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Resonant enhancement of three-body loss between strongly interacting photons
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Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as
strong as or even stronger than two-body interactions. The three-body interactions can be either dispersive or
dissipative, with both types possibly giving rise to exotic, strongly interacting, and topological phases of matter.
Despite past theoretical and experimental studies of the regime with dispersive interaction, the dissipative regime
is still mostly unexplored. Using a renormalization group technique to solve the quantum three-body problem,
we show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg
polaritons. We demonstrate how these interactions relate to the transmission through a single-mode cavity, which
can be used as a probe of the three-body physics in current experiments.
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Introduction. Systems exhibiting strong interactions be-
tween single photons are an exciting frontier of quantum
optics [1]. They are practically relevant for quantum networks
[2] and can give rise to new exotic states of matter [3–5].
Obtaining better control and understanding of these systems
in the quantum few-body limit is central to realizing this
potential in near-term experiments. An important step in this
direction is the mastery of the three-body problem. Although
in general not analytically solvable, the three-body problem
has emergent universal properties, such as the existence of
Efimov bound states [6]. Moreover, three-body forces can
greatly influence the properties of quantum many-body sys-
tems as in the case of nuclear systems [7], neutron stars [8],
and fractional quantum Hall states [9].

By coupling photons to Rydberg atoms using electromag-
netically induced transparency (EIT) [10], strong and tunable
pairwise interactions between photons are achievable [11–29].
Recently, it has been demonstrated that three-body forces be-
tween Rydberg polaritons can be very strong as well [23,30–
33], which distinguishes them from weaker three-body forces
engineered with ultracold atoms [34] and molecules [35–38].
However, those previous studies considered dispersive three-
body interactions in the regime of unitary evolution, whereas
dissipative interactions in open Rydberg-EIT systems have
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only begun to be explored [39]. Dissipative forces are of
interest as they often lead to exotic nonequilibrium dynamics
in driven-dissipative systems [12,40–43], while also finding
applications in engineering topological phases of matter such
as the Pfaffian state [44].

In this work, we study the influence of dissipative three-
body interactions on the physics of Rydberg cavity polaritons.
Pure three-body scattering processes in Rydberg-EIT sys-
tems are strong and often comparable to two-body effects
[23,24,30,31,45]. There is also evidence that effective three-
body interactions are enhanced in this system [23,30,31]
due to Rydberg blockade effects [46]. Here, by studying a
simplified cavity model that can be treated with a rigorous
renormalization group technique, we clearly establish the ex-
istence of a regime where both dispersive and dissipative
three-body forces can be universally enhanced in a tunable
fashion. This enhancement appears due to a near-resonant
process when the incoming state can conserve energy and mo-
mentum by scattering to a large manifold of intermediate lossy
states. Due to the role played by an intermediate resonant
channel, this effect has similarities to Feshbach resonances
[47]. The interaction can be tuned using the strength and the
frequency of the classical control fields. We show how these
effects can be probed in current experiments by studying the
cavity transmission.

Because of the multicomponent nature of the Rydberg po-
laritons, the theoretical description of the three-body problem
is nuanced and complex. To make progress, we concentrate
on cavity models for interacting Rydberg atoms under EIT
conditions [14,48–52]. We derive analytical formulas for the
interaction-induced shifts in energies and decay rates of three
dark-state polaritons (DSPs). We develop a method to derive
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an effective Hamiltonian for the DSPs alone by solving a
simplified version of the Faddeev equations. It is only with the
considerable simplifications afforded by the Faddeev equa-
tion formalism that we have been able to rigorously solve for
the three-body force in the relevant parameter regimes [53].

Prior work. We now compare our results to previous the-
oretical work on the three-body Rydberg polariton problem
[23,30,31,45]. The present work has the most direct overlap
with Refs. [30,31], but, as mentioned above, those works
consider the limit � � |�|, where only one spin-wave branch
contributes. Here, we must consider the more general problem
that includes both spin-wave branches, significantly increas-
ing the technical challenges. Moreover, Refs. [30,31] made
different heuristic approximations, which led to small quanti-
tative differences between all three solutions for the effective
three-body force: Ref. [30], Ref. [31], and the present work.
The approach presented here is more systematic and can be
rigorously derived as an asymptotic perturbative expansion
of the solutions to the three-body Schrödinger equation. We
present further extensions of these results to general multi-
mode cavities in our upcoming work [54]. Generalizing these
cavity solutions to the free-space problem remains an out-
standing challenge.

