Topological phases with long-range interactions

Z.-X. Gong, ${ }^{1,2,{ }^{*}}$ M. F. Maghrebi, ${ }^{1,2}$ A. Hu, ${ }^{1,3}$ M. L. Wall, ${ }^{4}$ M. Foss-Feig, ${ }^{1,2}$ and A. V. Gorshkov ${ }^{1,2}$
${ }^{1}$ Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
${ }^{2}$ Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
${ }^{3}$ Department of Physics, American University, Washington, DC 20016, USA
${ }^{4}$ JILA, NIST/University of Colorado, Boulder, Colorado 80309, USA

(Received 12 May 2015; revised manuscript received 16 December 2015; published 8 January 2016)

Abstract

Topological phases of matter are primarily studied in systems with short-range interactions. In nature, however, nonrelativistic quantum systems often exhibit long-range interactions. Under what conditions topological phases survive such interactions, and how they are modified when they do, is largely unknown. By studying the symmetry-protected topological phase of an antiferromagnetic spin-1 chain with $1 / r^{\alpha}$ interactions, we show that two very different outcomes are possible, depending on whether or not the interactions are frustrated. While unfrustrated long-range interactions can destroy the topological phase for $\alpha \lesssim 3$, the topological phase survives frustrated interactions for all $\alpha>0$. Our conclusions are based on strikingly consistent results from large-scale matrix-product-state simulations and effective-field-theory calculations, and we expect them to hold for more general interacting spin systems. The models we study can be naturally realized in trapped-ion quantum simulators, opening the prospect for experimental investigation of the issues confronted here.

DOI: 10.1103/PhysRevB. 93.041102

Since the discovery of topological insulators [1-3], there has been tremendous interest in exploring various topological phases of matter, both theoretically [4,5] and experimentally [6-8]. Topological phases are generally associated with-and derive much of their presumed utility from-stability against local perturbations. But precisely what constitutes "local" in this context is a subtle issue; power-law decaying $\left(1 / r^{\alpha}\right)$ interactions, which are present in many experimental systems, do not necessarily qualify [9-11]. Recent theoretical advances have begun to elucidate the conditions under which long-range interacting systems maintain some degree of locality [12,13], potentially providing some insight into effects of long-range interactions on topological phases of matter. And recently, explicit theoretical evidence of topological order has been found in a variety of long-range interacting systems, including dipolar spins [14] or bosons [15], fermions with long-range pairing [16] and hopping [17,18], and electrons with Coulomb interactions [19]. These results notwithstanding, a complete understanding of how topological phases respond to the addition of long-range interactions is still lacking.

The stability of topological phases to small local perturbations is intimately connected to the existence of a bulk excitation gap [20,21], and the introduction of longrange interactions to a short-range Hamiltonian supporting a topological phase poses several potential challenges to this connection. First, even if the gap remains finite, long-range interactions can change the ground-state correlation decay from exponential to power law [16,18,22,23]. Thus topological phases with local interactions are, at the very least, subject to qualitative changes in their long-distance correlations. Second, the gap can in principle close in the presence of long-range interactions, even when they decay fast enough that the total interaction energy remains extensive [20,24]. Third, long-range interactions have the ability to change the effective dimensionality of the system [25,26], and thus might

[^0]change the topological properties even if the gap does not close $[16,18]$. We emphasize that the understanding of these issues is not of strictly theoretical interest. Many of the promising experimental systems for exploring or exploiting topological phases of matter, e.g., dipolar molecules [27-29], magnetic [30] or Rydberg atoms [31], trapped ions [32-37], and atoms coupled to multimode cavities [38], are accurately described as quantum lattice models with power-law decaying interactions. The unique controllability and measurement precision afforded by these systems hold great promise to improve our understanding of topological phases [39-42], but first we must reliably determine when-despite their long-range interactions-they can be expected to harbor the topological phases that have been theoretically explored for short-range interacting systems.

To address these general questions, in this Rapid Communication we study a spin-1 chain with antiferromagnetic Heisenberg interactions, which is a paradigmatic model exhibiting a symmetry-protected topological (SPT) phase [43,44]. Specifically, we consider two extensions of the short-range version of this model by including long-range interactions that decay either as $\mathcal{J}_{\alpha}(r)=1 / r^{\alpha}$ or as $\mathcal{J}_{\alpha}^{\prime}(r)=(-1)^{r-1} / r^{\alpha}$, which could be simulated in trapped-ion based experiments for $0<\alpha<3$ [45,46]. Based on a combination of large-scale variational matrix-product-state (MPS) simulations and fieldtheory calculations, we establish and explain a number of important and potentially general consequences of long-range interactions. The $\mathcal{J}_{\alpha}^{\prime}(r)$ interactions are unfrustrated, being antiferromagnetic (ferromagnetic) between spins on the opposite (same) sublattice. In this case, numerics and field-theoretic arguments suggest the destruction of the topological phase for $\alpha \lesssim 3$, accompanied by a closing of the bulk excitation gap and spontaneous breaking of a continuous symmetry in one dimension (1D), consistent with other recent findings on the relevance of long-range interactions for $\alpha<D+2$ in D dimensional quantum systems [47,48]. The $\mathcal{J}_{\alpha}(r)$ interactions are frustrated, and, remarkably, do not close the bulk excitation gap for any $\alpha>0$. In addition, two key properties of the

