Supplemental material for "A solvable family of driven-dissipative many-body systems"

Michael Foss-Feig, ${ }^{1,2,3}$ Jeremy T. Young, ${ }^{2}$ Victor V. Albert, ${ }^{4}$ Alexey V. Gorshkov, ${ }^{2,3}$ and Mohammad F. Maghrebi ${ }^{5,2,3}$
${ }^{1}$ United States Army Research Laboratory, Adelphi, Maryland 20783, USA
${ }^{2}$ Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
${ }^{3}$ Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
${ }^{4}$ Yale Quantum Institute and Department of Physics, Yale University, New Haven, Connecticut 06520, USA
${ }^{5}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

Abstract

This supplemental material contains an inductive proof of the localization of operators in the models considered, and also a proof that, under conditions specified in the manuscript and reiterated below, the Liouvillians we consider possesses a finite dissipative gap. In particular, the dissipative gap of the Liouvillian \mathcal{L} is bounded below by that of the dissipator \mathcal{D} in the absence of a Hamiltonian. The first section presents the proof by induction of Eq. (6) in the manuscript. The second section briefly introduces formalism that is helpful for proving the existence of a dissipative gap, the third section discusses the structure of the Liovillians considered in the manuscript in the language of this formalism, and the final section contains the proof of a dissipative gap.

A. Inductive proof of the localization of operators

In this section we begin with the time-series expansion of $O(t)$ given in the manuscript,

$$
\begin{equation*}
O(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \operatorname{Tr}\left[\hat{\rho}_{0} \hat{O}_{n}\right], \tag{S1}
\end{equation*}
$$

and inductively prove the exact reduction to Eq. (6) of the manuscript,

$$
\begin{equation*}
O(t)=\operatorname{Tr}_{\mathscr{A}} \cup \mathscr{B}\left[\hat{O} \exp \left(\mathcal{L}_{\mathscr{A} \mathscr{A}}\right) \hat{\rho}_{\mathscr{A} \mathscr{B}}\right] . \tag{S2}
\end{equation*}
$$

To begin, we decompose the Hamiltonian as $\hat{H}=\hat{H}_{\mathscr{A} \mathscr{B}}+\hat{H}_{V}$, where $\hat{H}_{\mathscr{A} \mathscr{B}}$ contains all terms in \hat{H} that have support on \mathscr{A}, and \hat{H}_{V} contains all terms that do not (note that, by the definition of $\mathscr{B}, \hat{H}_{\mathscr{A} \mathscr{B}}$ is supported on $\mathscr{A} \cup \mathscr{B}$, while \hat{H}_{V} is supported on $\mathscr{B} \cup \mathscr{C}$). Similarly, we decompose the Heisenberg-picture dissipator as $\mathcal{D}^{\ddagger}=\mathcal{D}_{\mathscr{A} \mathscr{B}}^{\ddagger}+\mathcal{D}_{V}^{\ddagger}$, where $\mathcal{D}_{\mathscr{A} \mathscr{B}}^{\ddagger}$ only contains jump operators supported on $\mathscr{A} \cup \mathscr{B}$ and $\mathcal{D}_{V}^{\ddagger}$ only contains jump operators supported on \mathscr{C}. Writing $\mathcal{L}^{\ddagger}=\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}+\mathcal{L}_{V}^{\ddagger}$, with $\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}(\star)=i\left[\hat{H}_{\mathscr{A} \mathscr{B}}, \star\right]+\mathcal{D}_{\mathscr{A} \mathscr{B}}^{\ddagger}(\star)$ and $\mathcal{L}_{V}^{\ddagger}(\star)=i\left[\hat{H}_{V}, \star\right]+\mathcal{D}_{V}^{\ddagger}(\star)$, we can write $O(t)$ as

$$
\begin{equation*}
O(t)=\operatorname{Tr}_{\mathscr{A}} \cup \mathscr{B}\left[\operatorname{Tr}_{\mathscr{C}}\left[\hat{\rho}_{0} \sum_{n=0}^{\infty} \frac{t^{n}}{n!} \hat{O}_{n}\right]\right], \tag{S3}
\end{equation*}
$$

where $\hat{O}_{n}=\left(\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}+\mathcal{L}_{V}^{\ddagger}\right)^{n} \hat{O}$. The structure of Eq. (S3) can now be simplified by induction. Suppose that \hat{O}_{n} satisfies the following two conditions:
(A) \hat{O}_{n} is supported on $\mathscr{A} \cup \mathscr{B}$.
(B) \hat{O}_{n} is diagonal on \mathscr{B}.