In Ref. [23], an alternative approach for free-space was
developed based on defining effective three-body parame-
ters through nonperturbative matching. In this approach, the
three-body parameters are tuned in an effective field theory to
reproduce low-energy observables (e.g., the dimer-polariton
scattering length) obtained from the solution to the micro-
scopic model. This method is based on exact numerical
solutions of the three-body Faddeev equations, which in-
creases accuracy, but can be difficult to implement.

Finally, Ref. [45] studies an enhanced three-body loss fea-
ture in free space that occurs in a similar parameter regime to
the one we consider here, but has a richer physical origin due
to the complexity of the free-space problem. It is argued in
Ref. [45] that the observed resonant enhancement of three-
body loss can be explained through a perturbative analysis
of the effective interactions. In the analysis of Ref. [45], the
enhanced three-body loss arises from a resonant enhancement
of the effective two-body potential when the blockade radius
goes to zero. In contrast, the enhancement found in the present
work arises from a resonant three-body process that does not
play a role in the two-body problem.

System. The medium we consider consists of three-level
atoms with ground state |g〉 and an intermediate state |p〉
coupled to Rydberg state |s〉 by a coherent laser, with Rabi
frequency � and a complex detuning � = δ − iγ [Fig. 1(a)],
which captures the |p〉 state’s decay rate 2γ . The atomic
cloud is suspended in a single-mode running-wave cavity. The
quantum photon field, with collective coupling g, is tuned to
the EIT resonance with the noninteracting Hamiltonian

H0 =
∫

dz �ψ†(z)

⎛
⎝ 0 g 0

g � �

0 � 0

⎞
⎠ �ψ (z), (1)

where �ψ†(z) = [u∗
0(z)a†, P†(z), S†(z)] is a vector of bosonic

creation operators for the cavity field a with mode func-
tion u0(z) and atomic states |p〉 , |s〉 at position z. We set

FIG. 1. (a) Gas of neutral atoms is suspended in an optical cav-
ity. Each atom is a three-level system with the ground state |g〉,
intermediate lossy state |p〉 with half-width γ , and a high-lying
Rydberg state |s〉, which experiences strong interactions. Classical
control field with Rabi frequency � and detuning δ couples states |p〉
and |s〉. Quantum photon field with collective coupling g drives the
|g〉 - |p〉 transition and is tuned to the two-photon resonance between
states |g〉 and |s〉 (via |p〉). (b) Energy of the upper (blue) and lower
(green) branches of spin waves as a function of the single-photon
detuning. At δ = �/

√
2 scattering of three DSPs (black) into spin

waves (dotted purple) is on resonance.

h̄ = 1 throughout. We assume that the energy splitting to
other modes of the cavity is much larger than g, which
is, in turn, much larger than all the other energy scales.
In this single-mode limit, H0 couples the cavity field to
one |p〉 mode and one |s〉 mode, both with the same
mode function u0(z). Diagonalizing the resulting 3 × 3 ma-
trix leads to three eigenmodes. The zero-energy mode is
the DSP, which has no overlap with the lossy intermediate
state. The two “bright-state” polariton modes are energeti-
cally separated and do not influence the DSP behavior in
the experimentally relevant limit of strong coupling (large
g) considered here. In practice, g = √

γ cOD/2L, and it is
sufficient to have OD/L � 0.1 μm−1 for our analysis to
apply, which is readily achieved in experiment [29]. The
remaining eigenstates of H0 (spin waves) correspond to the
excitations of the atomic cloud, have no photonic com-
ponent, and couple to the polaritons only via atom-atom
interactions. In the presence of Rydberg interactions Hint =
1
2

∫
dzdz′S†(z)S†(z′)V (z − z′)S(z′)S(z), polaritons experience

an effective two-body potential [55–57]

U2(ω; r) = V (r)

1 − χ (ω)V (r)
, (2)

where χ (ω) is a function of �,�, and the energy ω of the
incoming polaritons. The bare interaction V (r) = C6/r6 is
the van der Waals potential between two atoms separated by
distance r. We see that, at large distances, the 1/r6 tail is trans-
ferred onto the polaritons, while, for r below the blockade
radius rb = |χ (0)C6|1/6, the two Rydberg states are shifted
out of resonance (the so-called Rydberg blockade mechanism)
leading to a saturation of the effective potential.

