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We propose and analyze a technique that allows one to suppress inelastic collisions and simultaneously
enhance elastic interactions between cold polar molecules. The main idea is to cancel the leading dipole-
dipole interaction with a suitable combination of static electric and microwave fields in such a way that the
remaining van der Waals-type potential forms a three-dimensional repulsive shield. We analyze the elastic
and inelastic scattering cross sections relevant for evaporative cooling of polar molecules and discuss the
prospect for the creation of stable crystalline structures.
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It is well known that an attractive van der Waals inter-
action dominates the microscopic interaction potential be-
tween ground state atoms and molecules at short distances
[1]. As a consequence, ultracold atomic and molecular
gases are prone to the formation of deeply bound molecular
states via inelastic collisions. These inelastic collisions
limit the lifetime of strongly interacting ultracold gases
[1,2]. Controlling inelastic collisions is therefore crucial
for the creation of novel strongly correlated quantum de-
generate systems, such as polar molecules. In this Letter,
we demonstrate the possibility to engineer a three-
dimensional repulsive interaction between polar mole-
cules, which allows for the suppression of inelastic colli-
sions, while simultaneously enhancing elastic collisions.
This technique may open up a way towards efficient
evaporative cooling and the creation of novel long-lived
quantum degenerate phases of polar molecules.

A special property of polar molecules prepared in the
lowest rotational and vibrational state is a permanent elec-
tric dipole moment d, which gives rise to tunable dipole-
dipole interactions and offers a large potential for the
creation of strongly correlated quantum phases [3–6].
Two routes are currently explored for the experimental
realization of quantum degenerate polar molecules:
(i) trapping and cooling of preexisting molecules [7–12]
and (ii) synthesizing polar molecules from a cold mixture
of atomic gases [13–19]. While scattering properties of
polar molecules with dipole-dipole interactions are cur-
rently theoretically explored [20–22], it is expected that
inelastic collisions (including three-body recombination)
strongly increase for polar molecules compared to atomic
systems due to the opening of additional decay channels.

The main idea of our approach is to cancel the leading
dipole-dipole interaction with a suitable combination of a
static electric field and a continuous-wave microwave field:
the former induces a dipole moment dz, while the latter
drives an additional dipole moment d? rotating with fre-
quency ! of the microwave field; see Fig. 1(b). In analogy

with magic-angle techniques in NMR [23], the time-
averaged interaction of the rotating dipole moment shows
a negative sign allowing for a cancellation of the total
dipole-dipole interaction. The remaining interaction is tun-
able in strength with a repulsive van der Waals behavior
Veff � �d4=@��=r6, where � is the detuning of the micro-
wave field and r is the intermolecular separation. The
three-dimensional shield described here is thus purely
repulsive. This is in contrast to the ‘‘blue shield’’ discussed
in the context of atomic gases, which is attractive at large
distances [1]. We find that the efficiency of the shield is
determined by a single dimensionless parameter � �
d2m=@2rB with rB � �d

2=B�1=3, B the rotational energy,
andm the mass of the molecule. Under optimal conditions,
for large values of �, inelastic collisions can be quenched
for temperatures T & 0:01B.

To describe the shield quantitatively, we consider two
polar molecules prepared in the vibrational ground state.
At large intermolecular distances, dipole-dipole interac-
tions dominate [24], yielding the Hamiltonian

 H �
P2

4m
�

p2

m
�

d1d2 � 3�d1r̂��d2r̂�
r3 �

X2

i�1

H�i�rot; (1)

FIG. 1 (color online). (a) Energy levels of H�i�rot: the arrow
indicates the microwave field. (b) Sketch for the cancellation
of the dipole-dipole interaction: dz denotes the dipole moment
induced by the static electric field, while the dipole moment d?
is rotating in an orthogonal plane due to the microwave coupling.
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where we have introduced the center of mass R � �r1 �
r2�=2 and the relative coordinate r � r1 � r2, with the
corresponding momenta P and p, respectively, while
r � jrj and r̂ � r=r. Here, we are interested in polar
molecules in the 1� electronic ground state, and the
Hamiltonian for the internal structure takes the form [25]
H�i�rot � BJ2

i � di � Edc � di �Eac�t�, with the dipole opera-
tor di and the permanent dipole moment d. The first term
describes a rigid rotor accounting for rotational structure
with the rotational energy B, while the last two terms
describe the coupling to an external static electric field
Edc and microwave field Eac. While additional interactions
with the nuclear spins are in general small and can be
ignored, the analysis presented here remains valid for polar
molecules with an electronic spin in a strong magnetic field
with the Zeeman splitting larger than the energy scales of
the shield and the spin-rotation coupling; such a situation
naturally appears in magnetic traps.

