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Exactly soluble model of boundary degeneracy
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We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall
states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as “boundary
degeneracy”) does not require superconducting proximity effect and can be created by simply applying a depletion
gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap
out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy
and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118
(2016)]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that
the proposed scheme is experimentally reasonable.
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I. INTRODUCTION

There has been significant recent interest and progress
in constructing theoretical models that exhibit exotic, non-
Abelian anyons as either intrinsic excitations or states captured
by extrinsic defects in various topological phases [1]. Of
particular interest here is the possibility to create such
non-Abelian anyons in otherwise Abelian topological states.
This was explicitly demonstrated in theoretical proposals
featuring fractional (Abelian) topological states proximity-
coupled to superconductors and in bilayer quantum Hall
states with extrinsic twist defects [2–7]. However, there are
serious challenges in the experimental realization of these
parafermionic models due to a number of poorly compatible
ingredients that have to coexist in a single system (in particular,
superconductivity and topological order). Moreover, in most
cases, braiding properties of the non-Abelian anyons are
not sufficiently rich to host universal topological quantum
computation.

Recent works have shown that multiple gapped boundaries
connected with a common topological bulk can play the role
of non-Abelian excitations as long as the bulk supports an
intrinsic Abelian topological order [8–12]. The topological
ground-state degeneracy in these systems has been dubbed as
“boundary degeneracy.” In a recent preprint, Barkeshli and
Freedman put forward that topological order with a multiply
connected gapped boundary can manifest a richer set of
topologically protected unitary transformations [13], raising
the possibility of realizing universal quantum computation in
systems with no superconducting proximity.

The simplest system that is a candidate for manifesting
boundary degeneracy is a fractional quantum spin Hall (FQSH)
state of filling fraction ν = 1/k with multiple holes with
a boundary (which can be created using a depletion gate)
(Fig. 1). Each hole will manifest two counter-propagating
edge modes corresponding to the two components of spin.
We model these edge modes by chiral Luttinger liquids with
opposite chiralities. If we allow direct tunneling between the

two edge theories, it would gap them out. Punching out N
holes and gluing the two spin components together along the
edges is equivalent to creating a fractional quantum Hall state
on a manifold of genus N − 1 [8,12,14], which is known to
possess the topological degeneracy kN−1. This proposal for
creating topological degeneracy is conceptually simple and
could be experimentally implemented immediately when a
FQSH is realized. Furthermore, magnetic impurities, which
were thought as a nuisance in the current experimental works
on QSH effect, can be an advantage toward gapping the
edge modes of a FQSH system, which is a necessary step
in engineering our topological degeneracy.

In this work, we construct an exactly soluble microscopic
model manifesting topological boundary degeneracy. Our con-
struction is rooted in the recently developed [15] Hamiltonian
formulation. The relevant topological physics manifests in the
effective Hilbert space in the nonperturbative backscattering
limit. Within this framework, we prove the existence of a
robust topological degeneracy and derive the string operators
that span this degeneracy. Our approach in this sense differs
from the topological quantum field theory methods [12]
and effective boundary action analysis [8]. Toward the end,
we outline possible experimental platforms to engineer and
probe topological degeneracy via multiply connected gapped
boundaries.

II. MODEL

We begin with a microscopic model for a perfectly clean
homogeneous edge of the ith hole modeled by two chiral
Luttinger liquids with opposite chiralities, one for each spin
direction. We then add nonperturbative backscattering terms
that mix the two spin components and gap the edge modes.
Finally, we connect all the edges (holes) by a common fraction-
alized bulk. The formalism we consider naturally incorporates
this as a constraint on the allowed charge at the edge. We now
construct and systematically solve a microscopic model that
encapsulates all these aspects.
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FIG. 1. FQSH phase (green shading) on a multiply connected
2D surface. Interface between holes (in white) manifest two counter-
propagating edge modes corresponding to the two spin components.