Note that both conditions are satisfied trivially for $\hat{O}_{0}=\hat{O}$, since we have assumed that \hat{O} is fully supported on \mathscr{A}. We will show that the operator $\hat{O}_{n+1}=\left(\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}+\mathcal{L}_{V}^{\ddagger}\right) \hat{O}_{n}$ also satisfies these conditions, thereby proving that all \hat{O}_{n} do. Toward this end, we first show that $\mathcal{L}_{V}^{\ddagger}\left(\hat{O}_{n}\right)=i\left[\hat{H}_{V}, \hat{O}_{n}\right]+\mathcal{D}_{V}^{\ddagger}\left(\hat{O}_{n}\right)$ vanishes by the assumptions. The first term vanishes because \hat{H}_{V} is diagonal and supported on $\mathscr{B} \cup \mathscr{C}$, while \hat{O}_{n} is diagonal on $\mathscr{B} \cup \mathscr{C}$ by conditions (A,B), giving [$\left.\hat{H}_{V}, \hat{O}_{n}\right]=0$. The second term vanishes because $\mathcal{D}_{V}^{\ddagger}$ only contains jump operators supported on \mathscr{C}, implying (together with condition A) that $\mathcal{D}_{V}^{\ddagger}\left(\hat{O}_{n}\right)=0$. Thus $\mathcal{L}_{V}^{\ddagger}\left(\hat{O}_{n}\right)=0$ as claimed, giving $\hat{O}_{n+1}=\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}\left(\hat{O}_{n}\right)$. Now we note that, because $\hat{H}_{\mathscr{A} \mathscr{B}}$ and the jump operators in $\mathcal{D}_{\mathscr{A} \mathscr{B}}^{\ddagger}$ are supported on $\mathscr{A} \cup \mathscr{B}, \mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}\left(\hat{O}_{n}\right)$ must also be supported on $\mathscr{A} \cup \mathscr{B}$, and \hat{O}_{n+1} therefore satisfies condition (A). Furthermore, because $\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}$ is diagonality preserving, \hat{O}_{n+1} continues to satisfy condition (B). Therefore, by induction, we deduce that $\hat{O}_{n}=\left(\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}\right)^{n} \hat{O}$, and is supported on $\mathscr{A} \cup \mathscr{B}$. Plugging this result into Eq. (S3), using the isolated support of \hat{O}_{n} to carry out the trace over \mathscr{C}, and defining $\rho_{\mathscr{A} \mathscr{B}}=\operatorname{Tr}_{\mathscr{C}}\left[\hat{\rho}_{0}\right]$, we obtain

$$
\begin{equation*}
O(t)=\operatorname{Tr}_{\mathscr{A}} \cup \mathscr{B}\left[\hat{\rho}_{\mathscr{A} \mathscr{B}} \sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(\mathcal{L}_{\mathscr{A} \mathscr{B}}^{\ddagger}\right)^{n} \hat{O}\right] . \tag{S4}
\end{equation*}
$$

Converting to the Schrödinger picture and resumming the series, we then obtain Eq. (S2).

B. Parametrization of density matrices and superoperators

An arbitrary density matrix of N spin- $\frac{1}{2}$'s can be expanded as

$$
\begin{equation*}
\hat{\rho}=\sum_{\left\{\mu_{1}, \ldots, \mu_{N}\right\}} \rho_{\mu_{1}, \ldots \mu_{N}} \hat{\sigma}_{1}^{\mu_{1}} \otimes \cdots \otimes \hat{\sigma}_{N}^{\mu_{N}} ; \quad \mu_{j} \in\{1, x, y, z\} \tag{S5}
\end{equation*}
$$