FIG. 1. (a) Low-lying energy levels of the Haldane chain for even L. The entanglement structure of ground states is shown at the bottom. The ground states in the total $S^{z}=0,1,2$ subspace are named $|0\rangle,|1\rangle,|2\rangle$ and have energies E_{0}, E_{1}, E_{2}. (b), (c) The m th largest value $\lambda_{m}(m=1,2, \ldots, 8)$ of the ground-state entanglement spectrum for H_{α} (b) and H_{α}^{\prime} (c) using finite-size MPS calculations with $L=200$. We choose the $|1\rangle$ state to avoid extra entanglement between edge spins. For H_{α}^{\prime}, the entanglement spectrum for $1.5 \leqslant \alpha \leqslant 4$ will exhibit a smooth crossover between the $\alpha=1.5$ and $\alpha=4$ cases due to the finite system size, but we expect a sharp transition at some $\alpha_{c} \lesssim 3$ in the thermodynamic limit. The exact pair degeneracies in $\left\{\lambda_{m}\right\}$ are a result of the spatial-inversion symmetry protecting the topological phase [44,49].

SPT phase, a doubly degenerate entanglement spectrum [49] and a nonvanishing string-ordered correlation [50], are both preserved. However, because of the long-range interactions, spin-spin correlations and the edge-excitation amplitudes only decay exponentially within some intermediate distance scale, after which they decay algebraically. We expect these qualitative changes to be quite general, occurring in other long-range interacting systems in which the topological phase survives.

Model. We consider a spin-1 chain with either frustrated or unfrustrated long-range Heisenberg interactions:

$$
\begin{equation*}
H_{\alpha}=\sum_{j, r>0} \mathcal{J}_{\alpha}(r) \boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+r}, H_{\alpha}^{\prime}=\sum_{j, r>0} \mathcal{J}_{\alpha}^{\prime}(r) \boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+r} \tag{1}
\end{equation*}
$$

With only nearest-neighbor interactions $(\alpha \rightarrow \infty), H_{\infty}=$ H_{∞}^{\prime} is usually called the Haldane chain, which has been extensively studied theoretically [51-53], numerically [54-58], and experimentally [59,60]. The low-lying states of the Haldane chain are shown in Fig. 1(a) for an open boundary chain with even size L. The unique ground state has total $\operatorname{spin} S=0$. The first set of excited states has $S=1(\hbar=1)$, contains spin excitations only near the edge of the chain, and is separated from the ground state by an energy gap (edge gap) that is exponentially small in L and topologically protected. Consequently, these excited states belong to a degenerate ground-state subspace in the thermodynamic $(L \rightarrow \infty)$ limit. The second set of excited states all have $S=2$, contain spin excitations in the bulk of the chain, and have an energy gap
(bulk gap) that converges to a finite value when $L \rightarrow \infty$. The entanglement structure of the four ground states is close to that of the Affleck-Kennedy-Lieb-Tasaki (AKLT) states [61] shown at the bottom of Fig. 1(a), where each spin-1 is decomposed into two spin- $1 / 2$'s, pairs of spin- $1 / 2$'s on neighboring sites form singlets, and the system is finally projected back onto the spin-1's. The four quasidegenerate ground states correspond to the four states formed by the two unpaired spin- $1 / 2$'s at the edge.

We use variational MPS calculations [62-65] to determine the ground-state entanglement structure of H_{α} and H_{α}^{\prime} in Figs. 1(b) and 1(c). For $\alpha>0(\alpha>3)$, the ground-state entanglement spectrum of $H_{\alpha}\left(H_{\alpha}^{\prime}\right)$, defined as the eigenvalues of the left/right half chain's reduced density matrix, is dominated by the two largest degenerate eigenvalues $\lambda_{1}=\lambda_{2} \approx 0.5$. This can be understood heuristically as the result of cutting a spin- $1 / 2$ singlet in the AKLT state, and suggests the survival of the topological Haldane phase. For H_{α}^{\prime} with $\alpha \lesssim 3$, the entanglement spectrum has an entirely different structure, and we will study the related ground-state properties below.