The Hamiltonian for a perfectly clean, homogeneous edge
of the ith hole is given by

Hi
0 = kvi

4π

∫ L/2

−L/2
{[∂xφ

i
↑(x)]2 + [∂xφ

i
↓(x)]2}dx, (1)

where v is the velocity of the edge modes of circumference
L. φi

↑/↓ are bosonic fields satisfying canonical commutation

relations [φi
σ (x),∂yφ

j
σ ′(y)] = δijδσσ ′ 2π i

kσ
δ(x − y), where k↑ =

−k↓ = k. The density of spin-up electrons at position y at
the ith hole is given by ρi

↑(y) = 1
2π

∂yφ
i
↑, while the density

of spin-down electron is ρi
↓(y) = 1

2π
∂yφ

i
↓. The total charge

Qi and total spin Si
z on the edge of the ith hole are given by

Qi = Qi
↑ + Qi

↓ and Si
z = 1

2 (Qi
↑ − Qi

↓), with

Qi
σ = 1

2π

∫ L/2

−L/2
∂yφ

i
σdy, σ = ↑,↓.

The spin-up and spin-down electron creation operators at each
hole take the form ψ

i†
↑ = eikφi

↑ , ψ
i†
↓ = e−ikφi

↓ . Note that Hi

corresponds to a collection of decoupled edge modes, and
the key information that these modes are actually multiply
connected via a common fractionalized bulk is missing. This
multiple connectedness of the holes results in two quantization
conditions on Qi

↑,Qi
↓:

Qi
↑,↓ ∈ Z × 1/k and

N∑

i=1

Qi
↑,↓ ∈ Z.

Physically, these quantization conditions require that
the edge modes corresponding to holes contain fractional
charges in multiples of 1/k and that the net charge on all
the holes adds up to be an integer multiple of the electronic
charge. For example, the edge of an isolated single hole
cannot carry any excess fractional charge. A closely related
fact to this quantization is that the bosonic operators φi

↑(y)
and φi

↓(y) are actually compact degrees of freedom, which
are only defined modulo 2π/k. Following Ref. [15], we
dynamically impose the quantization on Qi

↑,Qi
↓. To this end,

we add Hi
lq = −U cos(2πkQi

↑) − U cos(2πkQi
↓) to the edge

Hamiltonian of the ith hole. We then impose the second
condition, corresponding to the global quantization of the
total charge on all holes, by adding a global term Hgq =

FIG. 2. FQSH phase (green shading) with gapped boundaries.
Red dots denote an array of magnetic impurities that gap edges in the
limit of continuum backscattering.

−U cos(2π
∑N

i Qi
↑) − U cos(2π

∑N
i Qi

↓). Notice that both
quantization conditions are imposed by letting U → ∞. The
Hilbert space corresponding to the clean edge is spanned
by the complete orthonormal basis {|qi

↑,qi
↓,{ni

p↑},{ni
p↓}⟩},

where the quantum numbers qi
↑,qi

↓ correspond to the total
charge associated with the two spin species ranging over
Z × 1/k (subject to

∑
i q

i
↑,↓ ∈ Z), while ni

p↑,ni
p↓ are the

neutral phonon excitations of momentum p ranging over all
nonnegative integers for each value of p = 2π/L,4π/L, . . ..

The next step is to add backscattering terms that gap the
above defined boundary modes by scattering spin-up electrons
to spin-down electrons. A continuum of backscattering terms
in a fermionic representation can be expressed as Hi

bs =∫ L

0
U (x)

2 ψ i†(x)ψ i(x) + H.c. The corresponding bosonized rep-
resentation can be written as Hi

bs =
∫ L

0 U (x) cos{k[φi
↑(x) +

φi
↓(x)]}. The total Hamiltonian for the ith hole Hi

0 + Hi
bs

corresponds to a gapped edge in the large U limit.
Now we are set to write down the full microscopic

Hamiltonian corresponding to the N multiply connected hole
boundaries: H = Hgq +

∑N
i=1 Hi

0 + Hi
bs + Hi

lq. The Hamil-
tonian H can be mapped onto a class of exactly soluble
Hamiltonians by replacing the continuum backscattering term∫ L

