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We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of
Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame,
where a paraxial approximation allows us to consider them as massive particles. In contrast to atoms and
nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and
their transverse mass, arising from diffraction. Nevertheless, we show that, in suitably rescaled coordinates,
the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to
an Efimov effect near unitarity. We show that the three-body loss of these Efimov trimers can be strongly
suppressed and determine conditions under which these states are observable in current experiments. These
effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of
Efimov physics in the nonequilibrium, many-body regime.

DOI: 10.1103/PhysRevLett.119.233601

The problem of classifying the universal properties of
few-body systems near unitarity, i.e., a divergence in the
two-body scattering length a, was first undertaken for the
three-body problem by Vitaly Efimov in 1970, who
discovered an infinite series of three-body bound states
obeying a geometrical scaling relation [1]. This discovery
served as an important guide to theoretical work in few-
body physics in subsequent years [2], but the observation of
such Efimov trimers in nature remained elusive until
pioneering experiments on cold atomic gases reported
direct signatures of these states in atomic loss spectroscopy
]3 ]. That success reinvigorated work on the classification
problem alluded to above, including in systems other than
cold atoms [4,5]. As a result, recent years have seen the
elucidation of many universal properties of N-body sys-
tems for N ≥ 3 [6–13], including the many-body, short-
time dynamics of Efimov trimers in a unitary Bose gas [14].
Despite this progress, Efimov states, as well as larger bound
state clusters, are typically associated with large inelastic
losses in cold atom systems due to strong three-body
recombination. These losses generally preclude the study
of many-body physics of Efimov trimers such as the
formation of a Bose-Einstein condensate of trimers [15],
and limit efforts to study universal bound states for large N.
Recently, it has become possible to achieve strong

interactions between single photons by dressing light with
strongly interacting Rydberg atoms to form Rydberg polar-
itons [16,17]. The resulting photon-photon interactions
have been used to study a diverse array of quantum

nonlinear optical effects including: single-photon blockade
and transistors [18–22], two-photonphasegates [23–26], and
the formation of one dimensional few-photon bound states
[27–33]. Combining these strong interactions with the high
degree of available control over the optical and atomic
degrees of freedom makes these systems a promising plat-
form for exploring nonequilibrium quantum many-body
physics and realizing quantum simulation [34–44].
In this Letter, we show how such systems of interacting

photons can lead to the formation of Efimov states of light.
We extend previous work on bound states of photons in
Rydberg polariton systems by accounting for the three-
dimensional (3D) nature of the photons. For attractive
interactions, these considerations lead to the possibility of
forming 3D bound states, of which the Efimov states are the
first class of three-body bound states that emerge as the
strength of the interactions is increased from zero.
Crucial to the realization of Efimov states in this system

is their low-energy, long-wavelength nature, which leads to
their emergence independent of many of the microscopic
details of Rydberg polaritons. We use this property to show
that the three-body losses of these Efimov states can be
strongly suppressed, allowing for the formation of long-
lived Efimov trimers. We analytically demonstrate that this
class of Efimov states have anisotropic spatial wave
functions due to the anisotropic effective mass of the
polaritons. To prepare these states, we take advantage of
the fact that they propagate in the medium as the three-body
limit of an optical soliton. This property allows them to be
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distinguished from nonbound states in the system, which
will dephase due to dispersive and diffractive effects
[27,32]. Finally, we consider the conditions under which
these states can be directly observed in current experiments.
The basic configuration for realizing interacting photons

via atomic Rydberg states is shown in Fig. 1(a). The
Rydberg atoms are dressed with a quantum field of light
using electromagnetically induced transparency (EIT).
Rydberg-Rydberg interactions lead to the Rydberg block-
ade effect [45], whereby a single atom (polariton) in the
state jsi shifts the s state of nearby atoms out of resonance,
leading to a strong optical nonlinearity. To describe the
light transmission of this system, we introduce a bosonic
field ψðrÞ associated with the Rydberg dark-state polar-
itons. The bare interaction between the Rydberg atoms is
given by the van der Waals interaction VðrÞ ¼ −C6=r6;
however, the effective interactions between polaritons take
the form [see Fig. 1(b)] [28]

UðrÞ ¼ αVðrÞ
1 − χ̄VðrÞ ; ð1Þ

where χ̄ and α are a function of the control parameters and
atomic decay rates [46]. Here, we consider the case χ̄,C6 > 0
with a large detuning Δ from the intermediate state so that
UðrÞ is attractive, nonsingular, and conservative. UðrÞ has a
long range van der Waals tail, but saturates to a constant
value for r ≪ rb, where the blockade radius is defined
as rb ¼ jχ̄C6j1=6. Because of their low-energy, the Efimov
states will have a spatial extent much larger than rb [see inset
to Fig. 1(b)]. We take advantage of the long-wavelength
nature of these states to describe their propagation using the
effective second-quantized Hamiltonian density