Effective field theory. The low-energy physics of the Haldane chain can be understood via field-theoretic analysis due to Haldane [52] and Affleck [66]; here, we build on their work to provide a field-theoretic treatment of the long-range interacting model. We begin by decomposing the spin operators into staggered and uniform fields, $n\left(2 i+\frac{1}{2}\right)=\left(\boldsymbol{S}_{2 i}-\boldsymbol{S}_{2 i+1}\right) / 2$ and $\boldsymbol{l}\left(2 i+\frac{1}{2}\right)=\left(\boldsymbol{S}_{2 i}+\boldsymbol{S}_{2 i+1}\right) / 2$. The intuition behind this decomposition is that the classical ground state of both H_{α} and H_{α}^{\prime} is Néel ordered for any $\alpha>0$, with $\boldsymbol{n}^{2}(x)=1$ and $\boldsymbol{l}(x)=0$. We therefore expect that in the quantum ground state $\boldsymbol{n}^{2}(x) \approx 1$, while $\boldsymbol{l}(x) \approx 0$ represents small quantum fluctuations in the direction of $\boldsymbol{n}(x)$. Importantly, we expect that only long-wavelength fluctuations of $\boldsymbol{n}(x)$ and $\boldsymbol{l}(x)$ will be important at low energy. In momentum space, we can write $H_{\alpha} \approx \int d q\left[\omega(q)|\boldsymbol{n}(q)|^{2}+\Omega(q)|\boldsymbol{l}(q)|^{2}\right]$ and $H_{\alpha}^{\prime} \approx$ $\int d q\left[\Omega(q)|\boldsymbol{n}(q)|^{2}+\omega(q)|\boldsymbol{l}(q)|^{2}\right][67]$, with

$$
\begin{equation*}
\omega(q)=2 \sum_{r=1}^{\infty} \mathcal{J}_{\alpha}^{\prime}(r) \cos q r, \quad \Omega(q)=2 \sum_{r=1}^{\infty} \mathcal{J}_{\alpha}(r) \cos q r \tag{2}
\end{equation*}
$$

For any $\alpha>0, \omega(q)$ is analytic at small q and can be expanded as $\omega_{0}+\omega_{2} q^{2}+O\left(q^{4}\right)$, whereas $\Omega(q)$ is nonanalytic at small q with an expansion $\Omega_{0}+\Omega_{2} q^{2}+\lambda|q|^{\alpha-1}+O\left(q^{4}\right)$. The coefficients $\omega_{0,2}, \Omega_{0,2}$, and λ depend on α, but their exact values are not important for the following analysis. Physically, the analyticity (nonanalyticity) of the spectrum arises because the long-range interactions interfere destructively (constructively) for the staggered field. Keeping only the lowest nontrivial order in q for the dispersion of both $\boldsymbol{n}(q)$ and $\boldsymbol{l}(q)$ turns out to be sufficient for obtaining qualitatively correct behavior of the excitation gap. Therefore, we keep only the 0 th-order term in the dispersion of $\boldsymbol{l}(q)$, and the next-leading term in the dispersion of $\boldsymbol{n}(q)$ [for $\boldsymbol{n}(q)$, the 0th-order term only adds a constant to the Hamiltonian due to the constraint $\left.\boldsymbol{n}^{2}(x)=1\right]$. Thus for $\alpha>0(\alpha>3)$ the Hamiltonian H_{α} $\left(H_{\alpha}^{\prime}\right)$ is approximately given by (ignoring the order-unity coefficients) $H_{\alpha} \sim H_{\alpha}^{\prime} \sim \int d q\left[q^{2}|\boldsymbol{n}(q)|^{2}+|\boldsymbol{l}(q)|^{2}\right]$. When the zero-temperature partition function is expressed as a coherent-spin-state path integral, the action is quadratic in the field \boldsymbol{l} and it can be integrated out $[68,69]$. The remaining path
integral over the staggered field \boldsymbol{n} is a $(1+1) \mathrm{D} O(3)$ nonlinear sigma model, with Lagrangian density [nonlinear constraint $n^{2}(x)=1$ implied]

$$
\begin{equation*}
\mathcal{L}(x) \approx \frac{1}{g}\left(|\partial \boldsymbol{n} / \partial t|^{2}-v_{s}^{2}|\partial \boldsymbol{n} / \partial x|^{2}\right) \tag{3}
\end{equation*}
$$

Here, g is an effective (α - and short-distance-cutoffdependent) coupling strength, and the spin-wave velocity v_{s} is also α dependent. This model is gapped and disordered [51].

