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Highly tunable platforms for realizing topological phases of matter are emerging from atomic and
photonic systems and offer the prospect of designing interactions between particles. The shape of the
potential, besides playing an important role in the competition between different fractional quantum Hall
phases, can also trigger the transition to symmetry-broken phases, or even to phases where topological and
symmetry-breaking order coexist. Here, we explore the phase diagram of an interacting bosonic model in
the lowest Landau level at half filling as two-body interactions are tuned. Apart from the well-known
Laughlin liquid, Wigner crystal, stripe, and bubble phases, we also find evidence of a phase that exhibits
crystalline order at fractional filling per crystal site. The Laughlin liquid transits into this phase when pairs
of bosons strongly repel each other at relative angular momentum 4ℏ. We show that such interactions can
be achieved by dressing ground-state cold atoms with multiple different-parity Rydberg states.
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Introduction.—In a strong magnetic field, a two-
dimensional (2D) electron system can form an incompress-
ible liquid phase exhibiting topological order—that is,
order without breaking any symmetry [1]. The Wigner
crystal [2,3] competes with this liquid phase and becomes
energetically favorable at sufficiently low filling of the
lowest (n ¼ 0) Landau level (LL) [4,5], or via LL mixing
[6]. Other phases with broken symmetry have been predicted
for half-filled higher LLs (n > 1), using Hartree-Fock
calculations [7–9] and exact numerical methods [10,11].
These phases are characterized by stripe or bubble patterns
and have been observed in transport experiments [12]. Since
the early days of fractional quantum Hall (FQH) physics,
there have also been different attempts to describe the FQH
effect from a crystal phase ansatz [13,14]. Both fractionally
quantized and anisotropic transport has been seen exper-
imentally [15,16], and different field-theoretic approaches
describe this incompressible nematic phase in terms of an
effective gauge theory [17,18] or assuming the softening of
the magnetoroton mode [19,20]. Finally, recent numerical
work [21] claims evidence of a FQH phase with nematic
order in a microscopic model where the third and the fifth
pseudopotentials are comparable to the first one.
While electronic materials offer some knobs to control

interactions, e.g., via different substrates or patterned
metallic gates, their tunability is rather restricted. Thus,

it is tempting to study FQH physics, and the interplay of
topological order and symmetry breaking, in alternative
systems with tunable interactions. Atomic gases are prom-
ising platforms, with the possibility of generating synthetic
gauge fields by rotating the system [22] or by optical
dressing [23]. More recently, different strategies have also
allowed for generating an artificial magnetic field for
photons [24]. These systems are often bosonic, but they
exhibit similar phases to the electronic systems, including
bosonic Laughlin phases and symmetry-broken stripe
and bubble phases [25–27]. Strikingly, in such controllable
systems, topological transitions between these phases can
be induced, e.g., by tuning the scattering length via a
Feshbach resonance [25,28], by exploiting confinement-
induced resonances [29], or by modifying the pseudopo-
tentials via non-Abelian fields [30,31].
Yet a richer phase diagram is expected in the presence

of more than one tuning knob. In this Letter, we study a
model with tunable pseudopotentials [21] and consider the
bosonic case which is more relevant to atomic, molecular,
and optical designer quantum Hall systems. We focus on a
system at filling fraction ν ¼ 1=2, restricted to the lowest
LL, with fixed contact interaction U0, and tunable pseu-
dopotentials U2 and U4 characterizing the scattering
strength between bosons with relative angular momenta
2ℏ and 4ℏ. Using exact diagonalization, we identify
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different symmetry-broken phases surrounding the
Laughlin liquid. When U4 > 0 becomes sufficiently large,
a new phase with striking features is found: The N bosons
form a lattice consisting of 2N sites, exhibiting a sym-
metry-protected twofold degeneracy of the ground state at
zero momentum. In contrast to the other symmetry-broken
phases, the overlap of the ground state with the Laughlin
wave function does not drop sharply as the system is tuned
from the Laughlin liquid into this new phase. The transition
is characterized by a softening of the magnetoroton mode.
Finally, we demonstrate an experimental proposal based
on ground-state atoms dressed with multiple Rydberg
states, which enable us to explore a wide range of values
of pseudopotentials, including the most interesting one
with U4 ∼U0.
System.—We consider a 2D system of N bosons of mass