We choose to apply a static electric field Edc � Edcez
along the z axis. For each molecule, a suitable basis set for
the internal states is given by the eigenstates of the rotor
Hamiltonian in the external static field. These states and
the corresponding energies depend on the dimensionless
parameter dEdc=B and are denoted by jj; mzii and Ej;mz

,
respectively, with mz the angular momentum along the z
axis and j denoting the different energy manifolds; see
Fig. 1(a). In addition, we apply a circularly (��) polarized
microwave field Eac�t� propagating along the z axis and
coupling dominantly the ground state j0; 0ii with the first
excited state j1; 1ii. The microwave field is characterized
by the detuning � � !� �E1;1 � E0;0�=@ and Rabi fre-
quency � � Eacdc=@ with the dipole coupling dc �
jh0; 0jdij1; 1ij. The leading effect of the microwave field
on the internal structure of each molecule is to mix the
ground state j0; 0i with the excited state j1; 1i. We are
interested in the regime with �;�� B=@ and dEdc <
2B, where the rotating wave approximation is valid. In
the rotating frame, these dressed states then take the
form j�i��j0;0i��j1;1i and j�i � �j0; 0i � �j1; 1i
with the energy splitting �E � @

����������������������
�2 � 4�2
p

and � �
�A=

�������������������
A2 ��2
p

, � � �=
�������������������
A2 ��2
p

, and A � �������������������������
�2 � 4�2
p

�=2. Throughout this Letter, we are interested
in a shield with a high barrier, which is optimized for
parameters close to dEdc=B � 1, @� � 0:015B, and
�=� � 0:9258 [26] (see below).

We next turn to the dipolar interaction and derive the
dressed Born-Oppenheimer potentials. Each polar mole-
cule is prepared in the internal state j�ii by an adiabatic
switching on of the microwave field. Consequently, the
effective interaction potential Veff�r� is determined by the
dressed Born-Oppenheimer potential adiabatically con-
nected to the state j�i1j�i2; see Fig. 2. The competition
between the rotational splitting B and the dipole-dipole
interaction provides a characteristic length scale rB �
�d2=B�1=3. For large interparticle distances r	 rB, the
dipole-dipole interaction is weak and does not couple

different rotor levels. Consequently, the only relevant cou-
pling appears due to the microwave field between the
manifolds with j � 0 and j � 1. The relevant internal
states are then given by the three states jgii � j0; 0ii,
jeii � j1; 1ii, and j �eii � j1;�1ii. As the microwave field
couples each polar molecule with the same phase, the
Born-Oppenheimer potentials separate into 6 symmetric
and 3 antisymmetric dressed potentials. The effective po-
tential adiabatically connected to the state j�i1j�i2 is
symmetric, and therefore, we can restrict the analysis to
the symmetric potentials: a basis is given by the symmetric
states jg; gi, je; gi, je; ei, jg; �ei, je; �ei, and j �e; �ei. Within the
rotating frame, the Hamiltonian projected onto this sub-
space reduces to

 H �

d2
g�

���
2
p

@� 0 0 0 0���
2
p

@� Heg

���
2
p

@� d2
c�

=2 0 0

0
���
2
p

@� Hee 0 0 0
0 d2

c�=2 0 Heg @� 0
0 0 0 @� Hee 0
0 0 0 0 0 Hee

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(2)

with the dipole moments dg � jhgjdijgij, de � jhejdijeij,
and Heg � �dedg � d

2
c=2��� @� and Hee � d2

e�� 2@�.
The terms � � �1� 3cos2��=r3 and � � 3sin2�e2i�=r3

describe the spatial dependence of the dipole-dipole inter-
action, with � and � being the polar and azimuthal angles
of r, respectively. The Born-Oppenheimer potentials then
follow from a diagonalization of the Hamiltonian H and
are shown in Fig. 2, with the level adiabatically connected
to the state j�i1j�i2 (solid line) giving rise to the effective
interaction Veff�r�.