To investigate the ground-state properties of Eq. (3), we can remove the constraint $\boldsymbol{n}^{2}(x)=1$, while phenomenologically introducing a mass gap Δ_{α} and a renormalized spin-wave velocity v_{α} (the parameters Δ_{α}^{\prime} and v_{α}^{\prime} will be used to describe the Lagrangian for H_{α}^{\prime}) [57,58]. Transforming to momentum space, we thereby arrive at a free-field Lagrangian density

$$
\begin{equation*}
\mathcal{L}(q) \propto|\partial \boldsymbol{n} / \partial t|^{2}-\left(\Delta_{\alpha}^{2}+v_{\alpha}^{2} q^{2}\right)|\boldsymbol{n}(q)|^{2} \tag{4}
\end{equation*}
$$

This Lagrangian leads to ground-state correlations $\mathcal{C}_{i j}=$ $\left\langle S_{i}^{z} S_{j}^{z}\right\rangle_{0}$ [where $\langle\cdots\rangle_{m}$ denotes the expectation value in the state $|m\rangle$ defined in Fig. 1(a)] that decays as

$$
\begin{equation*}
\mathcal{C}_{i j} \propto(-1)^{r} \int \frac{e^{i q r} d q}{\sqrt{\Delta_{\alpha}^{2}+v_{\alpha}^{2} q^{2}}} \propto(-1)^{r} K_{0}\left(r / \xi_{\alpha}\right) \tag{5}
\end{equation*}
$$

Here, $\xi_{\alpha} \equiv v_{\alpha} / \Delta_{\alpha} \quad\left(\right.$ or $\xi_{\alpha}^{\prime} \equiv v_{\alpha}^{\prime} / \Delta_{\alpha}^{\prime}$ for H_{α}^{\prime}) defines the correlation length, and $K_{0}(x)$ is a modified Bessel function, which behaves as $K_{0}(x) \sim \exp (-x) / \sqrt{x}$ for large x.

For $\alpha<3$, the nonanalytic $|q|^{\alpha-1}$ term in H_{α}^{\prime} dominates the dispersion of $\boldsymbol{n}(q)$ at small q, and Eqs. (3) and (4) are not valid. To analyze this case, we write down the renormalization group (RG) flow equation for the coupling strength g under the scaling transformation $x \rightarrow x e^{-l}$ to one-loop order [68,70],

$$
\begin{equation*}
\frac{d g}{d l}=\frac{\alpha-3}{2} g+\frac{g^{2}}{4 \pi} \tag{6}
\end{equation*}
$$

For $\alpha<3$, an unstable fixed point appears at $g^{*}=2 \pi(3-\alpha)$, and for a bare coupling $g<g^{*}$ the RG flow is towards a weakcoupling ordered state at $g=0$ [68]. The bare coupling, and therefore the value of α at which this phase transition occurs, is difficult to determine a priori. But we nevertheless expect (and confirm numerically) that for $\alpha<\alpha_{c}$, with $2<\alpha_{c}<3$, the gap will close as the system spontaneously breaks the continuous $\mathrm{SU}(2)$ symmetry of $H_{\alpha}^{\prime}[48,71]$.

Comparison with numerics. Using finite-size MPS calculations, we have obtained the bulk excitation gap $E_{2}-E_{1}$ and the correlation length [fitted using Eq. (5)] for both H_{α} and H_{α}^{\prime}. As shown in Figs. 2(a) and 2(b), we see consistent results with the field-theory predictions. For H_{α}, the gap remains open for all $\alpha>0$, and the correlation length decreases together with α due to both an increase of the bulk gap, and a decrease of the spin-wave velocity (as a result of a weakened Néel order for longer-range interactions). To the contrary, for H_{α}^{\prime}, the gap decreases quickly as the interactions become longer ranged, and the correlation length diverges when α decreases to around 3, suggesting the disappearance of the topological phase at $\alpha \lesssim 3$ [72]. Calculation of the stringordered correlation $\mathcal{S}_{i j} \equiv\left\langle S_{i}^{z} S_{j}^{z} \prod_{i<k<j}(-1)^{S_{k}^{Z}}\right\rangle_{0}$ of both H_{α} and H_{α}^{\prime} at $\alpha=1.5$ [Fig. 2(c)] provides further evidence that the topological phase survives for H_{α}, but not for H_{α}^{\prime}, for $0<\alpha \lesssim 3$.