H ¼ ψ†ðrÞ
�
−iℏvg∂z −

ℏ2∂2
z

2mz
−
ℏ2∂2⊥
2m⊥

�
ψðrÞ

þ
Z

d3r0ψ†ðrÞψ†ðr0ÞUðr − r0Þψðr0ÞψðrÞ; ð2Þ

where vg is the EIT group velocity, mz is the longitudinal
mass arising from dispersive effects, m⊥ is the transverse
mass arising from diffraction in the paraxial wave approxi-
mation, and ∂2⊥ ¼ ∂2

x þ ∂2
y. The lowest order correction to

this effective Hamiltonian is a short-range, three-body force
[30–33]; however, such forces typically play a minor role in
Efimov physics so we neglect them here [50–52].
After transforming into a comoving frame, apart from the

anisotropic mass, the effective model has a standard form
studied in few-body atomic and nuclear systems. Further-
more, near threshold, we find that the anisotropy in the mass
can be accounted for by a simple rescaling of the coordinates
and the scattering becomes isotropic in the absence of higher
partial wave resonances. This implies that the universal few-
body hierarchy, beginning with the Efimov effect, will arise
near unitarity for such 3D Rydberg polaritons.
The preparation and detection scheme for the Efimov

states is illustrated in Fig. 1(c). The entrance into themedium
acts as a quantum quench [27,30], generating a finite overlap
with the Efimov states. Once they are formed inside the
medium, thebound states propagatewithout distortion,while
the scattering states dephasewith each other. As a result, for a
sufficiently long medium in the absence of losses, the output
will be dominated by the Efimov states. This effect has been
used previously in 1D Rydberg polariton experiments to
directly observe the formation of two and three-body bound
states [27,32].When there ismore than one bound state in the
medium, these states are distinguishable by their spatial
structure or propagation phase through the medium. To
directly probe these states, one can use time-resolved, three-
photon coincidence measurements to access their longi-
tudinal spatial structure, while multimode spatial resolution
can probe their transverse structure [32,53].
Few-body scattering with anisotropic mass.—To under-

stand the origin of the noninteracting part of Eq. (2), we
consider the Hamiltonian for a single polariton with the
total wave vector k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ qzÞ2 þ q2⊥

p
(ℏ ¼ 1)

H ¼

0
B@

ck − ck0 g 0

g Δ Ω
0 Ω 0

1
CA; ð3Þ

whereq is themomentum relative to k0ẑ, g ¼ μat
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ck0n=ℏϵ0

p
is the single-photon Rabi frequency of the probe, ϵ0 is the
dielectric constant, n is the atomic density, μat is the atomic
dipole moment,Ω is the control field Rabi frequency, andΔ
is the detuning between the control field and jpi to jsi
transition frequency [see Fig. 1(a)]. We include the decay
from the intermediate state by adding an imaginary
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FIG. 1. (a) Schematic of EIT and the Rydberg blockade effect.
(b) Effective interaction potential for the Rydberg polaritons. (inset)
The Efimov states have a large spatial extent compared to the
microscopic range of the potential, leading tomany simplifications.
(c) The Efimov states emerge in transmission because they are
immune to dispersion and diffraction inside the medium. Spatially
resolving multimode, three-photon coincidence measurements
allow for detailed characterization of these states [32,53].
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component toΔ → Δ − iγ, where γ is the half-width of thep
state. For every q, H has three eigenvalues ϵμðqÞ, which can
be used to find the group velocity and effective mass of the
polaritons

vg ¼
dϵμ�

dqz

����
q�
¼ c

½Ω2 þ ωðΔ − ωÞ�2
g2ðΩ2 þ ω2Þ ; ð4Þ

1

mz
¼ d2ϵμ�

dq2z

����
q�
¼ 2v2g

Ω2 þ ω2

Ω2ðΔ − 3ωÞ − ω3

Ω2 þ ωðΔ − ωÞ ; ð5Þ

1

m⊥
¼ d2ϵμ�

dq2⊥

����
q�
¼ vg

k0
; ð6Þ

where ϵμ� ðq�Þ ¼ ω is only satisfied for one choice of q� and
μ� ∈ fU;D; Lg [see Fig. 2(a)], and we take q�⊥ ¼ 0. Here,
we have neglected higher order corrections in Ω=g. From
these expressions,we see that, onEIT resonance (ω ¼ 0), the
mass ratio mz=m⊥ ¼ g2=2cΔk0 ¼ ð3πγ=ΔÞnk−30 .
More generally, the mass ratio can be independently

tuned by taking advantage of the unconventional dispersion
relation for the dark-state polaritons. This is illustrated in
Fig. 2(a), which shows that the inverse longitudinal mass
goes through a sign change for incoming probe frequencies
away from the EIT resonance. From Eq. (4), we see that the
inflection point occurs near ω ¼ ðΩ2ΔÞ1=3. Operating near
this inflection point allows one to equalize the mass ratio;
however, it does not remove the effect of inelastic losses.
We define the average mass m−1 ¼ ðm−1

z þm−1⊥ Þ=2 and
parametrize the mass ratio as tan2ðβÞ ¼ mz=m⊥. The
condition for neglecting the inelastic losses, which applies
to both the EIT resonance and the inflection point in the
limit Δ ≫ γ; jωj, is given by

