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d-wave superfluidity in optical lattices of ultracold polar molecules
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Recent work on ultracold polar molecules, governed by a generalization of the t-J Hamiltonian, suggests that
molecules may be better suited than atoms for studying d-wave superfluidity due to stronger interactions and larger
tunability of the system. We compute the phase diagram for polar molecules in a checkerboard lattice consisting
of weakly coupled square plaquettes. In the simplest experimentally realizable case where there is only tunneling
and an XX-type spin-spin interaction, we identify the parameter regime where d-wave superfluidity occurs. We
also find that the inclusion of a density-density interaction destroys the superfluid phase and that the inclusion of
a spin-density or an Ising-type spin-spin interaction can enhance the superfluid phase. We also propose schemes
for experimentally realizing the perturbative calculations exhibiting enhanced d-wave superfluidity.
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I. INTRODUCTION

The Hubbard Hamiltonian is believed to contain some of
the ingredients necessary to explain high-temperature super-
conductivity in cuprates [1–3]. The difficulties of analytically
understanding the Hubbard Hamiltonian in more than one
dimension suggest the use of experimental quantum simulators
to investigate the physics of this model, and important
experimental progress in this direction has been made with
lattices of ultracold atoms [4–10]. In the context of high-
temperature superconductivity, the most relevant regime of the
Hubbard Hamiltonian is the limit of strong on-site interactions,
in which the model reduces to the t-J Hamiltonian [1–3].
Here t is the nearest-neighbor tunneling amplitude and J is
the nearest-neighbor exchange interaction originating from
second-order virtual hopping. Unfortunately, the exchange
interactions are so small that it is extremely difficult to observe
the associated physics in the cold-atom implementation [8].

Recently, the polar molecules KRb and LiCs have been
cooled to their electronic, rotational, and vibrational ground
states [11–14], and KRb has been loaded into a three-
dimensional optical lattice [15]. This system can be used to
implement lattice Hamiltonians based on rotational states of
polar molecules [16–32]. Specifically, two rotational states
of the molecules can be used as an effective spin-1/2
degree of freedom, while dipole-dipole interactions mediate
“spin”-dependent coupling between molecules. For molecules
on neighboring sites, the strength of these dipole-dipole
interactions is ∼1 kHz for KRb and ∼100 kHz for LiCs.
These interactions are much stronger than the exchange
interactions between ultracold atoms (�1 kHz [9]). Therefore,
polar molecules seem to be better candidates for the simulation
of certain condensed matter phenomena.

Recently, it was shown that polar molecules in optical
lattices can be used to simulate a highly tunable generalization
of the t-J Hamiltonian, referred to as the t-J -V -W Hamil-
tonian [30,31]. The latter differs from the t-J Hamiltonian
in the following aspects: it has anisotropic XXZ spin-spin
interactions J⊥ and Jz, an independent density-density inter-
action V , a spin-density interaction W , and the interactions
are long-range dipolar rather than nearest-neighbor. This

Hamiltonian is highly tunable, and the strengths of these
interactions can, in principle, be varied independently in
experiments. In particular, the regime J > t can be achieved,
which is not possible with cold atoms where J originates from
second-order virtual hopping. Furthermore, in Ref. [31], it was
shown that, in one dimension, the t-J -V -W model can support
enhanced superfluidity relative to the standard t-J model.

In this paper, we use the tunability of the t-J -V -W Hamil-
tonian to find parameter regimes supporting robust d-wave
superfluidity in one- and two-dimensional systems of weakly
coupled plaquettes [33–38]. Furthermore, we demonstrate that
this solvable limit and the associated d-wave superfluidity are
experimentally realizable. Finally, we believe that this limit can
provide qualitative guidance for the case of the homogeneous
two-dimensional lattice.

