
Supplemental Material to “Fractional quantum Hall phases of bosons with tunable
interactions: From the Laughlin liquid to a fractional Wigner crystal”

Tobias Graß,1 Przemyslaw Bienias,1 Michael J. Gullans,2

Rex Lundgren,1 Joseph Maciejko,3, 4, 5 and Alexey V. Gorshkov1, 6

1Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland, 20742, USA
2Department of Physics, Princeton University, Princeton, New Jersey, 08544, USA

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
4Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

5Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
6Joint Center for Quantum Information and Computer Science,
NIST/University of Maryland, College Park, MD 20742, USA

This Supplemental Material consists of three Sections. Sec. I extends the numerical study of the
main text to other system sizes and torus ratios. Sec. II provides characteristic energy spectra of
each phase. In Sec. III, we have computed the entanglement entropy in the Laughlin liquid phase
and in the fractional Wigner crystal phase.

I. DEPENDENCE OF NUMERICAL RESULTS
ON SYSTEM SIZE AND/OR GEOMETRY

Most of our numerical data presented in the main text
was for N = 8 bosons, on a torus with axes ratio a/b =
0.9. For incompressible phases, system size and geometry
tend to play only a minor role. This is no longer true
when the system becomes compressible. In this section
of the Supplemental Material, we present some additional
data obtained by varying the axis ratio of the torus, and
by considering systems of N = 9 and N = 10 bosons.

A. Phase diagram

First, we consider the phase diagram on a strongly
squeezed torus with axis ratio a/b = 0.5. Here, we
have restricted our study to fully repulsive interactions,
u2, u4 > 0. Again the direct gap at K = (0, 0) serves as
an indicator of phase boundaries. We plot the gap for
N = 8, as shown in Fig. S1 (a). The data now suggests
the existence of an additional phase. By evaluating the
ground-state pair correlation functions, we identify the
different phases. As before, we find the Laughlin liquid,
and the bubble phases B1 and B2, which are now sep-
arated by an intermediate phase B3 consisting of three
stripes, see Fig. S1 (c). Moreover, it turns out that the
FWC is strongly deformed, and does not exhibit Nφ sepa-
rate peaks anymore, see Fig. S1 (b). In terms of overlap,
this region is still smoothly connected to the Laughlin
state.

Next, we compare the phase diagram obtained for
N = 8 bosons with the one for N = 9, while keeping
the geometry unchanged (a/b = 0.9). We find all the
phases which were present also for N = 8 (Laughlin liq-
uid, FWC, bubbles B1 and B2), plus an additional phase
consisting of three stripes. The pair-correlation function
for this phase is shown Fig. S2 (b). In the phase diagram
of Fig. S2 (a), the stripe phase occurs at intermediate
values of u2, and small values of u4. Such a phase has also

FIG. S1. (a) By plotting the direct energy gap at K = 0, we
draw a phase diagram in the parameter space given by repul-
sive u2 and u4. As in the main text, our data was obtained
for N = 8 bosons, but now the torus is squeezed to an axis
ratio a/b = 0.5. As for the less anisotropic case shown in the
main text, this squeezed torus also hosts the Laughlin phase
(L), and the bubble phases B1 and B2, but now a third bub-
ble phase B3 lies in between those two regimes. The FWC
crystal has been deformed, as shown in the pair-correlation
function in panel (b). We thus denote this phase by an X.
Panel (c) shows the pair-correlation function of the B3 phase,
consisting of three bubbles.

been seen before in a system of dipolar atoms [1]. Apart
from this intermediate stripe phase, the phase diagrams
at N = 8 and N = 9 are qualitatively the same.

B. Fractional Wigner crystal

The symmetry-breaking in the FWC phase has a char-
acteristic two-fold ground state degeneracy at K = 0.
Thus, to study the robustness of this phase upon changes
in the geometry, we may just track the lowest eigenener-
gies at K = 0 as a function of the axis ratio a/b. This
data, for system sizes N = 8, 9, 10 is shown in Fig. S3.
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FIG. S2. (a) By plotting the direct energy gap at K = 0,
we draw a phase diagram in the parameter space given by
repulsive u2 and u4. Here we use the same axis ratio as in the
main text (a/b = 0.9), but increase the system size to N = 9
bosons and Nφ = 18 fluxes. We find a similar phase diagram,
hosting the Laughlin phase (L), the fractional Wigner crystal
phase (FWC), the bubble phases B1 and B2, plus an addi-
tional phase S at intermediate values of u2. (b) By evaluating
the ground state pair-correlation function, we identify the in-
termediate phase S as a phase consisting of three stripes along
the x-axis.
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FIG. S3. For different system sizes N = 8, 9, 10, we plot the
energies of the five lowest excitations at K = 0, relative to
the ground state energy, as a function of the axis ratio a/b.
Thus, the red lines correspond to the direct gap which, due
to the two-fold degeneracy, vanishes in the FWC phase. The
degenerate regime extends from the isotropic torus (a/b = 1),
to values about a/b = 0.8. All data was obtained at u2 = 0
and u4 = 2.0.

FIG. S4. We plot, for N = 9 (a) and N = 10 (b), the ground
state pair-correlation function in the FWC phase. The num-
ber of peaks (+origin) is equal to 2N .