where the coefficients $\rho_{\mu_{1}, \ldots, \mu_{N}}$ are real numbers and $\hat{\sigma}_{j}^{1}=\hat{\mathbb{1}}_{j}$ is the identity operator on site j. For convenience we also introduce a more compact notation in which the set of indices $\left\{\mu_{1} \ldots \mu_{N}\right\}$ is replaced by a single collective index μ (which runs over all possible assignments of values $1, x, y, z$ to all N sites), the basis element $\hat{\sigma}_{1}^{\mu_{1}} \otimes \cdots \otimes \hat{\sigma}_{N}^{\mu_{N}}$ is denoted simply by $\hat{\mu}$, and the density operator $\hat{\rho}$ (or any other operator) is denoted with a modified ket notation as $|\rho\rangle\rangle$. In this notation, Eq. (S5) becomes $\left.|\rho\rangle\rangle=\sum_{\mu} \rho_{\mu}|\mu\rangle\right\rangle$. The ρ_{μ} must be real because the density matrix is Hermitian, and the basis elements all are Hermitian, but it is nevertheless useful to consider complex coefficients. In this notation a general (not-necessarily Hermitian) operator \hat{A} and its Hermitian conjugate \hat{A}^{\dagger} become, respectively, $\left.\left.|A\rangle\right\rangle=\sum_{\mu} A_{\mu}|\mu\rangle\right\rangle$ and $\left\langle\langle A|=\sum_{\mu} A_{\mu}^{*}\langle\langle\mu|\right.$. The basis elements $\left.\mid \mu\rangle\right\rangle$ form a vector space (Liouville space) endowed with the inner product $\langle\langle A \mid B\rangle\rangle \equiv 2^{-N} \operatorname{Tr}\left(\hat{A}^{\dagger} \hat{B}\right)=2^{-N} \sum_{\mu \nu} A_{\mu}^{*} B_{\nu} \operatorname{Tr}(\hat{\mu} \hat{\nu})=\sum_{\mu} A_{\mu}^{*} B_{\mu}$, where we have used the fact that $\hat{\mu}^{\dagger}=\hat{\mu}$ and $\operatorname{Tr}(\hat{\mu} \hat{v})=2^{N} \delta_{\mu, v}$. We denote the action of a superoperator on an operator, $\hat{B}=\mathcal{S}(\hat{A})$, with the notation $|B\rangle\rangle=\mathcal{S}|A\rangle\rangle$. The superoperator \mathcal{S} inherets a matrix representation from the equation $|B\rangle\rangle=\mathcal{S}|A\rangle\rangle$ by expanding $\left.|A\rangle\rangle=\sum_{\nu} A_{\nu}|v\rangle\right\rangle$ and left multiplying both sides of the equation by $\langle\mu|$, giving $B_{\mu}=\sum_{\nu} \mathcal{S}_{\mu \nu} A_{\nu}$, where $\left.\mathcal{S}_{\mu \nu} \equiv\langle\langle\mu| \mathcal{S} \mid v\rangle\right\rangle$. Note that a physical Liouvillian must be hermiticity preserving, which implies that its matrix elements in a basis of Hermitian operators (such as the operators $\hat{\mu}$ defined above) are always real.

C. Structure of the Liouvillian

For our purposes below, an important property of each basis element $|\mu\rangle\rangle$ is the number of operators $\hat{\sigma}_{j}^{x}$ and $\hat{\sigma}_{j}^{y}$ that appear [see Eq. (S5)], which we denote by d. In literature on nuclear-magnetic resonance Liouville space can be decomposed into a direct sum of subspaces with fixed d, and we denote the basis elements of these subspaces by $\left|d, \mu_{d}\right\rangle$, with the understanding that the index μ_{d} enumerates only the basis elements in this subspace. An arbitrary vector within this subspace is denoted by $\left.|d, v\rangle\rangle=\sum_{\mu_{d}} v_{\mu_{d}}\left|d, \mu_{d}\right\rangle\right\rangle$. If we define \mathcal{P}_{d} as a superoperator that projects onto the subspace spanned by $\left.\left|d, \mu_{d}\right\rangle\right\rangle$, then we can expand $\mathcal{S}=\sum_{d, d^{\prime}} \mathcal{P}_{d} \mathcal{S} \mathcal{P}_{d^{\prime}} \equiv \sum_{d, d^{\prime}} \mathcal{S}^{d d^{\prime}}$, which has a matrix representation $\left.\mathcal{S}_{\mu_{d} v_{d^{\prime}}}^{d d^{\prime}}=\left\langle\left\langle d, \mu_{d}\right| \mathcal{S}^{d d^{\prime}} \mid d^{\prime}, v_{d^{\prime}}\right\rangle\right\rangle$.

