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I. TWO-BODY SCATTERING WITH
ANISOTROPIC MASS

In this section we compare the scaling of the T -matrix
elements with energy for the higher-partial waves in the
two-body problem with an anisotropic mass to the Born
approximation.

The Schrödinger equation for the wavefunction of two
dark-state polaritons (branch µ = D) with identical
anisotropic masses in the rescaled coordinates defined in
the main text is
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where q0 is the incoming momentum of the two dark-
state polaritons and Sq

µ is the overlap of the single polari-
ton eigenstate on branch µ with momentum q with the
Rydberg state. Expanding the wavefunction in spheri-
cal harmonics and dropping the tildes over the rescaled
coordinates
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we arrive at the radial Schrödinger equation
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with the boundary conditions [S1]
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Here k =
√
mE and S

(m)
``′ is the multi-channel S-matrix,

which has to be found self-consistently.
In the first Born approximation the scattering ampli-

tude defined in Eq. (9) of the main text takes the form
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FIG. S1: (a) Scaling of T -matrix elements as a function of

k =
√
mE. Near threshold, the scattering is dominated by

the diagonal s-wave component S
(0)
00 = eiδ0(k), which defines

the scattering length via k cot δ0 = −1/a + O(k2). Here we

took
√
mU(0)r0 = 2.2 and m⊥/mz = 20.

Using the expansion of eik·r into spherical harmonics,
this equation directly implies that

T
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(m)
``′ , (S11)
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where j`(x) are spherical Bessel functions. For an interac-

tion potential that dies off as 1/rs, T
(m),Born
``′ has the scal-

ing given in Eq. (10) of the main text. We have verified
these scalings for the higher partial wave S-matrix ele-
ments using numerical solutions of the radial Schrödinger
equation. An example is shown in Fig. S1(a) for the s-
wave channel with a large mass ratio of m⊥/mz = 20.
In Fig. 2(c) of the main text we obtained the scatter-
ing length through numerical solutions of the S-matrix
including the ` = 0 and ` = 2 partial wave channels.
We further verified that including the ` = 4 channel had
a negligible effect on the position of the s-wave scatter-
ing resonances, which is consistent with the perturbative
analysis in Sec. III.

II. SCALING OF THREE-BODY LOSS RATE

In this section, we derive the scaling of the three-body
loss rate near the EIT resonance for large values of the
interaction parameter φ = g2rb/c∆ = ODbγ/∆, where
ODb is the optical depth per blockade radius.

From the optical theorem, the three-body loss ap-
pears as an imaginary contribution to the self-energy
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FIG. S2: One-loop contribution to the three-body T -matrix
with all incoming and outgoing states dark-state polaritons
at the same momentum. The imaginary part of this diagram
gives the lowest order contribution to the three-body loss rate.

of three dark-state polaritons [S2]. Thus we can find
the lowest order contribution to the three-body loss rate
in the two-body T -matrix by evaluating the imaginary
part of the diagram in Fig. S2, which contains a sin-

gle loop. In this diagram the shaded boxes represent
the symmetrized two-particle T -matrix T skk′(ω,K) =
[Tkk′(ω,K) +Tk−k′(ω,K)]/2, where ω and K = q1 +q2

are the total energy and momentum of the incoming po-
laritons with momenta q1,2, respectively, k = (q1−q2)/2
is the incoming relative momentum of the two polari-
tons, and k′ is the outgoing relative momentum. The
solid lines are the time-ordered, non-interacting Green’s
function for a single Rydberg state
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where Sq
µ is the overlap of the single polariton eigenstate

on branch µ with momentum q with the Rydberg state.
Using these Feynman rules and performing the integral
over the virtual frequency ω, the diagram in Fig. S2 eval-
uates to
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Neglecting the contribution from two-body poles, the
only genuine three-body poles in the integrand appear
in T sq

2
q
2
(3εD(q0) − εµ(q0 − q), 2q0 + q). When there are

deep two-body bound states, the pole will appear at low
virtual momentum. Evaluating the integral over this pole
will give the lowest order contribution to the three-body
recombination rate. In the absence of two-body bound
states, the only poles in T sq

2
q
2
(3εD(q0)−εµ(q0−q), 2q0+q)

arise from the kinematically allowed loss processes into
free polaritons discussed in the main text, which occur
at large qz.

To more explicitly demonstrate the exponential sup-
pression of these contributions near the inflection point
we note that the two-body T -matrix can be found from
the Lippmann-Schwinger equation for Rydberg polari-
tons generalized to include the transverse momentum [S3]
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where gqss(ω,K) is the non-interacting, time-ordered
Green’s function for two Rydberg states.

For relative momenta qz much larger than g2/c∆,

gqss(ω,K) saturates to the constant

χ̄(ω) = lim
|qz|→∞

gqss(ω,K) (S17)

which implies that the T -matrix for large longitudinal
momentum transfers approaches Tkk′(ω,K) ≈ Uk−k′/α,
where Uk =

∫
d3reik·rU(r) and U(r) is defined in Eq. (1)

of the main text.
From the analysis in the main text we know that,

in the absence of two-body bound states, the three-
body resonances in Eq. (S14) are associated with large
virtual momentum qz. This implies that the three-
body loss will be exponentially suppressed by the term
[T s0q(2εD(q0), 2q0)]2 ≈ |Uq|2/α2 evaluated at the reso-
nant values of q. Near the inflection point there is an
additional suppression of the three-body loss from the
overlap factor with the incoming and outgoing dark-state
polaritons |Sq0

D |6 ≈ Ω2/∆2.