Reðm−1Þ
Imðm−1Þ ≈

3π

2β2
n
k30

≫ 1: ð7Þ

For example, for atomic densities near 1013 cm−3, β should
be less than 0.1. It is also worth noting that the regime where
β ≈ 1 and Eq. (7) predicts small inelastic losses precisely
coincides with the regime of Dicke super-radiance n=k30 ≳ 1

[54]. In this regime, our assumption of independent decay
channels for the atomic radiation would have to be revisited.
To understand the role of such a large anisotropy in the

mass on the few-body scattering problem, we first consider
the two-body problem with an anisotropic mass. The
Schrödinger equation for two particles in the center of
mass frame takes the form

−
1

m
~∇2ψ þ Uð~rÞψ ¼ Eψ ; ð8Þ

where E is the energy and we have transformed to rescaled
coordinates ~z ¼ z=

ffiffiffi
2

p
cos β and ð~x; ~yÞ ¼ ðx; yÞ= ffiffiffi

2
p

sin β
such that the kinetic energy term becomes isotropic and the
interactions become anisotropic [see Fig. 2(b)]. The char-
acteristic length scale of the potential in the rescaled
coordinates is given by r0 ¼ rb=

ffiffiffi
2

p
sin β. In these rescaled

coordinates, we see that the interaction term mixes different
two-body angular momentum l sectors.
For low-energies, however, the higher angular momen-

tum channels are subject to a large centrifugal barrier,
which allows the interaction terms that mix angular
momentum sectors to be treated perturbatively. In particu-
lar, for an interaction potential that falls off as 1=rδ with
δ > 3 and for lþ l0 ≥ 2, the scattering-matrix elements
(so-called T matrix) scale as [55,56]

jTðmÞ
ll0 j ∼ const klþl0þ1 þ const kδ−2: ð9Þ

We numerically verify these scalings near threshold for a
large value of the mass ratio in the Supplemental Material
[46]. These scalings suggest that the potential appears
completely isotropic near threshold as all the partial waves
beyond the s-wave channel l, l0 > 0 are suppressed in the
absence of higher-partial wave resonances. To tune near
unitarity in this system, we take advantage of shape reso-
nances in the s-wave scattering length a. In Fig. 2(c), we
show the positions of the first two scattering resonances as a
function of the depth of the potential

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mUð0Þp

r0, which can
be tuned via Ω or Δ.
These features of the two-body problem have important

implications for the three-body problem as well. In par-
ticular, this analysis directly implies that the three-body
hyperspherical potential U3ðRÞ will have the universal
behavior in the region r0 ≪ R ≪ a [1,2]

−
ffiffiffi
3

p

2m

�
d2

dR2
þ s20 þ 1=4

R2

�
fnðRÞ ¼ EnfnðRÞ; ð10Þ

FIG. 2. (a) Dispersion relation near EIT resonance and inflec-
tion point for three polariton branches U (red), D (black),
and L (blue). We took Ω=2π ¼ 5 MHz, Δ ¼ 40 MHz, and
g=2π ¼ 100 MHz. Here, g was taken to be smaller than its value
in typical experiments to aid visibility. (b) Shape of potential in
rescaled coordinates. (c) Scattering length as a function of the
depth of the potential for m⊥=mz ¼ 10. The first resonance
occurs near

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mUð0Þp

r0 ¼ 2.27.
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where s0 ¼ 1.00624…, R is the three-body hyperradius in
the rescaled coordinates [46], and fn is the hyperradial
component of the three-body wave function in hyper-
spherical coordinates. For distances on the order of r0 this
equation is no longer accurate as the character of the two-
body interactions [Eq. (1)] become important. However, in
the region, R ≪ rb we can also find the hyperspherical
potential analytically because the two-body potential
approaches a constant. To better understand the intermediate
region rb ≲ R≲ r0, we have performed numerical calcula-
tions [57,58] of U3ðRÞ that include the coupling to higher-
partial waves as a perturbative correction to the two-body
s-wave potential [46]. The results are shown in Fig. 3(a) for
the first scattering resonance with m⊥=mz ¼ 10. We see
good agreementwith the two analytic predictions in the small
and large R limits. The presence of the long-range 1=R2

potential near unitarity shows that the three-body problem
will give rise to an Efimov effect with an infinite series of
three-body bound states, with energies (n ¼ 0; 1;…)