FIG. 2. (a) Bulk gap Δ_{α} and ground-state correlation length ξ_{α} in the $L \rightarrow \infty$ limit, obtained by finite-size scaling for $200 \leqslant L \leqslant 500$. (b) Bulk gap Δ_{α}^{\prime} and ξ_{α}^{\prime} with $L=100$ and $L=300$. (c) Ground-state string-ordered correlation function $\mathcal{S}_{i j}$ for H_{α} and H_{α}^{\prime} with $\alpha=1.5$ and $L=300$. For various α and $200 \leqslant L \leqslant 500$, we consistently find that $\mathcal{S}_{i j}$ quickly saturates to a finite value for H_{α} at all $\alpha>0$, but vanishes at large distance for H_{α}^{\prime} at $\alpha \lesssim 3$. (d) Ground-state spin-spin correlation $\mathcal{C}_{i j}$ for $\alpha=0.5$ and $L=500$. This choice of $\alpha=0.5$ is arbitrary, but assists in a clear presentation of the coexisting exponential and $1 / r^{\alpha+4}$ power-law decays.

We now analyze the effects of terms beyond leading order in q that have been ignored in our field-theory treatment. Including the higher-order analytic terms, such as the $O\left(q^{4}\right)$ term, will result in negligible corrections to the correlation functions that decay in distance faster than Eq. (5) [57]. However, even for $\alpha>3$, inclusion of the nonanalytic $O\left(|q|^{\alpha-1}\right)$ term will add a power-law tail to the correlation functions, which will dominate over Eq. (5) at long distance. In the Supplemental Material, we show by a more involved fieldtheory calculation that, for $H_{\alpha}, \mathcal{C}_{i j}$ decays as $1 / r^{\alpha+4}$ at large r. Our MPS calculations using $L=500$ spins [Fig. 2(d)] show remarkable agreement with the field-theory predictions, even capturing the oscillations in $\left|\mathcal{C}_{i j}\right|$ occurring at intermediate distance where the short-range and long-range contributions to the correlation functions are of comparable magnitude and interfere. A power-law tail in $\mathcal{C}_{i j}$ should also exist for H_{α}^{\prime}, but the increased correlation length prevents us from observing its existence clearly for $\alpha>3$.

Edge-excited states. We expect the influence of long-range interactions on the edge- and bulk-excited states to be strong at small α; because the topological phase of H_{α}^{\prime} does not survive for $\alpha \lesssim 3$, we will focus on H_{α} from now on. Edges can be introduced into the field theory by replacing the two end spin-1's with spin-1/2's, represented by $\boldsymbol{\tau}_{L}\left(\boldsymbol{\tau}_{R}\right)$ for the left (right) edge, resulting in an edge-bulk coupling Hamiltonian $H_{c}=\sum_{i=2}^{L-1} \boldsymbol{S}_{i} \cdot\left[\boldsymbol{\tau}_{L} /(i-1)^{\alpha}+\boldsymbol{\tau}_{R} /(L-i)^{\alpha}\right]$ [57]. For the edge-excited state |1〉 [Fig. 1(a)], $\boldsymbol{\tau}_{L, R}$ are polarized in the $+z$ direction, and we expect $\left\langle S_{i}^{z}\right\rangle$ to decay away from the ends. Solving the free theory defined by Eq. (4) and treating H_{c} using standard first-order perturbation theory [57], we find that $\left\langle n^{z}(x)\right\rangle_{1} \propto$ $\int d q \quad\{\exp [i q(L-x)]-\exp [i q(x-1)]\} /\left(\Delta_{\alpha}^{2}+v_{\alpha}^{2} q^{2}\right) \propto$

FIG. 3. (a) Distribution of an edge excitation in state $|1\rangle$ for $L=500$ and $\alpha=2$. (b) Edge gap $\left|E_{1}-E_{0}\right|$ as a function of the chain size L for $\alpha=3$. (c) Lowest-energy magnon probability density distribution for $L=200$ and $\alpha=3.0,0.5$. (d) The finite-size correction to the lowest magnon excitation energy [see Eq. (7)]. For $\alpha=3$, we obtain $v_{\alpha}=2.18$ and $v_{\alpha} / \Delta_{\alpha} \approx 4.51$, in good agreement with the $\xi_{\alpha} \approx 4.55$ obtained in Fig. 2.
$\exp \left[-(L-x) / \xi_{\alpha}\right]-\exp \left[-(x-1) / \xi_{\alpha}\right]$ for even L. In addition, $\left\langle l^{z}(x)\right\rangle_{1}$ contributes a power-law correction $1 /(x-1)^{\alpha+2}+1 /(L-x)^{\alpha+2}$ for x far away from both ends [73]. Our numerical calculation of $\left\langle S^{z}(x)\right\rangle_{1}$, shown in Fig. 3(a), agrees well with a sum of these two contributions, clearly exhibiting an exponential followed by $1 / r^{\alpha+2}$ decay.