0 U (x) cos{k[φi
↑(x) + φi

↓(x)]} with an array of M impurity
scatterers U

∑M
j=1 cos{k[φi

↑(xj ) + φi
↓(xj )]} (see Fig. 2). The

continuum result is then recovered in the thermodynamic
limit of L,M → ∞ with U and L/M fixed. Without loss of
generality, we periodically arrange the backscattering terms at
each hole as x1...M = 0, . . . ,(M − 1)s, where s is the spacing
between two impurity points. After this replacement, the
Hamiltonian H is exactly soluble in the limit U → ∞. To
make contact with with the formalism outlined in Ref. [15],
we rewrite the above model as

H = H0 − U

N(M+2)+2∑

i=1

cos(Ci). (2)

In the above notation, the first term H0 =
∑N

i H i
0 contains

the dynamics of the clean edge. The second term contains the
backscattering terms on all the holes and their corresponding
charge quantization conditions. We have organized the cosine
arguments in the following way. The first NM terms consist
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of all the backscattering terms {C1..M,..,C(N−1)M+1...NM} =
{k[φ1

↑(x1..M )+φi
↓(x1..M )] . . . k[φN

↑ (x1..M )+φN
↓ (x1..M )]}. The

quantization condition of each hole boundary is given
by {CNM+1,..,CNM+N } = {2πkQ1

↑ . . . 2πkQN
↑ } and

{CNM+N+1,..,CNM+2N } = {2πkQ1
↓ . . . 2πkQN

↓ }. Finally,
the two conditions on the total charge are given by
{CN(M+2)+1,CN(M+2)+2} = {2π

∑N
i Qi

↑,2π
∑N

i Qi
↓}.

III. REVIEW OF FORMALISM

In this section we review the general formalism for solving
the class of Hamiltonians central to our discussion,

H = H0 − U

M∑

i=1

cos(Ci). (3)

Here we have defined H0 as a quadratic function of position and
momentum variables {x1,p1,x2,p2, . . .} and the Ci are linear
functions of these variables. We restrict to the case where
{C1,C2, . . .} are linearly independent, [Ci,Cj ] is an integer
multiple of 2π i for all i,j such that the cosine terms commute.
The detailed recipe for developing a low-energy theory in the
large U limit is outlined in Ref. [15]. Here we provide a skeletal
recap of this recipe.

In the limit U → ∞, the arguments of the cosine terms are
pinned to integer multiples of 2π . The low-energy spectrum
of H in this limit can be described by an effective quadratic
Hamiltonian Heff acting within an effective Hilbert space Heff.
The effective Hamiltonian is given by

Heff = H0 −
M∑

i,j=1

(M−1)ij
2

)i)j , (4)

where the operators )1, . . . ,)M are defined by )i =
1

2π i

∑M
j=1 Mij [Cj ,H0] and where Mij is a matrix defined by

M = N−1, Nij = − 1
4π2 [Ci,[Cj ,H0]]. )i operators satisfy

[Ci,)j ] = 2π iδij by construction.
The simple physical intuition is that the low-energy physics

of H in the limit U → ∞ does not contain the dynamics of
Ci’s. Thus, the term generating the dynamics (M−1)ij

2 )i)j

must be removed from the effective Hamiltonian.
This effective Hamiltonian is defined on an effective Hilbert

space Heff, which is a subspace of the original Hilbert space
H and which consists of all states |ψ⟩ satisfying

cos(Ci)|ψ⟩ = |ψ⟩, i = 1, . . . ,M. (5)

We can directly find the creation and annihilation operators
for Heff by finding all operators a that obey [a,Heff] = Ea.
Finding creation and annihilation operators for the Heff is
equivalent to solving the equation

[a,H0] = Ea +
∑

j

λj [Cj ,H0], [a,Ci] = 0, i = 1,2, . . .