The detuning � introduces a new length scale in the
problem r� � �d2=@��1=3 	 rB, e.g., for LiCs with
B=@ � 5:8 GHz and rB � 9:2 nm, we find r� � 37:5 nm
at @� � 0:015B. At large interparticle distances r > r�,
the Born-Oppenheimer potentials are well described by
perturbation theory in the dipole-dipole interaction. The
static electric field gives rise to a dipole moment dz �
�2dg � �2de along the z axis, while the microwave field

FIG. 2 (color online). Born-Oppenheimer potentials in the
limit r	 rB: (a) � � 0 and (b) � � 	=2. The effective potential
Veff�r� (solid line) is repulsive for all angles �. The dotted line
denotes the antisymmetric level relevant during a three-body
collision.
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drives an additional dipole moment d? �
���
2
p
��dc rotat-

ing with frequency ! in the x-y plane. The combination of
the two dipole forces provides the interaction Veff�r� �
�d2
z � d2

?=2��1� 3cos2��=r3. A proper choice of the two
parameters Edcd=B and �=� gives dz � d?=

���
2
p

, provid-
ing a cancellation of the leading dipole-dipole interaction
[6]. The remaining interaction then follows from second-
order perturbation theory and provides a van der Waals-
type repulsion

 Veff�r� �
1

r6
�C�0�6 �1� 3cos2��2 � C�2�6 9sin4�
; (3)

with

 

@C�0�6 �
�2�2����������������������

�2 � 4�2
p

�
1

2
�2�2��de � dg�2 � d2

c

2

� 2
�
��2dg � �

2de��de � dg� �
d2
c

2
��2 � �2�

�
2
�
;

@C�2�6 �
�4�2d4

c

��
����������������������
�2 � 4�2
p �

�2�4d4
c

�� 3
����������������������
�2 � 4�2
p : (4)

For the optimal values dEdc=B � 1 and �=� � 0:9258,
the van der Waals coefficients take the form C�0�6 �

0:004@�r6
� and C�2�6 � 0:005@�r6

�. At shorter distances
rB � r < r�, the effective interaction reduces to Veff�r� �
�d2
c � dgde�1� 3cos2�
�=r3 and remains repulsive for all

angles �. Thus it is possible to create purely repulsive
interaction with large and adjustable strength.

In order to determine the height of the potential barrier, a
detailed analysis including all internal levels is required.
Such a procedure is achieved by first deriving Born-
Oppenheimer potentials accounting for the coupling of
the internal states jj; mii by the dipole-dipole interaction.
In the second step, the microwave field, which couples
these Born-Oppenheimer potentials, is included within a
rotating wave approximation. The new dressed levels in the
rotating frame are shown in Fig. 3(a). It follows that the
height of the shield (solid line) is limited by small avoided
crossings. The first crossing (labeled A) appears with the
level adiabatically connected to the symmetric state
j1; 0; 0; 0i for a relative orientation of the molecules along
the z axis with � � 0, and it limits the barrier height of the
shield to Eshield � 0:02B for the optimal parameters. The
radius Rc for the breakdown of the shield is in the range
Rc � rB, which is still large compared to the distances
where additional short-range interactions have to be taken
into account.

Next, we analyze the validity of the Born-Oppenheimer
approximation and study the influence of the kinetic en-
ergy coupling different dressed potentials during a colli-
sion. The influence of the kinetic energy is determined by
the dimensionless parameter � � d2m=@2rB. For �	 1,
we can apply semiclassical theory; this condition is well
satisfied for typical polar molecules like LiCs with � �

6900. For a collision whose relative kinetic energy Ekin is
below the shield barrier, the processes giving rise to in-
elastic loss are (i) diabatic crossing between different
Born-Oppenheimer levels and (ii) quantum mechanical
tunneling through the barrier. We start by studying the
diabatic transitions first: the inelastic cross section within
semiclassical approximation is computed by first determin-
ing the classical trajectory rcl�t� of a collision with a fixed
impact parameter. To determine the Landau-Zener diabatic
crossings, we solve the full Schrödinger equation for the
internal structure using the given relative motion rcl�t�. The
loss probability is then determined by the depletion of the
adiabatic Born-Oppenheimer level at the classical turning
point. Averaging over different impact parameters and
angles of approach provides the inelastic cross section
�in due to diabatic transitions. The main contribution
comes from the Born-Oppenheimer level closely ap-
proaching the effective potential close to � � 0; see
Figs. 2(a) and 3(a). Note that the standard Landau-Zener
tunneling expression cannot be applied here as the levels
have no real crossing. The inelastic cross section for differ-
ent � and Ekin is shown in Fig. 3(b). We find an algebraic
behavior of the inelastic cross section with �in �

�Ekin=@���r2

B with � � 2:2 and 
 � 0:043 at @� �
0:015B, solid line in Fig. 3(b). The loss rate 1=�in during
a two-particle collisions reduces to 1=�in � 11�Bnr3

B=@��
�T=B���1=2, where we have replaced the collision energy
with the temperature T of the gas. Consequently, for LiCs
at characteristic densities n� 1013 cm�3, the lifetime is
several seconds even for T � 1 mK< @�.