The edge gap $\left|E_{1}-E_{0}\right|$ can be obtained by using a path integral to integrate out the \boldsymbol{n} field [57], resulting in an effective edge-edge Hamiltonian $\propto(-1)^{L} \exp \left(-L / \xi_{\alpha}\right) \boldsymbol{\tau}_{L} \cdot \boldsymbol{\tau}_{R}$. This scaling is confirmed, at relatively small L, by the numerical results in Fig. 3(b). However, the numerics also reveal that at large L the edge gap receives a long-range correction given by $1 / L^{\alpha}$. This remarkably simple result, including the unity prefactor, can be understood as follows. The edgeexcited states behave differently from the bulk-excited states due to correlations between the orientations of $\boldsymbol{\tau}_{1}$ and $\boldsymbol{\tau}_{2}$, and therefore $\left\langle\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right\rangle_{1}-\left\langle\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right\rangle_{0}$ is very small unless i and j are very close to 0 and L, respectively. Thus we have $E_{1}-E_{0} \approx L^{-\alpha} \sum_{i<j}\left(\left\langle\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right\rangle_{1}-\left\langle\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right\rangle_{0}\right)=1 / L^{\alpha}$, where the last equality is a sum rule following from the total spin of the ground $(S=0)$ and edge-excited $(S=1)$ states.

Bulk-excited states. As in the short-range Haldane chain, the elementary bulk excitations of H_{α} are spin-1 magnons [55-57]. Physically, the magnon represents fluctuations in the staggered magnetization, and, from Eq. (4), these fluctuations have a dispersion relation $\epsilon_{\alpha}(q)=\sqrt{\Delta_{\alpha}^{2}+\left(v_{\alpha} q\right)^{2}} \approx \Delta_{\alpha}+$ $q^{2} v_{\alpha}^{2} /\left(2 \Delta_{\alpha}\right)$ (valid at small q). The lowest-energy magnon wave function $\Psi_{0}(x)$ can be extracted from the numerics
using the relation $\left|\Psi_{0}(i)\right|^{2} \approx\left|\left\langle S_{i}^{z}\right\rangle_{2}-\left\langle S_{i}^{z}\right\rangle_{1}\right|$. The presence of long-range interactions gives the magnon an additional potential energy due to the edge-bulk coupling Hamiltonian H_{c}, and $\Psi(x)$ can be approximately described by the following Schrödinger equation (with Dirichlet boundary condition at $x=1, L$),
$\frac{v_{\alpha}^{2}}{2 \Delta_{\alpha}} \frac{\partial^{2} \Psi(x)}{\partial x^{2}}+\frac{1}{2}\left[\frac{1}{(x-1)^{\alpha}}+\frac{1}{(L-x)^{\alpha}}\right] \Psi(x)=\mathcal{E} \Psi(x)$.
The kinetic (potential) energy always scales as $1 / L^{2}\left(1 / L^{\alpha}\right)$; therefore, for $\alpha>2$ and large L, the potential energy can be ignored. The ground-state energy $\mathcal{E}_{0} \approx v_{\alpha}^{2} \pi^{2} /\left(2 \Delta_{\alpha} L^{2}\right)$ and probability density $\left|\Psi_{0}(x)\right|^{2} \approx(2 / L) \sin ^{2}(\pi x / L)$ are then identical to those of a particle in a box, as confirmed numerically in Figs. 3(c) and 3(d). The relation $E_{2}-E_{1} \approx$ $\Delta_{\alpha}+v_{\alpha}^{2} \pi^{2} /\left(2 \Delta_{\alpha} L^{2}\right)$ allows us to obtain both v_{α} and Δ_{α} through finite-size scaling [Fig. 2(b)], and we confirm that the correlation length determined by $\xi_{\alpha}=v_{\alpha} / \Delta_{\alpha}$ agrees with that obtained by fitting $\mathcal{C}_{i j}$ using Eq. (5). For $\alpha<2$, the potential energy dominates the kinetic energy for large L, and the potential can be approximated as harmonic around $x=L / 2$. Thus $\left|\Psi_{0}(x)\right|^{2}$ resembles a Gaussian [Fig. 3(c)], and a simple scaling analysis predicts a width $\gamma \propto L^{1-\alpha / 2}$. In the large- L limit, $\left|\Psi_{0}(x)\right|^{2}$ becomes sharply peaked at $x=L / 2$ and, from Eq. (7), we expect the bulk gap to scale as $\Delta_{\alpha}+(2 / L)^{\alpha}$, which is clearly observed in Fig. 3(d). Since $E_{2}-E_{1}=2$ when $\alpha=0$, it follows that $\Delta_{\alpha \rightarrow 0}=1$, consistent with Fig. 2(a).