(6)

where λj ’a are like Lagrange multipliers imposing the con-
straint due to the large cosine terms and E is arbitrary scalar
with E ̸= 0 (E > 0 corresponds to “annihilation operators,”
and E < 0 corresponds to “creation operators.” The normal-

ized creation and annihilation operators satisfy

[ak,a
†
k′ ] = δkk′, [ak,ak′ ] = [a†

k,a
†
k′] = 0. (7)

We now construct a complete set of quantum numbers for
labeling the eigenstates of Heff. This step nicely fleshes out the
physical structure of the effective Hilbert space Heff. With this
motivation in mind, consider the object Zij to be the M × M
matrix defined by

Zij = 1
2π i

[Ci,Cj ]. (8)

The matrix Zij is integer and skew-symmetric, but otherwise
arbitrary. Next, let

C ′
i =

M∑

j=1

VijCj+χi (9)

for some matrixV and some vector χ . Then, [C ′
i ,C

′
j ] = 2π iZ ′

ij

where Z ′ = VZVT . The second step of the recipe is to find a
matrix V with integer entries and determinant ±1, such that
Z ′ takes the simple form

Z ′ =

⎛

⎝
0I −D 0
D 0I 0
0 0 0M−2I

⎞

⎠, D =

⎛

⎜⎜⎝

d1 0 . . . 0
0 d2 . . . 0
...

...
...

...
0 0 . . . dI

⎞

⎟⎟⎠.

(10)

Here I is some integer with 0 ! I ! M/2 and 0I denotes
an I × I matrix of zeros. In mathematical language, V is an
integer change of basis that puts Z into skew-normal form. It
is known that such a change of basis always exists, though it is
not unique. After finding an appropriate V , the offset χ should
then be chosen so that

χi = π
∑

j<k

VijVikZjk (mod 2π ). (11)

The reason for choosing χ in this way is that it ensures that
eiC ′

i |ψ⟩ = |ψ⟩ for any |ψ⟩ ∈ Heff, as can be easily seen from
the Campbell-Baker-Hausdorff formula.

The complete low-energy spectrum of Heff can always be
written in the form

Heff =
K∑

k=1

Eka
†
kak + F (C ′

2I+1, . . . ,C
′
M ), (12)

where F is some (a priori unknown) quadratic function. As a
consequence of this construction, we note that the following
operators all commute with each other:

{eiC ′
1/d1 , . . . ,eiC ′

I /dI , eiC ′
I+1 , . . . ,eiC ′

2I , C ′
2I+1, . . . ,C

′
M,

a
†
1..Ka1..K}. (13)

We denote the simultaneous eigenstates by

|θ1, . . . ,θI , ϕ1, . . . ,ϕI , x ′
I+1, . . . ,x

′
M−I , n1, . . . ,nK⟩,

or, in more abbreviated form, |θ ,ϕ,x′,n⟩.
By construction, the |θ,ϕ,x′,n⟩ states form a complete

basis for the Hilbert space H. A subset of these states form a
complete basis for the effective Hilbert space Heff. This subset
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consists of all |θ ,ϕ,x′,n⟩ for which
(1) θ = (2πα1/d1, . . . ,2παI /dI ) with αi=0,1, . . . ,di−1.
(2) ϕ = (0,0, . . . ,0).
(3) (x ′

I+1, . . . ,x
′
M−I ) = (q1, . . . ,qM−2I ) for some integers

qi .
We will denote this subset of eigenstates by {|α,q,n⟩}.