Throughout the paper, we consider, for simplicity, an
average filling of three molecules per plaquette. In the sim-
plest experimentally realizable case where Jz = V = W = 0,
referred to as the t-J⊥ Hamiltonian, we find three phases: a
d-wave superfluid of bound holes, a checkerboard solid of
alternating plaquettes of bound holes, and phase separation of
bound holes. We find that the addition of a density-density
interaction proportional to V destroys the superfluid phase
in the perturbative limit. We also find that an Ising-type
spin-spin interaction proportional to Jz or a spin-density
interaction proportional to W can enhance the superfluid phase
for certain parameter regimes.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the t-J -V -W Hamiltonian and briefly
discuss its experimental implementation with polar molecules
in optical lattices. In Sec. III, we analyze the t-J⊥ Hamiltonian
in detail solving the single-plaquette Hamiltonian exactly
and calculating the phase diagram perturbatively. In Sec. IV,
we analyze the effects of the Jz, V , and W terms on
the superfluid phase. In Sec. V, we present proposals for
experimentally realizing the perturbative calculations for one-
and two-dimensional systems of plaquettes. Finally, in Sec. VI,
we present conclusions. Appendix A gives a brief summary
of the group theoretic techniques used to solve the single-
plaquette Hamiltonians exactly and describes the symmetries
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FIG. 1. (Color online) Geometry of plaquettes. J schematically
denotes all dipolar interactions J⊥, Jz, V , and W . Within each
plaquette, solid blue lines contain tunneling of amplitude t and dipolar
interactions of strength J , while solid red lines only contain dipolar
interactions of strength J/(2

√
2). Nearest-neighbor plaquettes are

then linked with tunneling of amplitude t ′ and dipolar interactions of
strength J ′, shown as dotted blue lines, where t ′ � t and J ′ � J .
Furthermore, nearest-neighbor and next-nearest-neighbor plaquettes
are linked with dipolar interactions of strength J ′/(2

√
2), shown as

dotted red lines. The numbering of sites in a single plaquette is shown
in black.

of the solutions. Appendix B gives explicit expressions for the
basis vectors of the irreducible representations discussed in
Appendix A, and Appendix C gives explicit expressions for
important ground-state energies and states.

II. THE t- J-V -W HAMILTONIAN

In the following calculations, we consider nearest-neighbor
and next-nearest-neighbor interactions on a square lattice as
shown in Fig. 1 and approximate the Hamiltonian [30,31] as

H = −
∑

〈r,r ′〉,σ
trr ′

(
c†rσ cr ′σ + c

†
r ′σ crσ

)

+
⎛
⎝∑

〈r,r ′〉
+ 1

2
√

2

∑
〈〈r,r ′〉〉

⎞
⎠ [

J⊥rr ′

2

(
S+

r S−
r ′ + S−

r S+
r ′
)

+ Jzrr ′Sz
r S

z
r ′ + Vrr ′nrnr ′ + Wrr ′

(
nrS

z
r ′ + nr ′Sz

r

) ]
, (1)

where c
†
rσ is the creation operator for a hardcore fermionic

molecule at the lattice site r with effective spin σ , nrσ =
c
†
rσ crσ , nr = nr↑ + nr↓, S+

r = c
†
r↑cr↓, S−

r = (S+
r )†, and Sz

r =
(nr↑ − nr↓)/2. The tunneling amplitude trr ′ and the dipolar
interaction strengths J⊥rr ′ , Jzrr ′ , Vrr ′ , and Wrr ′ are t , J⊥, Jz,
V , and W , respectively, if the sites r and r ′ are in the same
plaquette and are t ′, J ′

⊥, J ′
z, V ′, and W ′, respectively, if the sites

are in neighboring plaquettes. The 〈〉 signify that the sums are
taken over nearest-neighbor bonds and the 〈〈〉〉 signify that the
sums are taken over next-nearest-neighbor (diagonal) bonds.
The next-nearest-neighbor bonds have a factor of 1/(2

√
2)

since they are a factor of
√

2 longer than the nearest-neighbor
bonds and since the dipole-dipole interaction strength falls off
inversely as distance cubed. Equation (1) omits the energies

of the states |↑〉 and |↓〉 since we work at fixed numbers of up
and down molecules.

The Hamiltonian given by Eq. (1) could be experimentally
realized by loading ultracold polar molecules into an optical
lattice and applying an external dc electric field perpen-
dicular to the plane of the lattice [30,31]. Two rotational
states |m0〉 and |m1〉 of a molecule form the effective spin
states |↑〉 and |↓〉, respectively. The preparation of these states
is discussed below in Sec. V A 2. Due to the dc electric
field, these states have permanent electric dipole moments.
The Jz, V , and W interaction terms in Eq. (1) can be
understood as the classical dipole-dipole interactions between
these permanent dipole moments. The J⊥ interaction term
arises due to the transition dipole moment between |m0〉
and |m1〉. Large chemical reaction rates [39–41] and large
interactions between molecules on the same lattice site enforce
the hardcore constraint [30].