Outlook. The stability of the topological Haldane phase to $1 / r^{\alpha}$ interactions for all $\alpha>0$ is favorable for trapped-ion based experiments, as stronger couplings can be achieved for smaller α [36,37]. Moreover, because the correlation length shrinks for longer-range interactions, a relatively small number of ions will suffice to suppress finite-size effects. Probing the topological phase by measuring both $\mathcal{C}_{i j}$ and $\mathcal{S}_{i j}$ with singlesite resolution is nearly impossible in typical condensed-matter systems, but is quite straightforward in ion traps [74]. Based on the generality of our field-theory analysis, we speculate that for generic lattice models, the tails in the power-law interactions can possibly destroy the topological phase only when long-range interactions are unfrustrated and $\alpha<D+2$. Experimentally, unfrustrated long-range interactions can be easily implemented by generating a $1 / r^{\alpha}$ ferromagnetic interaction [71]. We hope that our work can serve as a springboard for future studies on how distinct topological phases behave in the presence of long-range interactions.

Acknowledgments. We thank C. Monroe, G. Pupillo, A. Turner, J. Sau, M. Hafezi, J. Pixley, P. Richerme, C. Senko, P. Hess, B. Neyenhuis, A. Lee, J. Smith, A. M. Rey, S. Manmana, and K. Hazzard for helpful discussions. This work was supported by the AFOSR, NSF PIF, the ARO, NSF PFC at the JQI, the ARL, and the AFOSR MURI. M.F.-F. and M.L.W. thank the NRC for support.
[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] J. E. Moore, Nature (London) 464, 194 (2010).
[4] X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2007).
[5] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338, 1604 (2012).
[6] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 452, 970 (2008).
[7] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Nat. Photonics 7, 1001 (2013).
[8] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).
[9] J. Eisert, M. van den Worm, S. R. Manmana, and M. Kastner, Phys. Rev. Lett. 111, 260401 (2013).
[10] P. Hauke and L. Tagliacozzo, Phys. Rev. Lett. 111, 207202 (2013).
[11] D. Métivier, R. Bachelard, and M. Kastner, Phys. Rev. Lett. 112, 210601 (2014).
[12] Z.-X. Gong, M. Foss-Feig, S. Michalakis, and A. V. Gorshkov, Phys. Rev. Lett. 113, 030602 (2014).
[13] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov, Phys. Rev. Lett. 114, 157201 (2015).
[14] S. R. Manmana, E. M. Stoudenmire, K. R. A. Hazzard, A. M. Rey, and A. V. Gorshkov, Phys. Rev. B 87, 081106 (2013).
[15] M. Dalmonte, M. Di Dio, L. Barbiero, and F. Ortolani, Phys. Rev. B 83, 155110 (2011).
[16] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, Phys. Rev. Lett. 113, 156402 (2014).
[17] F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B 89, 180505 (2014).
[18] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J. Phys. 18, 015001 (2016).
[19] M. Hohenadler, F. Parisen Toldin, I. F. Herbut, and F. F. Assaad, Phys. Rev. B 90, 085146 (2014).
[20] S. Bravyi, M. B. Hastings, and S. Michalakis, J. Math. Phys. 51, 093512 (2010).
[21] Note that for symmetry-protected topological phases, we assume that perturbations (either local or long ranged) do not break the symmetries protecting the topological phases.
[22] M. B. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006).
[23] J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J. Daley, New J. Phys. 12, 103044 (2010).
[24] S. Michalakis and J. P. Zwolak, Commun. Math. Phys. 322, 277 (2013).
[25] M. E. Fisher, S.-k. Ma, and B. G. Nickel, Phys. Rev. Lett. 29, 917 (1972).
[26] P. Bruno, Phys. Rev. Lett. 87, 137203 (2001).
[27] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521 (2013).
[28] K. R. A. Hazzard, B. Gadway, M. Foss-Feig, B. Yan, S. A. Moses, J. P. Covey, N. Y. Yao, M. D. Lukin, J. Ye, D. S. Jin, and A. M. Rey, Phys. Rev. Lett. 113, 195302 (2014).
[29] D. Peter, S. Müller, S. Wessel, and H. P. Büchler, Phys. Rev. Lett. 109, 025303 (2012).
[30] A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H. Huckans, P. Pedri, L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013).
[31] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Nature (London) 491, 87 (2012).
[32] X.-L. Deng, D. Porras, and J. I. Cirac, Phys. Rev. A 72, 063407 (2005).
[33] P. Hauke, F. M. Cucchietti, A. Müller-Hermes, M.-C. Bañuls, J. Ignacio Cirac, and M. Lewenstein, New J. Phys. 12, 113037 (2010).
[34] T. Koffel, M. Lewenstein, and L. Tagliacozzo, Phys. Rev. Lett. 109, 267203 (2012).
