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RABI FREQUENCY CALIBRATION

We calibrate the Rabi frequencies of the two optical
fields using the light shifts due to each field. For the 795-
nm laser, which is detuned �/2⇡ ⇡ 235 MHz below the
|5s;F = 2,mF = �2i !

��5p1/2;F = 1,mF = �1
↵
tran-

sition, we observe the intensity dependent shift, �795,
of the |5s;F = 2,mF = �2i ! |5s;F = 1,mF = �1i
microwave transition. The light shift �795 =
⌦2

1/4� is a factor of �hyperfine/� ⇡ 30 larger
for the |5s;F = 2,mF = �2i state compared to the
|5s;F = 1,mF = �1i state so we take the e↵ect on
the microwave transition as the light shift on the
|5s;F = 2,mF = �2i state. We observe a shift that is
linear in intensity I, as expected, and use this to cali-
brate the Rabi frequency ⌦1(I) = 2

p
�795(I)� which we

vary from 2⇡ ⇥ 0.2 MHz to 2⇡ ⇥ 10 MHz to control the
two-photon Rabi frequency.

To obtain the Rabi frequency of the 485-nm
field, detuned �/2⇡ ⇡ 235 MHz above the��5p1/2;F = 1,mF = �1

↵
! |18s;F = 2,mF = �2i tran-

sition, we observe the intensity dependent shift,
�485, of the two-photon |5s;F = 2,mF = �2i !
|18s;F = 2,mF = �2i transition keeping the 795-nm
light intensity (and frequency) constant. The 485-nm
field is far from any transition coupling the ground 5s
state to any optically excited state, so the shift of the
|18s;F = 2,mF = �2i state is the dominant contribu-
tion and �485 = ⌦2

2/4�. We observe a shift that is linear
in intensity, as expected, and use this to calibrate the
Rabi frequency ⌦2(I) = 2

p
�485(I)� which we hold at

the maximum value given available laser power and beam
diameter, ⌦2/2⇡ ⇡ 7 MHz.

LATTICE FILLING

Loading 4 ⇥ 104 atoms into the 3D optical lattice as
described in the main text leads to overfilling (more than
one atom per site) in a fraction of the lattice sites. How-
ever, we determined that the filling fraction does not
a↵ect the broadening, which is only determined by the
overall density. We made this determination by compar-
ing a Mott insulator state with no more than one atom

per site to a state with a Poissonian distribution of atoms
per site, but the same total number of atoms in the par-
ticipating ground state (and thus the same global den-
sity). Only the overall atom number was pertinent to the
broadening. We also compared random transfer of half of
the atoms to the participating ground state with transfer
of all atoms on every other site in 2D in a checkerboard
fashion [34]. These two cases lead to a factor of two dif-
ference in the filling fraction per lattice site. We again
saw that the total atom number controlled the broaden-
ing without regard to the microscopic configuration.

18s LIFETIME

We observe 780-nm fluorescence on the 5p3/2�5s tran-
sition following excitation to the 18s Rydberg state and
fit a decaying exponential to extract a lifetime. The bulk
of the fluorescence is due to the ⇡ 30 % of the decay via
18s� 5p3/2 � 5s for which the 28-ns lifetime of the 5p3/2
is negligible compared to ⌧0 = 3.5 µs, the natural lifetime
of the 18s. However, ⇡ 1 % of the population decays via
channels of the form 18s�np�n0s�5p3/2�5s for which
the lifetimes of the intermediate states delay the final
780-nm photon leading to e↵ective lifetimes ⇡ 4⇥ longer
[26] and an increase in the measured lifetime by ⇡ 10 %.
In addition, radiation trapping, in which photons are re-
absorbed and reemitted one or more times before leav-
ing the cloud, can alter the measured lifetime. By mea-
suring fluorescence following resonant excitation on the
5s1/2 � 5p3/2 transition, we place a limit of < 0.5 µs,
shorter than the measured lifetimes, on the characteris-
tic time for radiation trapping, and thus expect little or
no alteration of the measured lifetime due to this e↵ect.
In all cases studied, including resonant excitation at

di↵erent two-photon Rabi frequencies and detuned exci-
tation at di↵erent detunings, the extracted lifetime is 8 %
to 20 % longer than ⌧0, consistent with the natural life-
time and suggesting no shortening of the lifetime due to
superradiance or other purely homogeneous e↵ects. In
addition, the amount of fluorescence is consistent with
the optical pumping signal under all di↵erent conditions.
This further suggests that superradiance is not a signifi-
cant e↵ect as it would lead to a Rydberg density depen-
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dence of the fractional decay via the 5p3/2 state compared
to other intermediate states.

DIPOLE VS VAN DER WAALS SCALING

In order to calculate �3, we have only included the 17p
and 18p states and have excluded interactions that do not
conserve total magnetic quantum number. The former
should add ⇡ 1 % to the total interaction and the latter
are not resonant due to Zeeman splitting caused by a
non-zero magnetic field. However somem non-conserving
interactions have an energy mismatch that is less than
the largest observed linewidth and may play a role.

If the broadening were due to van der Waals interac-
tions between 18s atoms, one expects scaling � = C6⇢

2
18s.

We define an interaction volume �6 =
p
C6/�0, in which

case we assume � = �2
6⇢

2
gR

2
0/�0. Combined with the ob-

served relation R0 = ⌦2/�, we express � and R0 in terms
of the independently controlled variables ⇢g and ⌦:

� =
�
⌦4/�0

�1/3
(⇢g�6)

2/3

R0 =
�
⌦2�0

�1/3
(⇢g�6)

�2/3
.