The amplitudes and signs of J⊥, Jz, V , and W can be tuned
independently [30] by tuning the external dc electric field and
applying external microwave fields [17–19,21–25,29,42–46].
The tunneling amplitude t (assumed to be positive throughout
the paper) can be tuned by adjusting the depth of the optical
lattice.

III. ANALYSIS OF THE t- J⊥ HAMILTONIAN

The simplest experimental realization of Eq. (1) can be
obtained by applying a very weak external dc electric field.
In this case, the permanent electric dipole moments are very
small, making Jz, V , and W negligible relative to J⊥, which
is proportional to the square of the transition dipole moment.
In this section, we study the resulting t-J⊥ Hamiltonian given
by Eq. (1) with Jz = V = W = 0 and J ′

z = V ′ = W ′ = 0. In
Sec. III A, we describe the exact diagonalization of the t-
J⊥ Hamiltonian for a single plaquette and identify a set of
conditions necessary, within our perturbative analysis, for the
observation of d-wave superfluidity. In Sec. III B, we calculate
the phase diagram for a two-dimensional lattice of plaquettes
perturbatively.

Throughout the remainder of this paper, we use the
following notation for states. A ket with one number |n〉 refers
to a single plaquette with n = n↑ + n↓ total molecules. A ket
with two numbers separated by a comma |n↑,n↓〉 refers to a
single plaquette with n↑ spin-up molecules and n↓ spin-down
molecules. A tensor product of two kets |nR〉|nR′ 〉 refers to a
system of two plaquettes with nR total molecules on plaquette
R and nR′ total molecules on plaquette R′.

A. Single-plaquette analysis

We use the point symmetries of the square, described by
the group D4, and the conservation laws of the Hamiltonian
to simplify the task of diagonalizing the single-plaquette
Hamiltonian with Hilbert space dimension 34 = 81 and to
understand the symmetries of the resulting eigenstates. First,
the operators n↑ and n↓ (which measure the number of up
and down molecules on a single plaquette) commute with the
Hamiltonian and with each other, so we can diagonalize sub-
spaces with fixed values of n↑ and n↓ separately. This reduces
the subspace dimensions to 12 for the largest subspaces. We
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TABLE I. (Color online) Symmetries corresponding to the
irreducible representations of the group D4 as is discussed in
Appendix A [33,38,47]. Wave-function symmetries are plotted in
the x-y plane. Note that the A1 representation is symmetric under
all symmetry operations of the square and that the A2 representation
is antisymmetric under π rotations about the x and y axes and the
lines y = x and y = −x. The A2 wave functions can be thought of
as being positive (blue) on the front and negative (red) on the back,
while all other wave functions have the same polarity on both sides
of the wave function.

Representation Symmetries

A1 s

A2 s

B1 dx2−y2

B2 dxy

E px and py and

then use the basis functions of the group D4 to diagonalize
the Hamiltonian for each irreducible representation separately.
This requires diagonalizing 3 × 3 matrices at worst. The
symmetries of the resulting eigenstates correspond to the
symmetries of the irreducible representations summarized in
Table I.

The Hamiltonians for subspaces of constant n↑ and n↓ were
diagonalized in the representation basis using the methods
described below in Appendix A. The ground states of a single
plaquette with fixed total number of molecules n = n↑ + n↓
are summarized in Table II. In order to construct robust d-wave
superfluids at 3/4 filling (three molecules per plaquette), we
would like it to be energetically favorable for two holes to
condense on the same plaquette. This condition is achieved if
the binding energy of two holes [33–38]

�t = 2Eg(3) − Eg(4) − Eg(2) (2)

is positive, where Eg(n) is the energy of the ground state of |n〉.
�t is shown in Fig. 2(a). The d-wave matrix element between

FIG. 2. (Color online) (a) Binding energy �t for two holes and
other relevant energies �⊥, �31, �40, and �2g , all of which must be
positive for the Hamiltonian to support d-wave superfluidity within
our treatment. (b) |〈4|�†

d |2〉| for a single plaquette, which must be
nonzero for the Hamiltonian to support d-wave superfluidity within
our treatment.