The Liouvillian superoperator can be decomposed as $\mathcal{L}=\mathcal{D}+i \mathcal{H}$, where $\mathcal{H}(\star)=-[\hat{H}$, $\star]$. Because \mathcal{D} and $i \mathcal{H}$ are each (independently) hermiticity preserving, they both have real-valued matrix representations in the chosen basis. The dissipators we consider in the manuscript obey the condition $\operatorname{Tr}\left[\hat{\sigma}_{j}^{z} \mathcal{D}\left(\hat{\sigma}_{j}^{ \pm}\right)\right]=\operatorname{Tr}\left[\hat{\mathbb{1}} j \mathcal{D}\left(\hat{\sigma}_{j}^{ \pm}\right)\right]=0$ [Eq. (3) of the manuscript], which in the language used here implies that $\mathcal{D}^{d d^{\prime}}=0$ whenever $d<d^{\prime}$. In fact, because the dissipator is constructed of local terms, it is straightforward to see that $\mathcal{D}^{d d^{\prime}}$ vanishes unless either $d=d^{\prime}$ or $d=d^{\prime}+1$. It is also readily verified that \mathcal{H} is block diagonal in the d-subspace decomposition, and that $\mathcal{H}^{00}=0$ (the latter condition following because \hat{H} commutes with all basis elements in the $d=0$ sector). Hence the complete Liouvillian has the block-lower-triangular structure (dropping subscripts)

$$
\mathcal{L}=\left(\begin{array}{cccccc}
\mathcal{D}^{00} & 0 & 0 & \cdots & 0 & 0 \tag{S6}\\
\mathcal{D}^{10} & \mathcal{D}^{11}+i \mathcal{H}^{11} & 0 & \cdots & 0 & 0 \\
0 & \mathcal{D}^{21} & \mathcal{D}^{22}+i \mathcal{H}^{22} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \mathcal{D}^{N, N-1} & \mathcal{D}^{N N}+i \mathcal{H}^{N N}
\end{array}\right)
$$

Note that the block-lower-triangular structure of \mathcal{L} of ensures that the time evolution within the $d=0$ subspace, which completely determines the populations in the z-basis, is governed by a closed set of equations. The dynamics within this sector is therefore exactly equivalent to the dynamics of a classical master equation. Note that a superficially similar situation can arise approximately in more general quantum systems in situations where the contribution of coherences can be perturbatively eliminated from the equations of motion for populations [1-5]. The eigenvalues of a block-lower triangular matrix are given by the eigenvalues of the diagonal blocks, and therefore

$$
\begin{equation*}
\operatorname{eigs}(\mathcal{L})=\operatorname{eigs}\left(\mathcal{D}^{00}\right) \cup \operatorname{eigs}\left(\mathcal{D}^{11}+i \mathcal{H}^{11}\right) \cup \cdots \cup \operatorname{eigs}\left(\mathcal{D}^{N N}+i \mathcal{H}^{N N}\right) \tag{S7}
\end{equation*}
$$

Here it is to be understood that the eigenvalues of a projected operator are computed only with respect to vectors supported on that subspace, i.e. the eigenvalues of \mathcal{D}^{00} are given by the eigenvalues of the matrix $\mathcal{D}_{\mu_{0}, v_{0}}^{00}$.

D. Dissipative gap

The dissipators we consider are constructed as sums over single-site dissipators, $\mathcal{D}=\sum_{j} \mathcal{D}_{j}$, each of which independently obeys the constraints [equivalent to Eq. (3) in the manuscript]

$$
\begin{equation*}
\operatorname{Tr}\left[\hat{\mathbb{1}}_{j} \mathcal{D}_{j}\left(\hat{\sigma}_{j}^{x}\right)\right]=\operatorname{Tr}\left[\hat{\mathbb{1}}_{j} \mathcal{D}_{j}\left(\hat{\sigma}_{j}^{y}\right)\right]=\operatorname{Tr}\left[\hat{\sigma}_{j}^{z} \mathcal{D}_{j}\left(\hat{\sigma}_{j}^{x}\right)\right]=\operatorname{Tr}\left[\hat{\sigma}_{j}^{z} \mathcal{D}_{j}\left(\hat{\sigma}_{j}^{y}\right)\right]=0 \tag{S8}
\end{equation*}
$$