Putting this together, we can see that the |α,q,n⟩ are eigenstates
of Heff, with eigenvalues

E =
K∑

k=1

nkEk + F (2πq1, . . . ,2πqM−2I ). (14)

A key feature of Eq. (14) that is worth mentioning is that the
energy E is independent of the quantum numbers α1, . . . ,αI .
Since αi ranges from 0 ! αi < di − 1, it follows that every
eigenvalue of Heff has a degeneracy of (at least)

D =
I∏

i=1

di. (15)

IV. FULL-ENERGY SPECTRUM WITH
BOUNDARY DEGENERACY

In this section we apply the recipe outlined in the previous
section to the Hamiltonian defined in Eq. (2). W calculate
the low-energy effective Hamiltonian Heff and the low-energy
Hilbert space Heff corresponding to H in the limit U → ∞.
The effective Hamiltonian is given by

Heff = H0 −
N(M+2)+2∑

i,j=1

(M−1)ij
2

)i)j , (16)

where the operators )1, . . . ,)N(M+2)+2 are defined by )i =
1

2π i

∑N(M+2)+2
j=1 Mij [Cj ,H0] and where Mij is a matrix

defined by M = N−1, Nij = − 1
4π2 [Ci,[Cj ,H0]]. )i oper-

ators satisfy [Ci,)j ] = 2π iδij by construction. This effective
Hamiltonian is defined on an effective Hilbert space Heff,
which is a subspace of the original Hilbert space H and which
consists of all states |ψ⟩ satisfying cos(Ci)|ψ⟩ = |ψ⟩, i =
1, . . . ,N(M + 2) + 2. We can directly find the creation and
annihilation operators for Heff by finding all operators a that
obey [a,Heff] = Ea. Putting this all together, we see that the
most general possible creation and annihilation operator for
Heff is given by

aipm =

√
k

4π |p|s

∫ L/2

−L/2
[(eipy∂yφ

i
↑ + e2ipxme−ipy∂yφ

i
↓)

×/(xm−1 < y < xm)]dy.

Here the index m runs over m = 1, . . . ,M , i runs over the holes
i = 1, . . . ,N , while p takes values ±π/s, ± 2π/s, . . .. The
operators are normalized to yield [aipm,a

†
i ′p′m′] = δpp′δmm′δii ′

for p,p′ > 0. The cosine terms imposing quantization and
compactness condition naturally forbids a to be an explicit
function of the bosonic field φi .

We now construct a complete set of commuting operators
for labeling the eigenstates of Heff. In order to do this, we
consider the integer and skew-symmetric [N (M + 2) + 2] ×
[N (M + 2) + 2] matrix Zij defined by Zij = 1

2π i
[Ci,Cj ]. Let

C ′
i =

∑N(M+2)+2
j=1 VijCj + χi for some matrix V such that

[C ′
i ,C

′
j ] = 2π iZ ′

ij , where Z ′ = VZVT . The offset χi must
be chosen to be χi = π ·

∑
j<k VijVikZjk (mod 2π ) such that

eiC ′
i |ψ⟩ = |ψ⟩ is satisfied for any |ψ⟩ ∈ Heff. We then find a

matrix V with integer entries and determinant ±1, such that
Z ′ takes the simple form

Z ′ =

⎛

⎝
0N −DN 0
DN 0N 0
0 0 0NM+2

⎞

⎠, DN =

⎛

⎜⎜⎝

1 0 . . . 0
0 k . . . 0
...

...
...

...
0 0 . . . k

⎞

⎟⎟⎠.

(17)

Here 0N denotes an N × N matrix of zeros. V is an integer
change of basis that puts Z into skew-normal form. In the C ′

basis, the diagonalized low-energy effective Hamiltonian Heff
takes the form

Heff =
N∑

i=1

M∑

m=1

∑

p>0

vpa
†
ipmaipm + F (C ′

2N+1, . . . ,C
′
N(M+2)+2),

(18)
where the sum runs over p = π/s,2π/s, . . . and where F is
some quadratic function of NM + 2 variables associated with
the 0NM+2 block of the Z ′

ij matrix. The exact form of F does
not play a role in the analysis to follow and we keep it general
(even though it can be computed following Ref. [15]). Using
the commutation algebra of the C ′

i operators, we can construct
the complete set of operators that commute with each other and
with Heff. The effective Hilbert space Heff is then spanned by
the unique simultaneous eigenstates {|α,q,{nipm}⟩}, satisfying