|2〉 and |4〉
〈4|�†

d |2〉
must also be nonzero for d-wave superfluidity to be possible.
�

†
d is the d-wave symmetric pair creation operator defined

as [37,48]

�
†
d = 1

2

(
s
†
12 + s

†
34 − s

†
14 − s

†
23

)
, (3)

where

s
†
rr ′ = 1√

2

(
c
†
r↑c

†
r ′↓ − c

†
r↓c

†
r ′↑

)
(4)

creates a singlet between sites r and r ′. Since s
†
rr ′ = s

†
r ′r , �

†
d

has dx2−y2 symmetry and creates a pair of molecules with

dx2−y2 symmetry. Thus, the condition 〈4|�†
d |2〉 �= 0 ensures

d-wave symmetry of bound hole pairs. |〈4|�†
d |2〉| is shown in

Fig. 2(b).
From the information in Table II, we can understand the

behavior of �t and |〈4|�†
d |2〉| shown in Fig. 2. We see that

for all values of J⊥/t , the ground state of |4〉 is a |2,2〉 in
the B1 representation and thus always has dx2−y2 symmetry.
For J⊥/t < −1.22, the ground state of |2〉 is a |1,1〉 in the E

representation and thus cannot exhibit d-wave superfluidity.
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TABLE II. Ground-state configurations and symmetries of states
with constant n = n↑ + n↓. The results are symmetric under inter-
change of up spins with down spins. The ground state for four
molecules is always |2,2〉 in the B1 representation; however, there
are two copies of the B1 representation for the |2,2〉 subspace, see
Appendix A, and the particular ground state changes at J⊥/t = 0
even though the symmetry of the ground state remains dx2−y2 .

J⊥/t n↑,n↓ Representation

∈(−∞,∞) 1,0 A1

<− 1.22 1,1 E

>− 1.22 1,1 A1

<0 2,1 A2

∈(0,0.66) 3,0 A2

∈(0.66,4.62) 2,1 E

>4.62 2,1 B1

<0 2,2 B1

>0 2,2 B1

For J⊥/t > −1.22, the ground state changes to a |1,1〉 in the
A1 representation and thus has s-wave symmetry. This change
in representations accounts for |〈4|�†

d |2〉| becoming nonzero
at J⊥/t = −1.22 and the kink in �t at the same value. The
change in the |4〉 ground state at J⊥/t = 0, while retaining the
dx2−y2 symmetry, accounts for the large jump in |〈4|�†

d |2〉| at
this value.

For 0 < J⊥/t < 0.66, the ground states of |3〉 are a |3,0〉
and a |0,3〉 in the A2 representation; for all other values of
J⊥/t , the ground states are a |2,1〉 and a |1,2〉. At J⊥/t = 0.66,
the state changes to the E representation and at J⊥/t = 4.62
the state changes to the B1 representation. These changes in
representations account for the kinks in �t at these values of
J⊥/t . �t crosses the positive J⊥/t axis at J⊥/t = 0.82. For
J⊥/t > 0.82, the condition |〈4|�†

d |2〉| �= 0 also holds. Thus in
this regime, holes bind into d-wave symmetric pairs, which
are necessary for d-wave superfluidity.

The t-J⊥ Hamiltonian is an improvement over the Hubbard
Hamiltonian in that the binding energy �t for the Hubbard
Hamiltonian is positive only for a narrow parameter region 0 <

U/t < 4.6 [37]. Furthermore, the binding energy reaches a
maximum for the Hubbard Hamiltonian [37] while it increases
with J⊥/t for the t-J⊥ Hamiltonian.