Here it is understood that \mathcal{D}_{j} is an operator in the full Liouville space, but because it only acts nontrivially on site j we will (in a slight abuse of notation) temporarily use the symbol \mathcal{D}_{j} to represent an operator acting on just the Liouville space associated with site j, spanned by vectors $\left|\mu_{j}\right\rangle$; regardless of the interpretation of which space \mathcal{D}_{j} acts on, its eigenvalues are the same up to degeneracies. With this interpretation in mind, we can represent \mathcal{D}_{j} as a 4×4 real matrix matrix $\left.\left\langle\left\langle\mu_{j}\right| \mathcal{D}_{j} \mid v_{j}\right\rangle\right\rangle$. Using the shorthand $\left.\mathcal{D}_{\mu \nu} \equiv\left\langle\left\langle\mu_{j}\right| \mathcal{D}_{j} \mid v_{j}\right\rangle\right\rangle$ (note the temporary suppression of the index j), ordering our basis as $\mu=1, z, x, y$, and taking into account the constraints on \mathcal{D}_{j} imposed in Eq. (S8), we have

$$
\mathcal{D}_{\mu \nu}=\left(\begin{array}{cc|cc}
0 & 0 & 0 & 0 \tag{S9}\\
\mathcal{D}_{z 1} & \mathcal{D}_{z z} & 0 & 0 \\
\hline \mathcal{D}_{x 1} & \mathcal{D}_{x z} & \mathcal{D}_{x x} & \mathcal{D}_{x y} \\
\mathcal{D}_{y 1} & \mathcal{D}_{y z} & \mathcal{D}_{y x} & \mathcal{D}_{y y}
\end{array}\right)
$$

In order to prove the existence of a dissipative gap for \mathcal{L}, we also make the following two assumptions:
(1) Each local dissipator \mathcal{D}_{j} has a unique steady state and a dissipative gap Γ_{j}, and $\min _{j} \Gamma_{j}=\Gamma>0$. Since all eigenvalues of the dissipator must have non-positive real parts, this means that for any nonzero eigenvalue λ of \mathcal{D}_{j}, we must have $\operatorname{Re}(\lambda) \leq-\Gamma_{j}$.
(2) In addition to Eq. (S8), the local dissipators obey the further constraints:

$$
\begin{equation*}
\operatorname{Tr}\left[\hat{\sigma}_{j}^{y} \mathcal{D}_{j}\left(\hat{\sigma}_{j}^{x}\right)\right]=\operatorname{Tr}\left[\hat{\sigma}_{j}^{x} \mathcal{D}_{j}\left(\hat{\sigma}_{j}^{y}\right)\right], \quad \text { and } \quad \operatorname{Tr}\left[\hat{\sigma}_{j}^{z} \mathcal{D}_{j}\left(\hat{\mathbb{1}}_{j}\right)\right]=0 \tag{S10}
\end{equation*}
$$

In the notation just introduced, we can restate these conditions as: (1) The matrix $\mathcal{D}_{\mu v}$ has a unique zero eigenvalue and a dissipative gap Γ_{j}, and (2) The diagonal blocks of $\mathcal{D}_{\mu \nu}$ are symmetric ($\mathcal{D}_{z 1}=0$ and $\mathcal{D}_{y x}=\mathcal{D}_{x y}$). Note that the Hamiltonian in Eq. (9) of the manuscript, when rotated about the y axis and at $\Delta=0$, becomes of the form in Eq. (1) of the manuscript, while the jump operators become $\hat{J}_{j}=\hat{\sigma}_{j}^{y}-i \hat{\sigma}_{j}^{z}$. It is straightforward to verify that conditions (1) and (2) are satisfied for the corresponding dissipator, with $\Gamma=\gamma$.