To gain insight into few-body interactions, we consider
a cavity as our setup, since its treatment requires only a
finite number of photonic modes. When there are only a
few relevant photonic modes, there is a natural separation of
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scales that appears between low-energy polaritons and high-
energy atomic excitations (spin waves). We take advantage
of this energy separation to obtain an effective theory for
the polaritons—renormalized by the influence of high-energy
spin waves.

For simplicity, we consider an effectively one-dimensional
running-wave cavity with a single, fixed-momentum photonic
mode on EIT resonance and a uniform density of atoms
filling the entire cavity mode. We present the generalization
of our results to nonuniform setups, e.g., as in Fig. 1(a), in
our upcoming work [54]. We focus on this model because it
captures generic features of multimode systems, while simpli-
fying technical aspects of the calculations.

Independent of the geometry, in such cavity models, the
interactions between polaritons most simply appear as shifts
in the energies and decay rates of the polariton modes. To
calculate these shifts, we use a master equation description
of the problem in the weak-driving regime, such that the anti-
Hermitian part of the non-Hermitian Hamiltonian is sufficient
to account for losses in the system [58]. Complex energy shifts
for the two- and three-body problems coincide with the value
of poles in the corresponding two- and three-body T matrix
describing correlation functions in this system.

Qualitative picture. Before moving to the main derivations,
we discuss the physical origin of the enhanced three-body dis-
sipation in our system as it has an intuitive explanation. Three
dark-state polaritons propagating at EIT resonance have zero
energy. At the same time, upper and lower branches of spin
waves have energies ε± = 1

2 (� ± √
�2 + 4�2). Strong losses

occur at δ = �/
√

2 because, at this point, 2ε− + ε+ = 0,
which means that three-body scattering into lossy atomic ex-
citations is on energetic resonance [Fig. 1(b)].

Two-body problem. First, we turn to the two-body problem.
Consider an incoming state of two polaritons (labeled 1 and 2)
initially located at positions �x = (x1, x2) and later measured
at positions �x′ after interactions take place. The amplitude
for this process can be described within the framework of
scattering theory. The multicomponent nature of the polariton
problem means that the full (bold) two-body T matrix T̂ 2(ω)
is a 3 × 3 operator-valued matrix. However, only the Rydberg
(|s〉) component experiences interactions. Therefore, we can
restrict our considerations to the ss component T̂2(ω) of the
full two-body T matrix T̂ 2(ω) [55,59,60]. T̂2(ω) is governed
by the Lippmann-Schwinger equation; see Fig. 2(a). In these
cavity problems, one can equivalently study the integrated T
matrix T2(ω) ≡ ∫

d�xd�x′ T2(ω; �x, �x′), where T2(ω; �x, �x′) is the
matrix element of T̂2 in coordinate space. Then, the solution
of the Lippmann-Schwinger equation is

T2(ω) = ωU2(ω)

ω − U2(ω)[1 − ω χ (ω)]
, (3)

where U2(ω) ≡ ∫
dr
L U2(ω; r) and L is the mode volume of the

DSP. The two-body energy shift is given by the poles of T2(ω).
Three-body problem. Previous works on the three-body

problem for Rydberg polaritons considered the restricted limit
� � |δ| [30–32]; here, we extend the regime of applicability
to � > |δ|, which allows for a more general description of
the system, including repulsive photons [55] and dissipative
behavior.

FIG. 2. (a) Diagrammatic representation of the Lippmann-
Schwinger equation for the scattering of two dark-state polaritons.
Processes with only one spin wave are forbidden by momentum
conservation. (b) Schematic representation of Faddeev equations for
the three-body T matrix T 12

3 (ω), where particles 1 and 2 interact first.
(c) Truncation of the three-body equations (b) to second order in rb/L
allows us to express the spin-wave contribution using an effective
three-body potential U3 between DSPs.