M subjected to a perpendicular gauge field, whose strength
is characterized by the cyclotron frequency ωc, or equiv-
alently, by the “magnetic” length lB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=Mωc

p
. The

gauge field quenches all bosons into the lowest LL, and
interaction between two bosons with relative momentum q
(in units l−1B ) is described by pseudopotentials [32],
Ul ¼ ð1=2πÞ2 R dqVqLlðjqj2Þe−jqj2 . Here, Vq is the poten-
tial, and Ll are Laguerre polynomials. In our model, we fix
U0 > 0, and tune U2 and U4 from the attractive to the
repulsive regime, whereas pseudopotentials with l > 4 are
neglected. In the numerics, we consider a rectangular
system of size a × b with periodic boundaries (torus).
The number of quantized fluxes Nϕ equals 2N—that is,
ν≡ N=Nϕ ¼ 1=2. We choose the gauge potential A in the
Landau gauge, A ∝ ð0; xÞ, and obtain a single-particle
basis of the lowest LL wave functions φjðx; yÞ [33].
The quantum number j represents momentum along the
y direction.
Evaluating the interaction matrix elements in this basis,

we write the Hamiltonian in terms of annihilation or
creation operators, H ¼ P

ijklVijkla
†
i a

†
jakal. The many-

body Hilbert space divides into different symmetry sectors:
Invariance under magnetic translations leads to conserved
(pseudo)momenta Kx [34] and Ky ¼ mod ðPN

i¼1 ji; NϕÞ.
A sector Ky is connected to Ky þ Nϕ=2 via a center-of-
mass (c.m.) translation, such that the magnetic Brillouin
zone (BZ) can be folded onto anM ×M reciprocal lattice’s
points, withM being the greatest common divisor of N and
Nϕ. Further reduction to the irreducible BZ is possible due
to reflection symmetry, leading to an equivalence between
Kx;y and −Kx;y [35].
Numerical results.—Via Lanczos diagonalization, we

obtained the low-energy eigenstates of H for up to
N ¼ 10, varying the parameters u2 ≡U2=U0 and
u4 ≡U4=U0. For u2 ¼ u4 ¼ 0, the Laughlin state is the
unique zero-energy ground state at K ¼ 0, and, related
by c.m. translation, at K ¼ ð0; Nϕ=2Þ, where units of
ð2π=a; 2π=bÞ are neglected for notational brevity. By

evaluating the energy gaps ΔE (both the direct gap at
K ¼ 0 and the absolute gap) and the overlap with the
Laughlin wave function, we obtain a putative phase
diagram in the u2 − u4 space; see Fig. 1. The Laughlin
phase is surrounded by phases of broken symmetry with
(quasi)degenerate ground states in different symmetry
sectors. A pronounced finite-size gap occurs when ju4j
is large and attractive; see Fig. 1(b).
To identify the order of each phase, we analyze the

ground-state pair-correlation function g2ðzÞ ∝ hPi≠j
δðz − zi þ zjÞi, where z≡ xþ iy; see Fig. 2. The
Laughlin liquid stands out through perfect anticorrelations,
g2ð0Þ ¼ 0, and a homogeneous particle distribution
[Fig. 2(f)]. When u2 is repulsive and sufficiently strong,
clustered lattice configurations become favorable
[Figs. 2(c) and 2(d)]. Such “bubble” phases are also
expected for electronic systems in higher LLs [7–11],
dipolar gases [25], and Rydberg systems [27]. A configura-
tion consisting of a single cluster along one direction appears
when u2 is attractive [Fig. 2(e)]. In the case of an attractive u4
potential, we find a square crystal arrangement with one
boson per site [Fig. 2(b)]. Of course, compressible phases
depend also on the system geometry, chosen as a=b ¼ 0.9
andN ¼ 8. Similar results obtained for other system sizes are
presented in the Supplemental Material [36].
We now turn our attention to the interesting behavior