eiC ′
1,N+1 |α,q,{nipm}⟩ = |α,q,{nipm}⟩,

eiC ′
2,..,N /k|α,q,{nipm}⟩ = ei2πα2..N /k|α,q,{nipm}⟩,

eiC ′
N+2,..,2N |α,q,{nipm}⟩ = |α,q,{nipm}⟩,

C ′
2N+1...N(M+2)+2|α,q,{nipm}⟩ = 2πq1..NM+2|α,q,{nipm}⟩,

a
†
ipmaipm|α,q,{nipm}⟩ = nipm|α,q,{nipm}⟩. (19)

Here the label nipm runs over nonnegative integers, while
α is an abbreviation for the (N−1)-component integer
vector (α2, . . . ,αN ) where α2..N ’s run over {0 . . . k − 1}.
{|α,q,{npm}⟩} basis states are also eigenstates of Heff with
the total energy given by

E =
N∑

i=1

M∑

m=1

∑

p>0

vpnipm + F (2πq1, . . . ,2πqNM+2). (20)

There are two important features of the above spectrum. a)
E has a finite energy gap of order v/s where s = L/M . b)
The spectrum E is independent of the quantum numbers α.
In other words, every state, including the ground state, has a
degeneracy of

D = kN−1, (21)

since this is the number of different values that α ranges
over. This degeneracy agrees with the prediction made in
the introduction. The physical origin of this degeneracy can
be traced to the equivalence of our system to that of FQH
state with filling factor 1/k on a N − 1 genus manifold (see
schematic Fig. 3).
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M → ∞
N Gapped holes

N-1 genus manifold

FIG. 3. FQSH phase (green shading) with gapped boundaries.
Red dots denote an array of magnetic impurities that gap edges in
the limit of continuum backscattering (right). N gapped boundaries
multiply connected through a bulk is equivalent to a FQH state of
1/k filling on a N − 1 genus manifold.

V. STRING OPERATORS

In the above analysis, we were able to identify quantum
numbers and the complete set of commuting operators associ-
ated with the effective Hilbert space. From these commuting
operators we can deduce the so-called “string operators”
that span the degenerate subspace. The string operators in
the primed basis are given by {eiC ′

2,..,N /k,eiC ′
N+2,..,2N /k}. In the

unprimed basis, these operators are defined as

{ei2π(Qi
↑−Qi

↓),

j∏

r=1

ei(φr
↑(x)+φr

↓(x))},

i = 1, . . . ,N − 1, j = i + 1, . . . . (22)

Note that the above operators are closely related to the
parafermion operators and are fixed by the nonunique choice
of V . One can obtain the matrix representation of these string
operators by acting in the basis states spanned by the
degenerate ground-state subspace |α,0,0⟩ ≡ |α⟩:

e±iC ′
i /k|α⟩ = e±i2παi /k|α⟩,

e±iC ′
i+N /k|α⟩ = |α ± ei−1⟩, i = 2 . . . N.

Here ei denotes the (N−1)-component vector ei =
(0, . . . ,1, . . . ,0) with a “1” in the ith entry and 0 everywhere
else. The addition of ei is performed modulo k. Note that
the above equations imply that the operators e±iC ′

i /k act like
“clock” matrices for i = 2, . . . ,N , while the operators e±iC ′

i /k

act like “shift” matrices for i = N + 2, . . . ,2N ; thus, these
operators generate a generalized Pauli algebra (a.k.a. σz,σx).

VI. TOPOLOGICAL ROBUSTNESS

Having established the ground-state degeneracy in the
U → ∞ case of our toy model, we proceed to describe
finite-U corrections to Heff. Notice that we only seek finite-U
corrections to the backscattering terms that gap the edge.
In other words, consider Eq. (2) to be of the form H =
H0 − U

∑NM
i=1 cos(Ci) − U ′ ∑N(M+2)+2

i=NM+1 cos(Ci) in the limit
where U is finite but U ′ → ∞ (U ′ are associated with the

quantization condition). In this case, the finite-U corrections
only generate (instanton-like) tunneling processes of the form
Ci → Ci − 2πni (for i = 1 . . . NM).