Although dramatically simplified, the three-body problem
cannot, to the best of our knowledge, be solved exactly in
the single-mode cavity model considered here. Instead, we
approximate the full result by a power series in the small pa-
rameter rb/L, which is effectively the product of the blockade
radius and the density of polaritons in this few-body limit.
We stress that this approach is still nonperturbative in the
bare interaction V (r). Our final expression for the three-body
energy shift to second order in rb/L is given by [53]

δE3 = rb

L
E (1)

3 + r2
b

L2
E (2)

3 + O
(
r3

b

/
L3

)
= 3U2︸︷︷︸

O(rb/L)

+ 3U3 + 3U2(3U ′
2 − χ U2)︸ ︷︷ ︸

O(r2
b /L2 )

,
(4)

where U3 is a universal effective three-body force (Fig. 2)
and U ′

2 ≡ dU2(ω)/dω|ω=0. U3 has a similar expression to U2

as an integral over a local three-body potential and arises
in any cavity geometry, even if the three photons were to
occupy different modes, as long as the modes spatially overlap
[53,54]. The other terms at order r2

b/L2 represent additional
nonlocal, nonperturbative corrections that are specific to the
cavity geometry we consider.

In contrast to the two-body problem [55], the three-body
Rydberg polariton problem cannot be reduced to a single
scalar equation—even in the perturbative expansion in rb/L.
Inspired by the seminal work of Faddeev on three-body quan-
tum systems [61], we take the Faddeev equation approach to
solving the Schrödinger equation. An indispensable advantage
in the present case is that the Faddeev equations can be ex-
pressed entirely in terms of Rydberg spin-wave correlation
functions, which simplifies the theoretical treatment of the
multicomponent nature of DSPs. In this formalism, the three-
body problem can be recast as an infinite series of two-body
interactions. All scattering processes are grouped depending
on which pair of particles interacts first. Crucially, the T ma-
trix separates into the sum T̂3(ω) = 1

3

∑
i< j T̂ i j

3 (ω, εk ), where
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FIG. 3. (a) Ratio of imaginary parts of E (2)
3 and E (1)

3 at γ /� =
0.01. Near δ/� = 1/

√
2, we observe enhancement caused by a

three-body resonance. δ = � is a singular point where rb → 0.
(b) Real and imaginary parts of E (2)

3 as a function of γ /� at
δ/� = 1/

√
2. Inset: Our numerical results (blue) agree with an-

alytical scaling arguments (dashed red) suggesting that the ratio
Im(E (2)

3 )/Re(E (2)
3 ) diverges as �/γ in the limit γ /� → 0.

T̂ i j
3 (ω, εk ) denotes the T matrix for scattering where particles

i, j interact first and the third particle k 
= i, j has incom-
ing energy εk . Similarly to the two-body case, we consider
just the sss component T̂3 of the full three-body T matrix
T̂ 3. The equation for T̂ 12

3 (ω, ε), when all outgoing states are
DSPs, is

T̂ 12
3 (ω, ε) = T̂ 12

2 (ω − ε)ĝs(ω)
[
T̂ 23

2 (ω) + T̂ 13
2 (ω)

]
+

∫
d ε̃ T̂ 12

2 (ω − ε)ĝs(ε̃)ĝs(ω − ε − ε̃)

× [
T̂ 23

3 (ω, ε̃) + T̂ 13
3 (ω, ε̃)

]
, (5)

where T̂ i j
2 describes the two-body scattering of particles

labeled i, j. The Rydberg-component propagator ĝs is a
complex object that involves contributions from different
spin-wave branches and the DSP mode. Note that the simple
form of Eq. (5) is thanks to the use of abstract operators. The
representation in, e.g., a coordinate basis is more involved
[53].

To derive an effective DSP theory, we separate spin-wave
and DSP components in ĝs, which will allow us to perform
the expansion in rb/L. The equation for the T matrix describ-
ing DSP-to-DSP scattering T̂3(ω) ≡ T̂ 12

3 (ω, 0) is represented
diagrammatically in Fig. 2(b), where we explicitly showed
separated spin-wave (red) and DSP (black) propagators. Next,
we restrict both sides of Eq. (5) to the second order in rb/L.
For this purpose, we keep only those terms where either the
sum over a macroscopic number of spin waves is present or
the all-dark intermediate state arises. Finally, we rewrite the
original Faddeev equations in an approximate form shown
in Fig. 2(c)—without any spin-wave degrees of freedom. We
provide the full set of equations in the Supplemental Material
[53].