We note that, even in the FWC phase, the ground state
degeneracy is slightly lifted at N = 10, but this lifting is
sufficiently small to identify a quasi-degenerate regime.
With this, the characteristic degeneracy is found to ex-
tend from the isotropic limit a/b = 1 down to squeezed
ratios a/b ≈ 0.8.

For larger deviations from the isotropic case, the cor-
relation function does not exhibit Nφ separate peaks
anymore, as shown in Fig. S1(b). The question arises
whether such a geometry dependence would also occur
in a large system on a flat plane? Due to the non-liquid
behavior of the phase, finite-size effects play an impor-
tant role for choosing the energetically most favorable
arrangement. Squeezing the torus enhances finite-size
effects, as one axis becomes very short. We therefore
believe that the phases obtained near a/b = 1 are most
likely the ones which will be seen in a thermodynamically
large system.

By plotting the pair-correlation function of the ground
state within the two-fold degenerate regime, we verify
that the state exhibits fractional crystal order for differ-
ent system sizes (N = 9 and N = 10). As seen in Fig.
S4, the number of peaks plus the origin (i.e. the position
of the probe particle), is given by 2N , that is, we always
get a half-filled lattice.

II. ENERGY SPECTRA IN DIFFERENT
PHASES

In Fig. 2 of the main text, we have plotted ground
state pair correlation functions in order to identify the
symmetry-broken order. Each phase can also be charac-
terized by its energy spectra which, for the same param-
eters as in Fig. 2 of the main text, are plotted in Fig.
S5.

III. ENTANGLEMENT ENTROPY IN THE
FRACTIONAL WIGNER CRYSTAL

Different quantities have proven useful for classifying
topologically ordered system, including ground state de-
generacies on the torus, the number of edge states in sys-
tems with open boundaries, or the topological entropy.
In the main text, we have discussed the ground state
degeneracies of the fractional Wigner phase. In particu-
lar, we have argued that these degeneracies are geometri-
cal (i.e. understood from the symmetry breaking order),
apart from the trivial two-fold topological degeneracy of a
toroidal system at half filling. This observation excludes
non-Abelian phases.

In this Supplemental Material, we discuss a topological
quantum number provided by the von Neumann entropy
of entanglement S(L). The entropy is expected to scale
linearly with the boundary L of a bi-partite cut through
the system, and in topological systems, it is non-zero
in the limit L → 0. Its value, known as “topological en-
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FIG. S5. For the same parameters u2, u4 as used in Fig. 2 of the main text, we plot the energy spectra (N = 8, a/b = 0.9).

Pseudomomenta |K| are in units of the inverse magnetic length lB ≡
√

2πNφ/(ab).

tropy”, measures the quantum dimension of a topological
field theory [2, 3].

We evaluate the entanglement entropy by making two
orbital cuts, which in the Landau gauge are roughly
equivalent to spatial cuts along the translational invari-
ant direction. In this way, we divide the torus into two
equal cylinders, each with two boundaries of size L, given
by the circumference in this direction (i.e. by b). This
length can continuously be tuned via the aspect ratio of
the torus, providing a numerically feasible way of deter-
mining the topological entropy [4].

In Fig. S6, we have calculated the entanglement en-
tropy in a system of 8 bosons. We have used this data to
extrapolate the topological entropy. For a “pure” Laugh-
lin state (i.e. for ground state of the parent Hamiltonian
u2 = u4 = 0), the topological entropy is obtained with
moderate accuracy: γ = 0.4315 ± 0.0010, which is is
off by about 30% from the theoretical expected value
γ = log(

√
m) for a Laughlin state at filling ν = 1/m.

However, the entropy is dramatically modified even by

small non-zero values of higher pseudopotentials: For
u4 = 0.3 , which we believe to be still in the Laughlin liq-
uid phase, a linear scaling of the entanglement entropy
is observed only within a subset of points, and the ex-
trapolated value for the topological entropy increases to
γ = 1.50± 0.07 . Upon further increasing u4, the regime
of linear scaling further decreases. If we nevertheless
attempt to extract a topological entropy, our estimate
within the fractional Wigner phase is about γ = 2.1±0.1.
In view of these extremely large numbers, we believe that
these results are strongly influenced by finite-size effects.

The breaking of translational symmetry makes it par-
ticularly difficult to extract the topological entropy with
high accuracy, since tuning the aspect ratio of the torus
triggers transitions between different crystal structures,
seen also in the energy spectra shown in Fig. S3. The
range of parameters which can be used to extrapolate
the topological entropy is therefore restricted to rela-
tively small intervals. In contrast, in the liquid phase
such transitions are absent, and much more data points
become available.
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FIG. S6. We plot the entanglement entropy of N = 8 bosons
at filling ν = 1/2, as obtained by an orbital cut of the torus
into two halves. All curves are for u2 = 0, with different values
of u4. The entropy is ploted as a function of the length b along
y-direction, which parametrizes the boundary size between
the two subsystems. The length is determined by the aspect
ratio ξ, b =

√
2πNΦ/ξ, and the data point in the figure are

obtained by varying ξ from 0.99 (points on the left) to 0.75
(points on the right). The data points marked by the boxes
have been used to extrapolate the topological entropy γ =
−S(0)/2.