found when u4 is strong and repulsive [Fig. 2(a)]: The

FIG. 1. (a) Energy gap ΔE at K ¼ 0 as a function of the
pseudopotentials. The inferred phase diagram is indicated by
white dashed lines. The Laughlin phase (L) is surrounded by a
stripe phase (S), bubble phases (B1 and B2), an integer Wigner
crystal (WC) phase, and a fractional Wigner crystal (FWC) phase.
The star indicates the point for which the experimental realization
is discussed in detail. (b) The absolute energy gap versus u2 and
u4: Small gaps indicate a symmetry-broken phase, in contrast to
the larger gaps seen in the Laughlin liquid phase. (c) The overlap
with the Laughlin wave function versus u2 and u4: Nonzero
overlap persists in the FWC phase. All data were obtained for
eight bosons on a torus with ratio a=b ¼ 0.9.
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pair-correlation function shows a triangular lattice structure
with 2N − 1 peaks (plus a deep valley at z ¼ 0), so we call
it a “fractional Wigner crystal” (FWC). A half-filled crystal
exhibits quantum fluctuations and frustration, and one
might speculate that the bosons have fractionalized into
semions forming a lattice at filling 1. The transition from
the Laughlin liquid into the FWC phase suggests a close
relation between the FQH and the FWC phases: As shown
in Fig. 3(a), the FWC phase arises through a softening of the
magnetoroton mode, a collective excitation branch obtained
by a long-wavelength density modulation of the Laughlin
state [37]. Finite values of u4 soften this branch near
jKja=ð2πÞ ≈ 4, and degeneracy with the K ¼ 0 ground
state occurs at u4 ≈ 0.5, giving rise to a symmetry-broken
phase. In the same regime, the first excited state at K ¼ 0
becomes quasidegenerate, too, and for u4 ≈ 0.5 the direct
gap to the second excited state is minimal; see Fig. 3(b). The
overlaps of the FWC ground states with the Laughlin wave
function at K ¼ 0 [see Fig. 3(c)] and with the Laughlin
magnetoroton state at K ¼ ð4; 0Þ [see Fig. 3(d)] decay
smoothly as u4 is increased, but they remain finite even
deep in the FWC phase. This behavior is in sharp contrast to
the behavior at the boundary between the Laughlin and
bubble phases, shown in the insets of Figs. 3(c) and 3(d):
Upon increasing u2 at u4 ¼ 0, a sudden drop of the overlap
to values near zero occurs at the phase boundary. These
observations suggest that Laughlin-like behavior remains
present in the ground and excited states of the FWC phase.
A characteristic feature of each symmetry-broken phase

is its tower of states [38,39]—that is, the structure of the

quantum numbers of the degenerate ground states. This
structure reflects the order seen in the pair-correlation
function: The triangular bubble phase (B1) [Fig. 2(c)]
has degenerate ground states (for N ¼ 8) at reciprocal
lattice vectors Kmn ¼ mð2; 1Þ þ nð2;−1Þ, the square bub-
ble phase (B2) [Fig. 2(d)] at Kmn ¼ mð1; 1Þ þ nð1;−1Þ,
and the stripe phase (S) [Fig. 2(e)] at Km ¼ mð0; 1Þ. In the
FWC phase, the ground states form a pair of stripes
winding twice around the folded magnetic Brillouin
zone; see Fig. 4. In contrast to conventional stripe phases,

FIG. 2. The ground-state pair-correlation function g2ðx; yÞ for
N ¼ 8 and a=b ¼ 0.9 for different u2 and u4 corresponding to the
different phases: (a) triangular lattice with 1=2 boson per lattice
site (fractional Wigner crystal), (b) square lattice with 1 boson per
site (Wigner crystal), (c) triangular arrangement of “bubbles”
(2 bosons per bubble), (d) square arrangement of “bubbles”
(4 bosons per bubble), (e) clustering along the x axis (stripe), and
(f) homogeneous Laughlin liquid.