In Fig. 3(a), we characterize the strength of three-
body loss using the ratio of the expansion coefficients
Im(E (2)

3 )/Im(E (1)
3 ). The denominator Im(E (1)

3 ) from Eq. (4)
contains contributions to three-body loss from disconnected
two-body processes only. We see the expected enhancement
at the resonance condition δ = �/

√
2 [62]. There is another

resonant feature at δ = � that arises due to the vanishing (in

FIG. 4. (a) Three-body loss parameter r3 in units of 
−2 as a
function of real and imaginary parts of u3/
 for the case of u2 = 0,
which corresponds to negligible two-body correlations in the mi-
croscopic model. (b) Growth of the three-body correlation function
η3(0, 0) (red) and that of three-body loss (blue). The parameters used
are �/2π = 30 MHz, 2γ /2π = 6.1 MHz, L = 100 μm, OD/L �
0.1 μm−1, 
/� = 2/3, and C6/2π = 1.8 THz μm6.

the limit of small γ ) of the two-body susceptibility χ and, con-
sequently, rb. This phenomenon appears even for a two-body
problem, and in our case leads to an overall enhancement of
both two and three-body interactions, which is not desired. In
contrast, for the three-body resonance condition δ = �/

√
2,

there are no resonant features that appear in the two-body
problem.

In Fig. 3(b), we show the dependence of E (2)
3 on the decay

rate γ at the resonance condition δ = �/
√

2. We find a diver-
gence as γ /� → 0 (see inset) indicating that the enhancement
factor for three-body loss can be made arbitrarily large. This
behavior is in agreement with analytical scaling arguments
that predict Im(E (2)

3 ) ∼ 1/γ , which stems from the fact that,
for finite γ , we have Im(2ε− + ε+) ∼ γ .

Experimental probing. In order to relate our microscopic
description to experimentally measurable quantities, we now
study transmission of photons resonant with the DSP modes
in the cavity, which is essential for experimental relevance
of this work. Our analysis follows directly from the prior
sections upon including a waveguide as an additional element
in the model. Taking a weak-coupling limit between the cavity
and this waveguide leads to an effective low-energy model for
the transmission where the only excitations in the cavity are
the DSPs [53,63,64],

H = −i(
 + κ )b†b + u2(b†)2b2 + u3(b†)3b3, (6)

where b† is a bosonic creation operator for the DSPs, 2
 is
the decay rate of DSPs from the cavity into the waveguide,
2κ is the decay rate to other modes, and the coefficients
u2, u3 are chosen to match the energy shifts δE2, δE3, calcu-
lated from the full microscopic theory, through u2 = δE2 and
u3 = δE3 − 3 δE2. First, we focus on the limit where three-
body effects dominate by taking u2 = 0 in Eq. (6). We use a
measure of three-body loss, r3 = ∫

dτ1dτ2 [1 − g(3)(τ1, τ2)],
that is appropriate when all decay is into the waveguide (κ =
0) and when two-body interactions u2 are negligibly small.
Here, g(3)(τ1, τ2) is the three-photon correlation function at
the output of the waveguide and τ1,2 are relative coordinates.
The r3 parameter measures the probability that three photons
are lost from the pulse due to the interactions. In Fig. 4(a),
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we show a contour plot of r3 as a function of the real and
imaginary parts of the three-body interaction u3. Interestingly,
r3 does not increase arbitrarily as the three-body loss rate is
increased, but instead has a maximum value at Im(u3) ∼ 


due to quantum Zeno-like effects. When u2 is nonzero, a more
appropriate measure of three-body loss is a positive peak in
the connected correlation function η3(0, 0) = 3g(2)(0) − 2 −
g(3)(0, 0) [45]. In Fig. 4(b), we plot η3(0, 0) for parameters
close to those of the usual Rydberg experiments [29]. We
observe a peak in η3(0, 0) near the resonance, indicating a
strong enhancement of the three-body loss.

Outlook. In this work, we showed the existence of a param-
eter regime for Rydberg polaritons where three-body loss can
be resonantly enhanced. We focused on dissipative dynam-
ics because, for currently accessible experimental parameters
[25–28], the dissipative interactions can be strongly enhanced
by working close to the resonance. Through further experi-
mental improvements and by tuning slightly away from the
resonance, one could also operate in a regime of enhanced
dispersive three-body interactions. We would like to stress
that although our results are based on a perturbative expan-
sion, this does not mean the interactions are weak. On the

contrary, the asymptotic expansion in rb/L means that our
results hold for arbitrary optical depths and can give rise to
strong effects on the correlations between few photons [65].
The extension of the presented work to free space is another
important direction to explore. Our work clearly demonstrates
the possibilities offered by Rydberg-EIT to tune the properties
of multibody interactions. This motivates further exploration
of possible interactions, which might give rise to different
exotic phases of matter [33,66].
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