The second scenario for an inelastic collision is quantum
mechanical tunneling through the barrier. For �	 1 such
tunneling processes are strongly suppressed and can be
studied using semiclassical techniques like WKB. The
tunneling probability during a single collision is then given
by the Euclidean action for the trajectory C starting at the
classical turning point R0 and ending at the inner distance

FIG. 3 (color online). (a) Born-Oppenheimer potentials for
@� � 0:015B at � � 0. The plot shows all potentials (dashed
lines) accessible via single-photon transitions from the state
(solid line) adiabatically connected to j�i1j�i2. The first cross-
ing limiting the height of the shield appears in the region A for
angles � � 0. (b) Inelastic cross section �in due to diabatic
crossings for different detunings � as a function of incoming
kinetic energy Ekin.
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Rc, where the shield starts to break down: PWKB �

exp��2
R
C ds

������������������������������������
m�Veff�r� � Ekin


p
=@�. Thus, the highest

tunneling probability is obtained along the collision axis
with the lowest shield barrier; see discussion above. Then
the characteristic scale for the tunneling amplitude at low
incoming kinetic energies (Ekin � @�) is given by
PWKB � exp��c

����
�
p
�, where the numerical constant for

@�=B � 0:015 takes the form c � 0:32. Consequently,
for LiCs the tunneling is strongly suppressed and can be
safely ignored at low kinetic energies Ekin < @�.

It is important to note that the qualitative behavior of the
shield remains robust during a three-body collision. The
main modification to the shield is that the antisymmetric
levels can open up an avoided crossing, as the parity
symmetry present in the two-particle problem is broken
for three particles. The relevant antisymmetric level is
shown by a dotted line in Fig. 2(b). As this crossing appears
at energies �@�, it does not modify the validity of the
above discussion for incoming kinetic energies Ekin < @�.
Thus, the shield prevents three particles from approaching
each other on distances, where the formation of bound
states can take place, and three-body losses are therefore
effectively quenched.

To summarize, we showed that properly adjusted con-
tinuous wave microwave and dc electric fields can create a
repulsive shield resulting in large suppression of inelastic
collisions. We now describe possible avenues opened by
this work. For efficient evaporative cooling, it is important
that elastic collisions allow for fast thermalization. The
elastic scattering cross section at low collisional energies is
determined by the s-wave scattering length as. For negli-
gible tunneling across the shield (see above), as can be
estimated from the isotropic part of the effective repulsive
interaction potential V�0�eff �r� � C6=r6: as � �C6m=@2�1=4�

r��d2m=@2r��
1=4 [27]. For LiCs at the optimal detuning

@� � 0:015B, as � 66 nm yielding a large elastic cross
section �el with suppressed losses providing an ideal sys-
tem for evaporative cooling, e.g., �el=�in � 106 for �in at
T � 1 mK and �el � 8	a2

s .
Another application is the creation of stable three-

dimensional crystalline phases. The many-body Hamil-
tonian for a gas of ultracold polar molecules reduces to

 H �
X
i

p2
i

2m
�

1

2

X
i�j

C6

jri � rjj6
; (5)

where we neglect additional terms due to the anisotropy of
the effective potential and due to three-body interactions
discussed in [6]. In analogy to the appearance of crystalline
phases for polar molecules confined to two dimensions
[28], for strong repulsive van der Waals interactions, the
system will undergo a phase transition from a liquid phase
to a solid phase. The dimensionless parameter controlling
the transition takes the form 
 � C6m=@2a4 with n �

1=a3 the particle density: for weak interactions 
� 1
the ground state is in a liquid phase, while for strong
interactions with 
	 1 the system is characterized
by a solid phase with broken translational symmetry.
Consequently, this opens up a way towards the creation
of three-dimensional crystalline structures with ultracold
molecular gases.
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