For positive values, the binding energy �t is the amount
that the ground state |2〉|4〉 or |4〉|2〉 is energetically favorable
over the ground state |3〉|3〉, which could be coupled to |2〉|4〉
and |4〉|2〉 through tunneling t ′. For positive values of �t it is
also necessary to consider the energy difference between the
lowest energy states coupled to |2〉|4〉 and |4〉|2〉 through the
spin interaction J ′

⊥:

�⊥ = Eg(0,2) + Eg(3,1) − Eg(1,1) − Eg(2,2),

where Eg(n↑,n↓) is the energy of the lowest |n↑,n↓〉 state. �⊥
is shown in Fig. 2(a) for values of J⊥/t where �t > 0 and
|〈4|�†

d |2〉| �= 0. The sizes of the binding energies �t and �⊥

roughly correspond to how large t ′ and J ′
⊥ can be, respectively,

to stay within the perturbative limit.
For J⊥/t > −1.22, the ground state of |2〉 is an s-wave

|1,1〉 in the A1 representation. However, another |1,1〉 state in
the E representation becomes close in energy to the ground
state for large J⊥/t . So we define a third energy difference

�2g = Eg(1,1(E)) − Eg(1,1(A1))

to quantify the energy gap between these two |2〉 states.
Here Eg(1,1(�)) is the energy of the lowest |1,1〉 state in
the irreducible representation �. �2g roughly corresponds
to how large the overall perturbing Hamiltonian Heff linking
plaquettes can be to stay within the region of validity of our
analysis. �2g is also shown in Fig. 2(a) for values of J⊥/t ,
where �t > 0 and 〈4|�†

d |2〉 �= 0.
Provided that �t > 0, in a full lattice of decoupled plaque-

ttes with 3/8 of the lattice sites occupied by up molecules and
3/8 of the lattice sites occupied by down molecules, it could,
in principle, be energetically favorable for the molecules to
arrange themselves in configurations other than two and four
molecules on a plaquette throughout the entire lattice. Since
�t > 0, it will be energetically costly to change |2〉|4〉 to |3〉|3〉.
Two four-molecule plaquettes |4〉|4〉 cannot rearrange their
molecules since they are at maximum filling. However, it is
possible for two two-molecule plaquettes |2〉|2〉 to rearrange
themselves to |3〉|1〉 or |4〉|0〉. Thus, it is also necessary to
consider the binding energies

�31 = Eg(3) + Eg(1) − 2Eg(2)

and

�40 = Eg(4) + Eg(0) − 2Eg(2) = Eg(4) − 2Eg(2).

Both �31 and �40 are shown in Fig. 2(a).
As is shown in Fig. 2(a), when �t is positive, the other

relevant energies are also positive for J⊥/t less than about
12. For J⊥/t greater than about 12, �40 becomes negative,
and it becomes energetically favorable for a |2〉|2〉 to change
to a |4〉|0〉 or |0〉|4〉, in which case the manifold of states
consisting of only |2〉 and |4〉 plaquettes stops being the true
ground state. However, the phase diagram based on |2〉 and |4〉
plaquettes can still be studied experimentally by adiabatically
preparing these (no longer ground) states beginning with easily
preparable excited states. A calculation to minimize the energy
of a full lattice of plaquettes with t ′ = J ′

⊥ = 0 confirms that a
lattice with half of the plaquettes as |2〉 and half as |4〉 is the
ground state when �40 and �t are positive.

Although it is outside the scope of the present paper, we
point out that the narrow region 0 < J⊥/t < 0.66, where |0,3〉
and |3,0〉 are the degenerate ground states, could support
Nagaoka ferromagnetism [49,50].

B. Double-plaquette analysis

In this section, we describe the behavior of the full lattice
of plaquettes. We use Schrieffer-Wolff transformations to find
the interactions between nearest-neighbor and next-nearest-
neighbor plaquettes to second order in t ′/t and J ′

⊥/t . We then
derive an effective XXZ Hamiltonian and solve for the phase
diagram in the perturbative limit.
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1. Schrieffer-Wolff transformations

We solve the problem of two coupled plaquettes with
second-order perturbation theory through the Schrieffer-Wolff
transformation [51]. There are six relevant double-plaquette
problems in describing a full two-dimensional lattice. A |4〉 can
interact with another |4〉 or with a |2〉, and a |2〉 can also interact
with another |2〉. For each of these three cases, the plaquettes
can be situated either next to each other or diagonally.

In all cases, the unperturbed Hamiltonian is the tensor
product of two single-plaquette Hamiltonians

H0 =
[

0 0

0 U

]
(5)

written here in the basis that diagonalizes it. If the dimension
of the two-plaquette Hilbert space is d and the ground state is
l-fold degenerate, then the upper left 0 is an l × l zero matrix
and U is a (d − l) × (d − l) diagonal matrix with the energy
differences between the ground and excited states along the
diagonal. The |2〉 and |4〉 energies differ; however, since the
number of |2〉 and |4〉 plaquettes is constant, we drop these
energies here.