(S1)

Figure S1 shows � and R0 in terms of these expressions.
There is a large mismatch in values between the data
and the van der Waals scaling. In addition the data is
not linear in the expressions and the rate R0 does not
collapse to a single function for all ⌦ and ⇢g.

DIPOLE BROADENING IN VARIOUS REGIMES

We consider how broadening due to dipole interaction
with spontaneously created atoms in nearby Rydberg
states a↵ects a variety of possible operating regimes. For
systems with small atom number, the time until the first
atom is created in a nearby Rydberg state can be long
compared to the lifetime if bN0 ⌧ 4�2/⌦2. However,
since the dressed Rydberg interaction is of order ⌦4/�3

it may be di�cult to access interesting many-body e↵ects
in this regime.

Additionally, this e↵ect remains at higher principal
quantum number: �3 / n⇤7 where n⇤ = n� �qd is the ef-
fective principal quantum number and �qd is the quantum
defect [41]. The contaminant density at which the dipole
interaction overtakes the dressed interaction (⌦2/�C3)
scales as n⇤�4. Assuming reasonable limits on attainable
Rabi frequency (⌦/2⇡ < 100 MHz) and dressed interac-
tion strength (⌦4/�3 < 2⇡⇥10 kHz), this corresponds to
a single spontaneous Rydberg atom in a typical 10-µm
diameter ultracold atom system for n > 40. Systems at
higher principal quantum number may allow some ad-
ditional time in an absolute sense due to their longer
lifetimes (which scale as < n⇤3), but are still subject to
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FIG. S1. (a) Measured � and (b) R0 for di↵erent ⌦ and ⇢g
vs expected scaling for van der Waals dominated interaction.

Linear scalings with unit slope are indicated with solid lines.

this e↵ect and cannot access the expected single-atom
scattering rates.
Since the van der Waals interaction is derived from the

dipole interaction with nearby states, any configuration
with large van der Waals interaction must have dipole
interactions at least as large. Even in the case of opera-
tion at a Förster resonance to maximize the interaction
[11, 14], the uncontrolled, spontaneously created popula-
tion in nearby Rydberg states causes interactions larger
than any dressed interaction and must be considered in
determining the timescales available for coherent opera-
tions.

INHOMOGENEOUS GUTZWILLER
MEAN-FIELD THEORY

Treating each atom as a three level system with states
g, p, and s, corresponding to ground, 18s, and np states
respectively, we model the system with the following
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Hamiltonian:

H = ��
X
i

�ss
i +⌦

X
i

(�sg
i +�gs

i )+
X
ij

Vij�
sp
i �ps

j +h.c.,

(S2)
where Vij =

C3

r3ij
(1� 3 cos2 ✓) is the dipole-dipole interac-

tion with ✓ the angle between the z-axis and the relative
position rij . The system evolves according to the master
equation

⇢̇ = �i[H, ⇢] + Ls + Lp + LR, (S3a)

Ls = �s

X
i

✓
�gs
i ⇢�sg

i � 1

2
{�ss

i , ⇢}
◆
, (S3b)

Lp = �p

X
i

✓
�gp
i ⇢�pg

i � 1

2
{�pp

i , ⇢}
◆
, (S3c)

LR = �R

X
i

✓
�ps
i ⇢�sp

i � 1

2
{�ss

i , ⇢}
◆
, (S3d)

where Ls, Lp, and LR are Lindblad terms correspond-
ing to decay from s to g, from p to g, and from s to p
respectively.

Using an inhomogeneous Gutzwiller mean-field ap-
proximation, we assume the density matrix has the form

⇢ =
O
i

⇢i, (S4)

which assumes there are no correlations between di↵erent
atoms. The method is inhomogeneous in the sense that
each atom has its own density matrix, whereas in homo-
geneous Gutzwiller mean-field theory all atoms have the
same density matrix. This results in an e↵ective local
Hamiltonian

Heff
i = ���ss

i +
⌦

2
(�sg

i + �gs
i ) +

X
j

Vij�
sp
i h�ps

j i+ h.c.

(S5)

In this picture, the interactions behave as an e↵ective
driving term between the s and p states whose strength
and phase are determined by the h�psi coherences of the
surrounding atoms.
We determine the steady state of these equations nu-

merically by initializing a cubic lattice of randomized
density matrices for each site and evolving the system
according to the master equation and e↵ective Hamilto-
nian. This was done for a variety of ⌦ and � based on the
experimental measurements. The interaction strengths
were reduced due to computational constraints, but the
nearest neighbor interaction strength remained at least
two orders of magnitude above ⌦ and all decay rates,
compared to four in the experiment.
In all cases, we find that the h�psi coherences all decay

to zero in steady state, in which case the system behaves
as if there are no interactions. This is a consequence
of the flip-flop interactions and would not occur if the
interactions were of the formX

ij

Vij�
ss
i �pp

j . (S6)

Collective decay between the s and p states does result
in nonzero h�psi coherences in steady state, but the e↵ect
of interactions in this case is small and the experimental
results indicate that collective decay is not the source of
the observed broadening.
Future work to solve this model using techniques be-

yond Gutzwiller mean-field will hopefully provide a more
full understanding of the observed broadening and inform
a more detailed study of the early time dynamics of the
system.
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