conclusions:

(A) D00 has precisely one zero eigenvalue, obtained when the zero eigenvalue in E 0
j is chosen for all j, and any

other eigenvalue ε satisfies ε ≤ −Γ.

(B) Any eigenvalue ε ofDdd (with d > 0) is real and satisfies ε < −dΓ.

Now consider an arbitrary normalized eigenvector of Ldd in the d , 0 subspace, |d, v〉〉, with eigenvalue ε = x + iy, and write

〈〈d, v|Ldd |d, v〉〉 = 〈〈d, v|Ddd |d, v〉〉 + i〈〈d, v|Hdd |d, v〉〉 = x + iy. (S12)

It is straightforward to show that the superoperator Hdd is Hermitian (for any Hamiltonian), and thus x = Re(〈〈d, v|Ddd |d, v〉〉).
In general, there is not a simple relation between the real part of the expectation value of an operator and the real parts of its
eigenvalues. However, assumption (2) guarantees thatDdd is a real symmetric matrix. Therefore, we have

x = 〈〈d, v|Ddd |d, v〉〉 ≤ −dΓ, (S13)
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where the inequality follows because the expectation value of a real symmetric matrix (more generally a Hermitian matrix)
is bounded between its smallest and largest eigenvalues. Returning to Eq. (S7), keeping in mind conclusion (A), and using
Eq. (S13), we find that L has a single zero eigenvalue, and a dissipative gap of at least Γ.
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