The perturbing Hamiltonian is

H1 =
[

H1g H1ge

HT
1ge H1e

]
,

where H1g defines the first-order shifts in the energies of
the ground states due to the perturbation, H1ge defines the
couplings between the ground and excited states, and H1e

defines the couplings between the excited states and the
first-order shifts in the energies of the excited states. The
effective Hamiltonian for the low-energy subspace is then

Heff = H1g − H1geU
−1HT

1ge + · · · . (6)

For the remainder of the paper, we divide the Hamiltonians
by t . The first term then is of order t ′/t and J ′

⊥/t , while the
second term is of order (t ′/t)2 and (J ′

⊥/t)2.

We then have the following effective Hamiltonians when
the two plaquettes are situated next to each other:

H
(4,2)
eff =

[
f (4,2) g(4,2)

g(4,2) f (4,2)

]
basis

[|2〉|4〉
|4〉|2〉

]
, (7a)

H
(2,2)
eff = f (2,2) basis |2〉|2〉 , (7b)

H
(4,4)
eff = f (4,4) basis |4〉|4〉 , (7c)

where

f (4,2) =
(

t ′

t

)2

f
(4,2)
t

(
J⊥
t

)
+

(
J ′

⊥
t

)2

f
(4,2)
⊥

(
J⊥
t

)
, (8a)

g(4,2) =
(

t ′

t

)2

g
(4,2)
t

(
J⊥
t

)
, (8b)

f (2,2) =
(

t ′

t

)2

f
(2,2)
t

(
J⊥
t

)
+

(
J ′

⊥
t

)2

f
(2,2)
⊥

(
J⊥
t

)
, (8c)

f (4,4) =
(

J ′
⊥
t

)2

f
(4,4)
⊥

(
J⊥
t

)
. (8d)

Here the functions f and g on the right-hand sides depend
on the interaction strength J⊥/t and describe the perturbative

coupling of the plaquettes. The superscript (nR,nR′ ) refers to
the number of molecules on neighboring plaquettes R and R′.
The subscripts t and ⊥ refer to interplaquette couplings driven
by t ′ and J ′

⊥, respectively. For the t-J⊥ Hamiltonian, there are
no first-order shifts in the ground-state energies so there are
no terms proportional to J ′

⊥/t . The |2〉|4〉 and |4〉|2〉 states are
only coupled through tunneling to second order, so there is no
g

(4,2)
⊥ function. The |4〉|4〉 state cannot couple to itself through

tunneling since both plaquettes are fully occupied, so there is
no f

(4,4)
t function.

The effective Hamiltonians for two plaquettes situated
diagonally are

H
(4,2)
eff =

[
h(4,2) 0

0 h(4,2)

]
basis

[|2〉|4〉
|4〉|2〉

]
, (9a)

H
(2,2)
eff = h(2,2) basis |2〉|2〉 , (9b)

H
(4,4)
eff = h(4,4) basis |4〉|4〉, (9c)

where

h(4,2) =
(

J ′
⊥
t

)2

h
(4,2)
⊥

(
J⊥
t

)
, (10a)

h(2,2) =
(

J ′
⊥
t

)2

h
(2,2)
⊥

(
J⊥
t

)
, (10b)

h(4,4) =
(

J ′
⊥
t

)2

h
(4,4)
⊥

(
J⊥
t

)
. (10c)

When the plaquettes are situated diagonally, there is no
tunneling between them, so there are no terms proportional
to (t ′/t)2. In particular, the |2〉|4〉 and |4〉|2〉 states cannot
couple to each other through tunneling to second order, so the
off-diagonal terms are zero.