(a)

(c) (d)

(b)

FIG. 3. (a) Energy of the lowest two eigenstates at each K, for
different u4 (with u2 ¼ 0). Increasing u4 softens the magnetoroton
branch aroundK ¼ ð4; 0Þ and K ¼ ð2; 4Þ. (b) Direct energy gaps
Δ1EX and Δ2EX of the first and second excited states atK ¼ 0 and
K ¼ ð4; 0Þ, as a function of u4 (with u2 ¼ 0). (c) Overlap between
the Laughlin state and the three lowest eigenstates (K ¼ 0) ofH as
a function of u4, with u2 ¼ 0. The transition into the FWC phase
(u4 ≈ 0.5) occurs without a sudden drop of the overlap, in contrast
to the transition into a bubble phase shown in the inset (overlap vs
u2, with u4 ¼ 0). (b) Overlap between the Laughlin magnetoroton
state at K ¼ ð4; 0Þ and the three lowest eigenstates. All data in
(a–d) was obtained for N ¼ 8 and a=b ¼ 0.9.

(a) (b) (c)

FIG. 4. We plot the folded magnetic Brillouin zone for different
N and mark with filled circles the symmetry sectors belonging to
the ground-state manifold in the FWC phase. Doubly degenerate
sectors are filled with two colors. The ground states form two
stripes (red and blue solid lines), related to each other via
reflection, winding twice around the zone.
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the stripes are not parallel to a symmetry axis of the torus,
but they are parametrized as Ki�

m ¼ mðkix;�kiyÞ, with
kix ≠ 0 ≠ kiy. The pairwise occurrence of these stripes is
demanded by reflection symmetry and leads to character-
istic double degeneracies at reciprocal lattice points where
the stripes cross. For N ¼ 8, the two stripes describe
exactly the same set of points, and the ground-state pattern
in reciprocal space matches with a triangular structure, also
seen in the correlation function for N ¼ 8 [Fig. 2(a)]. In
contrast, for N ¼ 9 and 10, stripe crossings coincide with
reciprocal lattice points only at K ¼ ð0; 0Þ. Accordingly,
also the correlation function deviates from the regular
lattice structure (see the Supplemental Material [36]), but
it still exhibits 2N − 1 peaks.
Experimental realization.—The phases discussed above

can be realized using cold ground-state alkaline atoms
dressed with Rydberg states [40,41] in a synthetic magnetic
field generated by rotating the system [22]. Typical
interactions between s-state Rydberg-dressed atoms
[dashed green curve in Fig. 5(a)] saturate for distances
smaller than the so-called Rydberg blockade radius, a
phenomenon studied in the context of FQH states in
Ref. [27]. For dressing with Rydberg p states, the inter-
action can be nonmonotonic [solid orange curve in
Fig. 5(a)] as a function of distance [42,43]. Each of these
two cases enables us to explore part of the phase diagram;
however, in order to access the FWC regime we need even
more flexibility in the shape of interactions. We propose to
combine the s- and p-state dressings to achieve a hump-
dip-hump potential [dot-dashed curve in Fig. 5(a)].
As an example [see Fig. 5(b)], we consider ground-state

jgi ¼ jF ¼ 2; mF ¼ 2i atoms of 87Rb weakly dressed with
two Rydberg states: (i) an npP1=2 state jþi¼ jnp;mJ¼1=2i
using a laser field with Rabi frequency 2Ωp and detuning δþ,

and (ii) an nsS1=2 state jsi ¼ jns;mS ¼ 1=2i using an
effective Rabi frequency 2Ωs and detuning δs. The coupling
to jsi is achieved using a two-photon transition with single-
photon detuning δ and two Rabi frequencies 2Ωs;1,
2Ωs;2 ≪ jδj, leading to Ωs ¼ −Ωs;1Ωs;2=δ. Without inter-
actions and for jðΩs=p=δs=pÞj ≪ 1, the dressed state takes
the form jdi ¼ jgi − ðΩs=δsÞjsi − ðΩp=δpÞjþi. For weak
dressing, the total two-body interaction VðrÞ between two
jdi states is a sum over separately calculated potentials,
V ¼ Vpp þ Vss þ 2Vsp, where Vaa0 arises due to the
interaction of Rydberg states a and a0.
By choosing jnp − nsj ≫ 1, we can neglect direct

dipolar coupling between two-atom states js�i and j�si
(where j−i ¼ jnp;mJ ¼ −1=2i) and describe the inter-
actions using only diagonal van der Waals (vdW) poten-
tials. The vdW interaction between j�i, assuming a
magnetic field perpendicular to the 2D plane, is