En ¼ −
κ2�
m
e−2πn=s0 ; ð11Þ

while the presence of the centrifugal barrier near R ∼ r0
suggests the scaling for the three-body parameter κ� ∼ 1=r0
[50,52,59].
Suppression of three-body loss.—In cold-atom systems,

the lifetime of the Efimov states is limited by their decay
into deeply bound two-body states. In this Rydberg polar-
iton system, we can avoid such effects by tuning the system
near the first scattering resonance in Fig. 2(c), where no
deep two-body bound states exist. We can also avoid
inelastic two-body loss by going to sufficiently large
detunings Δ. However, due to the multicomponent nature
of the polariton system and the unconventional dispersion
relations, three-body loss processes are still allowed
whereby energy and momentum is conserved by scattering
the polaritons far away from their initial momentum. As
shown in Fig. 3(b), near the inflection point, two such

three-body loss processes are allowed. In one case, one of
the polaritons has a final state on the lower polariton
branch, while, in the other case, all three polaritons end on
the dark-state branch. On EIT resonance, energy and
momentum conservation only allow the former process.
Despite the presence of these additional loss channels,

we find that their contribution to the three-body loss is
strongly suppressed because the Rydberg blockade mecha-
nism leads to an exponentially small two-body potential for
large relative momenta δq ≫ r−1b . In particular, for the
three-body loss channels in Fig. 3(b), each process involves
a finite momentum transfer δq. When the minimum
δq ≫ r−1b , we can estimate the three-body loss rate per-
turbatively in the Fourier transform of UðrÞ, which, it is
readily seen, is exponentially suppressed as e−δqrb . Near the
inflection point, the minimum δq (and thus, the dominant
channel) occurs for the process where all three polaritons
end on the dark-state branch. By analytically expanding the
dispersion to third order around the momentum of the
polaritons, we find that the three-body losses will be
suppressed when

δqzrb ≈
�

g2

ck0Δ

�
5=3

ðrbk0Þ1=3
Φ2=3

β3
≫ 1; ð12Þ

where the value of Φ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mUð0Þp

r0 is determined by
the position of the first scattering resonance [e.g., see
Fig. 2(c)]. In the Supplemental Material, we provide a more
detailed discussion of the scaling of the three-body loss
parameter [46]. For a density of 1013 cm−3 with a blockade
radius of 20 μm [27], this implies that β should be less than
0.1 to strongly suppress the three-body losses.
On EIT resonance, the minimum δq for the three-body

loss resonance scales as g2=cΔ. This scaling implies that
three-body loss will still play an important role near the first
scattering resonance because, on EIT resonance, Φ ≈ ϕ.
Thus, we see the primary advantage of working near the
inflection point is the control it provides over the mass
ratio, scattering length, and three-body loss rate.
Preparation and detection.—To prepare the Efimov

states, we propose using the high-degree of control over
the two-body parameters to tune the scattering length
(a < 0) to values in which the trimers cross zero energy.
As each such value is crossed in the space of control
parameters, an Efimov state will emerge in transmission
through the medium due to the quench dynamics described
in the introduction. When more than one Efimov state is
present in the medium, they can be distinguished from each
other by changing the transverse focus of the input field to
increase the initial overlap with the desired state. We give a
more detailed discussion of the experimental requirements
for realizing long-lived Efimov trimers of Rydberg polar-
itons in the Supplemental Material [46]. More generally, we
remark that the low-energy nature of the Efimov states will
render them insensitive to many corrections arising from

FIG. 3. (a) (red) Rescaled three-body hyperspherical potential
at the first scattering resonance for m⊥=mz ¼ 10. (yellow) In the
region R ≫ r0, U3ðRÞ approaches the universal form that gives
rise to the Efimov effect. (blue) Analytic result in the region
R ≪ rb. (b) Three-body loss processes near inflection point
(same branch and different branch, see text), where q0 is the
incoming momentum of the polaritons.
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short-range physics; thus, we expect their emergence to be
a robust feature of the Rydberg polariton system whenever
it is possible to tune near a resonance in the 3D two-body
scattering length.
Conclusions.—We have demonstrated that systems of

interacting photons formed from Rydberg polaritons natu-
rally give rise to an Efimov effect. A potential advantage of
this approach is that one can realize long-lived Efimov
trimers by tuning near the first scattering resonance and
suppressing other three-body loss channels. The wide range
of control over the system parameters and the ability to
suppress N-body losses make this a promising platform for
studying few-body universality. At the same time, increasing
the input light intensity provides access to the nonequili-
brium, many-body regime where the role of universal few-
body physics is poorly understood. The resulting photonic
states that emerge from the medium have a rich multiparticle
entanglement structure, whichmay enable them to be used as
a resource for optics-based quantum technologies [53,60].
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