The thermodynamic limit we consider is where L,M → ∞
with U and L/M fixed. Notice that the boundary correspond-
ing to each hole has a finite energy gap in this limit (of
order v/s, where s = L/M). Due to the gapped spectrum,
we can employ perturbative methods to probe the degeneracy.
The most general low-energy operator generating finite-U
corrections to the ground state can be written as ei

∑NM
j=1 mj )j ·

ϵm with the sum running over the NM-component integer
vectors m = (m1, . . . ,mNM ) [15]. Here, the ϵm are unknown
functions of {aipm,a

†
ipm,C ′

2N+1,...N(M+2)+2} that vanish in the
limit U → ∞. The )i operators are conjugate to the Ci’s
([Ci,)j ] = 2π iδij ) and thereby generate tunneling events
associated with the finite-U corrections. Since the spectrum
is gapped in the limit of interest, the ground-state degeneracy
and the gap are robust against small perturbations. The lowest-
order nonvanishing matrix elements splitting the degeneracy
within the ground state come from the simultaneous single-
instanton tunneling event at all M impurity points of a given
hole (m1 = · · · = mM = 1, which is an Mth-order instanton
process). This lowest-order splitting is suppressed by a factor
of ∼ e−const.M

√
U [15,16], which vanishes in the thermody-

namic limit of M → ∞, exemplifying the topological nature
of the degeneracy.

VII. EXPERIMENTAL REALIZATION

The proposed model for topological degeneracy can be
realized in a variety of systems where edges around punctures
of a conjugate pair of Abelian fraction quantum Hall states can
be gapped via backscattering. First, an electron-hole bilayer
can exhibit the desired pair of conjugate Abelian fractional
quantum Hall states, while top and bottom gates can be
used to puncture holes, whose edges can be coupled via
electron tunneling [14]. Second, a back gate in an electronic
FQSH system can be used to puncture holes, while magnetic
impurities can be used to flip the spin and thus couple the
edges. In Fig. 4, we outline a generalization of an architecture
that has been used in fractional quantum Hall experiments [17].
The idea is to create a central depletion region using a back
gate. The side gates create a quantum point contact that can

Side gate

Side gate

Back gate Back gate

zzz

Back gate

Side gate

Side gate

FIG. 4. Schematic to create topological degeneracy (top view):
(Left) FQSH (green shading) with an elongated depletion region
(white region) controlled by a back gate. The side gates create QPC
that weakly scatters electrons across the trench. (Right) FQSH with
doped magnetic impurities that gap the edge. Each hole is shown in
white with a red shading denoting a gapped boundary. The side gate
voltage is tuned to the strong backscattering limit or quasiparticle
tunneling regime. The side gates allow exchange of quasiparticles
between the disconnected gapped boundaries.
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pinch off the trench and create multiply connected regions
in the topological state. Notice that in the dual limit after
the pinch-off the holes exchange fractional quasiparticles,
thereby changing the topological sectors controlled by the side
gate.

Third, ultracold dipoles, such as magnetic atoms [18,19],
polar molecules [20,21], and Rydberg atoms [22,23], pinned
in optical lattices can be used to realize spin models whose
ground states correspond to bilayer fractional quantum Hall
states [24]. It is possible that the ground state of such a
bilayer system can be tuned to the desired conjugate pair
of Abelian fractional quantum Hall states, in which case
focused laser beams can be used to locally modify the
spin model to effectively puncture holes and couple the
resulting edges. Fourth, with the help of synthetic gauge
fields and contact interactions, two internal states of ultracold
atoms can exhibit the FQSH effect, while focused laser
beams can be used to puncture holes and induce transitions
between the two internal states, thus coupling the edges [25].
Finally, photonic implementations in radio-frequency [26],

microwave [27], and optical [28–33] domains can also be
envisioned.
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