III. PERTURBATIVE INCLUSION OF MASS
ANISOTROPY

In this section, we introduce an approximation method
that includes the effect of the anisotropic mass by treat-
ing the coupling to the higher-partial waves in the
rescaled coordinates perturbatively.

In the rescaled coordinates, the multichannel potential
matrix U``′(r) [see Eq. (S6)] fully describes anisotropic
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FIG. S3: Each non-zero term ∆U ′
`(r) in the perturbative cor-

rection to the potential U00(r) due to anisotropic interactions.
We show the range ` = 0− 6. The mass ratio m⊥/mz = 10.

interactions on the two-body level. In principle, a nu-
merically exact treatment of the three-body scattering
problem requires this multichannel two-body potential,
including all partial waves. However, we can most simply
describe the qualitative affect of anisotropic interactions
on important three-body physics, like the Efimov effect,
using a single-channel two-body potential. To this end
we use a two-body model potential U ′(r) that perturba-
tively includes the affect of anisotropic interactions.

For isotropic interactions the potential matrix U``′(r)
becomes diagonal, and we can fully describe low-energy
scattering using only the s-wave (` = 0) potential. We
find corrections to this potential due to anisotropic in-
teractions using second-order perturbation theory in an
approximation that only captures s-wave resonances [S1],

U ′(r) = U00(r)−
`max∑
` 6=0

U2
0`(r)

U``(r)− U00(r)
, (S18)

where the value `max identifies the highest partial wave
included in the model potential U ′(r). This potential can
be numerically converged by taking the limit `max →∞.

The terms of the sum on the right hand side of equation
(S18) decrease rapidly with increasing l. We define each
term as

∆U ′`(r) = − U2
0`(r)

U``(r)− U00(r)
. (S19)

We show each non-zero term from ` = 0 − 6 in Fig. S3,
where only even partial waves couple to the s-wave chan-
nel. For ` > 6 each term is essentially zero for all r on
this scale.

In order to study Efimov physics we tune the depth of
our model potential U ′(0) such that a two-body bound
state resides at zero energy and the scattering length of
this potential diverges. For each choice of `max this res-
onant depth is slightly different. Table I shows these
depths for a mass ratio m⊥/mz = 10. We see that the

depth converges quickly as a function of `max and that the
addition of ∆U ′6(r) makes less than a 0.1% change in the
depth. Therefore, we neglect contributions to U ′(r) from
channels of partial-wave character greater than ` = 6.
Furthermore, the position of the first scattering reso-
nance computed using this approximation agrees with
the non-perturbative calculations presented in Fig. 2(c)
of the main text and in Sec. I. We choose `max = 6
to construct the model potential U ′(r), and we compute
three-body potentials using this model. Although an ac-
curate description of the three-body physics requires the
full treatment of the anisotropic character of the two-
body interactions, our simple model is able to qualita-
tively describe the dependence of Efimov physics on the
strength of the anisotropy (see, for instance, Ref. [S4])

TABLE I: The depth of the potential U ′(r) that supports a
zero-energy bound state, for each value of `max. The mass
ratio m⊥/mz = 10.

`max

√
−mU ′(0)r0

0 2.3339
2 2.2705
4 2.2645
6 2.2635

IV. EXPERIMENTAL REQUIREMENTS TO
REALIZE LONG-LIVED EFIMOV STATES

The two primary requirements to realize long-lived Efi-
mov trimers of Rydberg polaritons are given by Eq. (7)
and Eq. (12) in the main text. Three other important
considerations are (i) the size of the Efimov state does
not exceed the size of the atomic cloud, (ii) the atomic
density is low enough to avoid molecular Rydberg state
effects [S5, S6, S7, S8] and (iii) the thermal motion of
the atoms does not break up the Efimov states. The first
requirement is of particular relevance for small values of
β because, when the coordinates are transformed back to
the lab-coordinates, we see that the longitudinal size of
the Efimov states will scale as r0 ≈ rb/β. For an atomic
density of 1013 cm−3, we require β < 0.1, which implies
that the length of the atomic cloud should be greater
than 100 µm. For these densities the mean inter-atomic
spacing is around 0.5 µm. To avoid collisions between
the Rydberg electron and other ground state atoms, this
places an upper bound on the Rydberg quantum num-
ber in the range of n = 50 − 100. In the case of 87Rb
this leads to rb ≈ 5 − 15 µm, for which the first polari-
ton scattering resonance [see Fig. 2(c) in the main text]
is readily achievable at these densities. To neglect mo-
tional dephasing of the atoms we require that the doppler
broadening of the two-photon transition is much less than
the binding energy of Efimov states. For the case of 87Rb
at a temperature of 35 µK, the doppler broadening is on
the order of 100 kHz, while the Efimov binding energy



4

scales as Ω2/∆, which can be much larger than 1 MHz
depending on parameters.
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[S6] A. Derevianko, P. Kómár, T. Topcu, R. M. Kroeze, and
M. D. Lukin, Effects of molecular resonances on rydberg
blockade, Phys. Rev. A 92, 063419 (2015).

[S7] J. D. Thompson, T. L. Nicholson, Q.-Y. Liang, S. H.
Cantu, A. V. Venkatramani, S. Choi, I. A. Fedorov, D. Vis-
cor, T. Pohl, M. D. Lukin, et al., Symmetry-protected col-
lisions between strongly interacting photons, Nature 542,
206 (2017).

[S8] H. Busche, P. Huillery, S. W. Ball, T. Ilieva, M. P. A.
Jones, and C. S. Adams, Contactless nonlinear optics me-
diated by long-range Rydberg interactions, Nature Phys.
13, 655 (2017).