1

r6

0
BBB@

α − β 0 0 β

0 αþ β
3

− β
3

0

0 − β
3

αþ β
3

0

β 0 0 α − β

1
CCCA ð1Þ

in the fþþ;þ−;−þ;−−g basis, with α=2π ¼
690.2 MHz μm6 and β=2π ¼ 6204.3 MHz μm6 for
np ¼ 62. This leads to the effective interaction Vpp

between the p components of the dressed state, which,
within a fourth-order perturbation calculation, equals
(ℏ ¼ 1)

2Ω4
p½αðα − 2βÞ þ 2δ−r6ðα − βÞ�

δ3þfαðα − 2βÞ þ 2r6½δþðα − βÞ þ δ−ðα − β þ 2δþr6Þg�
:

The interactions Vss and Vsp arise from the standard
dressing of each ground-state atom with a single Rydberg
level interacting via a vdW C6=r6 potential. In this case, the
interaction takes the form

C6ðδ1 þ δ2ÞΩ2
1Ω2

2

δ21δ
2
2½C6 þ ðδ1 þ δ2Þr6�

; ð2Þ

where, for Vss, we set δ1 ¼ δ2 ¼ δs, Ω1 ¼ Ω2 ¼ Ωs, and
C6 ¼ Css, while, for Vsp, we set δ1 ¼ δs, δ2 ¼ δþ,
Ω1 ¼ Ωs, Ω2 ¼ Ωp, and C6 ¼ Csp.
The strength of Vss and Vsp relative to Vpp can be

tuned via Rabi frequencies, detunings, and principal
quantum number ns. By setting δþ=2π ¼ −21.41 MHz,
δ−=2π ¼ 16.15 MHz, we achieve a resonance-free hump-
dip Vpp potential [43], and by choosing δs=2π ¼
17.28 MHz and ns ¼ 52, such that Csp=ð2π MHz μm6Þ ¼
−682.08 < 0 and Css=ð2π MHz μm6Þ ¼ 3918.89 > 0, the
other two potentials are also resonance-free, and Vsp is

FIG. 5. Experimental realization. (a) The s and sp dressing lead
to a standard soft-core potential (green and blue dashed lines,
respectively), whereas p dressing leads to the potential with a
sharp dip (orange solid line). Together they lead to a hump-
dip-hump potential (brown dot-dashed line). The outer hump,
relevant for ensuring that U4 > 0, is shown in the inset. (b) Level
scheme for the dressing of the ground state jgi with Rydberg
states jsi and jþi.
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much weaker than Vss, with Rydberg blockade radius
between s states rss ¼ 2.2 μm [44]. We choose lB ¼
2 μm ∼ rss, so that we can neglect Uj for j > 4. By
choosing optimal Rabi frequencies, we can still operate
in a weakly dressed regime and simultaneously access the
hardest-to-achieve regime of strong U4, corresponding to
the hump-dip-hump potential in Fig. 5(a). Specifically, for
Ωp=ð2πÞ ¼ 1.32933 MHz and Ωs=ð2πÞ ¼ 1.35679 MHz,
we get fu2; u4; u6g ¼ f−0.72; 0.45; 0.11g with U0=2π ¼
0.00061 kHz and Im½Ul�=Re½Ul� < 0.01. Finally, if the LL
gap ωc is larger than the intra-LL pseudopotentials and the
relevant inter-LL interactions (both are ∼U0), we can
neglect higher LLs. For lB ¼ 2 μm, this is indeed the case,
U0 ≪ ωc ¼ 2π × 0.029 kHz. By changing the detunings
and Rabi frequencies and possibly varying them in time,
one can investigate other phases of the phase diagram in
Fig. 1 and study transitions between them.
Summary.—We studied a FQH system that exhibits a

density modulation when higher pseudopotentials (in
particularU4) are on the order ofU0 and proposed realizing
such exotic interactions with Rydberg-dressed atoms.
Our scheme allows us to explore FQH scenarios beyond
those found in electronic systems with Coulomb inter-
actions. Our findings point towards an interplay of two
fundamental concepts, topological order and symmetry
breaking, which both appear to be present in our system.
Whether and how the concepts to classify topological
quantum liquids can be applied to the crystal phase is an
interesting subject for future studies. Some numerical
results for the entanglement entropy [45–47] are provided
in the Supplemental Material [36].
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