As mentioned above, a block-lower-triangular matrix of this form shares its eigenvalues with the diagonal blocks. Let's denote the set of eigenvalues of the upper-left block by $\mathscr{E}_{j}^{0}=\left\{0, \varepsilon^{0}\right\}$, and the set of eigenvalues of the lower-right block by $\mathscr{E}_{j}^{1}=\left\{\varepsilon_{a}^{1}, \varepsilon_{b}^{1}\right\}$ (it is straightforward to see that the upper-left block must have a zero eigenvalue). By conditions (1) and (2), we know that the three non-zero eigenvalues are real, and that $\varepsilon^{0}, \varepsilon_{a}^{1}, \varepsilon_{b}^{1} \leq-\Gamma_{j}$. Because each \mathcal{D}_{j} is supported on a single site, the eigenvalues of the full dissipator $\mathcal{D}=\sum_{j} \mathcal{D}_{j}$ are simply sums of eigenvalues from each \mathcal{D}_{j}. Eigenvalues of the projected dissipator $\mathcal{D}^{d d}$ can be constructed as follows: Defining \mathscr{J}_{d} to be a set containing d sites, and also defining the notation $\mathscr{A}+\mathscr{B}=\{a+b: a \in \mathscr{A}, b \in \mathscr{B}\}$, we have

$$
\begin{equation*}
\operatorname{eigs}\left(\mathcal{D}^{d d}\right)=\bigcup_{\mathscr{J}_{d}}\left(\sum_{j \in \mathscr{J}_{d}} \mathscr{E}_{j}^{1}+\sum_{j \notin \mathscr{J}_{d}} \mathscr{E}_{j}^{0}\right) \tag{S11}
\end{equation*}
$$

We can draw two immediate conclusions:
(A) \mathcal{D}^{00} has precisely one zero eigenvalue, obtained when the zero eigenvalue in \mathscr{E}_{j}^{0} is chosen for all j, and any other eigenvalue ε satisfies $\varepsilon \leq-\Gamma$.
(B) Any eigenvalue ε of $\mathcal{D}^{d d}$ (with $d>0$) is real and satisfies $\varepsilon<-d \Gamma$.

Now consider an arbitrary normalized eigenvector of $\mathcal{L}^{d d}$ in the $d \neq 0$ subspace, $\left.|d, v\rangle\right\rangle$, with eigenvalue $\varepsilon=x+i y$, and write

$$
\begin{equation*}
\left.\left.\left.\left\langle\langle d, v| \mathcal{L}^{d d} \mid d, v\right\rangle\right\rangle=\left\langle\langle d, v| \mathcal{D}^{d d} \mid d, v\right\rangle\right\rangle+i\left\langle\langle d, v| \mathcal{H}^{d d} \mid d, v\right\rangle\right\rangle=x+i y . \tag{S12}
\end{equation*}
$$

It is straightforward to show that the superoperator $\mathcal{H}^{d d}$ is Hermitian (for any Hamiltonian), and thus $\left.x=\operatorname{Re}\left(\left\langle\langle d, v| \mathcal{D}^{d d} \mid d, v\right\rangle\right\rangle\right)$. In general, there is not a simple relation between the real part of the expectation value of an operator and the real parts of its eigenvalues. However, assumption (2) guarantees that $\mathcal{D}^{d d}$ is a real symmetric matrix. Therefore, we have

$$
\begin{equation*}
\left.x=\left\langle\langle d, v| \mathcal{D}^{d d} \mid d, v\right\rangle\right\rangle \leq-d \Gamma \tag{S13}
\end{equation*}
$$

where the inequality follows because the expectation value of a real symmetric matrix (more generally a Hermitian matrix) is bounded between its smallest and largest eigenvalues. Returning to Eq. (S7), keeping in mind conclusion (A), and using Eq. (S13), we find that \mathcal{L} has a single zero eigenvalue, and a dissipative gap of at least Γ.
[1] Z. Cai and T. Barthel, "Algebraic versus exponential decoherence in dissipative many-particle systems," Phys. Rev. Lett. 111, 150403 (2013).
[2] Igor Lesanovsky and Juan P. Garrahan, "Kinetic constraints, hierarchical relaxation, and onset of glassiness in strongly interacting and dissipative rydberg gases," Phys. Rev. Lett. 111, 215305 (2013).
[3] M. Hoening, W. Abdussalam, M. Fleischhauer, and T. Pohl, "Antiferromagnetic long-range order in dissipative rydberg lattices," Phys. Rev. A 90, 021603 (2014).
[4] M. H. Fischer, M. Maksymenko, and E. Altman, "Dynamics of a many-body-localized system coupled to a bath," Phys. Rev. Lett. 116, 160401 (2016).
[5] E. Levi, M. Heyl, I. Lesanovsky, and J. P. Garrahan, "Robustness of many-body localization in the presence of dissipation," Phys. Rev. Lett. 116, 237203 (2016).