[35] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature (London) 484, 489 (2012).
[36] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. FossFeig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Nature (London) 511, 198 (2014).
[37] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos, Nature (London) 511, 202 (2014).
[38] J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble, and D. E. Chang, Nat. Photonics 9, 326 (2015).
[39] N. Y. Yao, C. R. Laumann, A. V. Gorshkov, S. D. Bennett, E. Demler, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 109, 266804 (2012).
[40] N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M. Läuchli, J. Ye, and M. D. Lukin, Phys. Rev. Lett. 110, 185302 (2013).
[41] S.-L. Zhu, L.-B. Shao, Z. D. Wang, and L.-M. Duan, Phys. Rev. Lett. 106, 100404 (2011).
[42] S.-T. Wang, D.-L. Deng, and L.-M. Duan, Phys. Rev. Lett. 113, 033002 (2014).
[43] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87, 155114 (2013).
[44] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev. B 85, 075125 (2012).
[45] I. Cohen and A. Retzker, Phys. Rev. Lett. 112, 040503 (2014).
[46] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, and C. Monroe, Phys. Rev. X 5, 021026 (2015).
[47] M. F. Maghrebi, Z.-X. Gong, M. Foss-Feig, and A. V. Gorshkov, arXiv:1508.00906.
[48] M. F. Maghrebi, Z.-X. Gong, and A. V. Gorshkov, arXiv:1510.01325.
[49] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys. Rev. B 81, 064439 (2010).
[50] T. Kennedy and H. Tasaki, Commun. Math. Phys. 147, 431 (1992).
[51] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
[52] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[53] I. Affleck and E. H. Lieb, Lett. Math. Phys. 12, 57 (1986).
[54] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[55] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
[56] E. S. Sørensen and I. Affleck, Phys. Rev. Lett. 71, 1633 (1993).
[57] E. S. Sørensen and I. Affleck, Phys. Rev. B 49, 15771 (1994).
[58] E. S. Sorensen and I. Affleck, Phys. Rev. B 49, 13235 (1994).
[59] C. D. Batista, K. Hallberg, and A. A. Aligia, Phys. Rev. B 60, R12553 (1999).
[60] M. Yoshida, K. Shiraki, S. Okubo, H. Ohta, T. Ito, H. Takagi, M. Kaburagi, and Y. Ajiro, Phys. Rev. Lett. 95, 117202 (2005).
[61] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987).
[62] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[63] G. M. Crosswhite, A. C. Doherty, and G. Vidal, Phys. Rev. B 78, 035116 (2008).
[64] M. L. Wall and L. D. Carr, New J. Phys. 14, 125015 (2012).
[65] Our MPS code is largely based on the open source MPS project at http://sourceforge.net/projects/openmps/. The $1 / r^{\alpha}$ interaction is represented as a matrix-product operator by fitting the power law to a sum of exponentials [63]. The two independent convergence parameters are the residual tolerance $\left(10^{-12}\right)$ of the power-law fitting, and the energy variance tolerance $\left(10^{-8}\right)$ in finding the ground states. The bond dimension is optimally chosen by our code to meet the desired energy variance, and never exceeds 1000 in our calculations. We have performed additional calculations for smaller residual tolerance $\left(10^{-13}\right)$ and energy variance tolerance $\left(10^{-9}\right)$, and the results are indistinguishable within the resolution of all of our plots.
[66] I. Affleck, Nucl. Phys. B 257, 397 (1985).
[67] Since we are only concerned about the small- q components of both fields \boldsymbol{n} and \boldsymbol{l} at low energy, the cross terms between \boldsymbol{n} and \boldsymbol{l} in H_{α} and H_{α}^{\prime} can be ignored since they involve $\boldsymbol{n}(q)$ or $\boldsymbol{l}(q)$ near $q=\pi$.
[68] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd ed. (Cambridge University Press, Cambridge, UK, 2013).
[69] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, Cambridge, UK, 2011).
[70] A. Dutta and J. K. Bhattacharjee, Phys. Rev. B 64, 184106 (2001).
[71] Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe, and A. V. Gorshkov, arXiv:1510.02108.
[72] The divergent correlation length makes it difficult to accurately obtain the critical α from the system sizes accessed here, but the existence of a critical α_{c} between 2 and 3 is further supported by infinite-size MPS calculations performed in [71].
[73] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB. 93.041102 for more detailed discussion of the effective-field-theory calculations.
[74] I. Cohen, P. Richerme, Z.-X. Gong, C. Monroe, and A. Retzker, Phys. Rev. A 92, 012334 (2015).

[^0]: *gzx @umd.edu