2. X X Z Effective Hamiltonian

The full lattice of plaquettes can be mapped to an XXZ

spin Hamiltonian [33,35,37,38] where each plaquette becomes
a lattice site, labeled by R, and the states |2〉 and |4〉 of two
and four molecules become the effective spin-up |⇑〉 and spin-
down |⇓〉 states, respectively. Using the functions Eqs. (8) and
Eqs. (10) calculated using the Schrieffer-Wolff transformation,
the effective Hamiltonian is

Heff =
∑

〈R,R′〉

[
f (4,2)(nR⇑nR′⇓ + nR⇓nR′⇑

)
+ g(4,2)

(
S+

R S−
R′ + S−

R S+
R′

) + f (2,2)nR⇑nR′⇑

+ f (4,4)nR⇓nR′⇓
] +

∑
〈〈R,R′〉〉

[
h(4,2)

(
nR⇑nR′⇓ + nR⇓nR′⇑

)
+h(2,2)nR⇑nR′⇑ + h(4,4)nR⇓nR′⇓

]
.

Since each site R has either one spin-up or one spin-down,

nR⇑ = 1
2 + SZ

R and nR⇓ = 1
2 − SZ

R .

Thus, dropping constant terms,

Heff =
∑

〈R,R′〉

[
J̃⊥

(
SX

R SX
R′ + SY

RSY
R′

) + J̃z1S
Z
RSZ

R′
]

+
∑

〈〈R,R′〉〉
J̃z2S

Z
RSZ

R′ + B̃
∑
R

SZ
R , (11)
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where

J̃⊥ = 2g(4,2), (12a)

J̃z1 = f (2,2) + f (4,4) − 2f (4,2), (12b)

J̃z2 = h(2,2) + h(4,4) − 2h(4,2), (12c)

B̃ = 2
(
f (2,2) − f (4,4) + h(2,2) − h(4,4)). (12d)

Since we are interested in the phase diagram at constant 3/4
filling of the lattice with molecules,

∑
R SZ

R = 0 is constant
in the XXZ effective Hamiltonian, so we can neglect the
magnetic field term B̃. In fact, for the same reason, we have
already dropped the energies of |2〉 and |4〉 in H0 [Eq. (5)].

3. Phase diagram for the t- J⊥ Hamiltonian

If we only consider nearest-neighbor interactions between
plaquettes, then J̃z2 = 0. In this case, there are three phases,
which can be qualitatively understood by considering the
following limits of the XXZ model [52]. If J̃z1 � |J̃⊥|,
it is energetically favorable for the spins to be antiferro-
magnetically ordered in the Z direction corresponding to
a checkerboard solid of bound holes. If J̃z1 � −|J̃⊥|, it is
energetically favorable for the spins to be ferromagnetically
ordered in the Z direction; however, since

∑
R SZ

R is fixed,
this corresponds to a phase separation of the spins and a
phase separation of the bound holes. Finally, if |J̃⊥| � |J̃z1|,
it is energetically favorable for the spins to be ordered in
the XY plane, which corresponds to a superfluid of bound
holes. Specifically, for J̃⊥ < 0 (J̃⊥ > 0), the spin order is
ferromagnetic (antiferromagnetic), corresponding to a d-wave
superfluid with correlation function 〈�†

d,R�d,R′ 〉 whose sign
has uniform (checkerboard) structure in the R-R′ plane. Since
J̃⊥ can be mapped to −J̃⊥ by a sublattice rotation [52], we do
not distinguish, for |J̃⊥| � |J̃z1|, between the ferromagnetic
and antiferromagnetic cases and simply refer to both phases
as a d-wave superfluid. The phase transitions occur at |J̃⊥| =
|J̃z1| [52,53].

The case of nonzero next-nearest-neighbor interactions,
nonzero J̃z2, has been studied numerically in Ref. [53] and with
mean-field theory in Refs. [54–56]. For example, in Ref. [53],
it is shown that, for a certain parameter range satisfying
J̃z2 � J̃z1 > 0 and J̃z2 � J̃⊥ > 0, it is energetically favorable
for the plaquettes to arrange themselves in a striped solid.
Assuming, by analogy, that |J̃z2| � |J̃z1| and |J̃z2| � |J̃⊥| are
both necessary for a new phase to appear, no such phase
can occur in the perturbative phase diagram for the t-J⊥
Hamiltonian since this set of conditions is never satisfied.
Furthermore, near the phase transition boundaries for this
phase diagram, the magnitude of J̃z2 is about an order of
magnitude smaller than the magnitude of J̃z1. We therefore
expect J̃z2 to have an insignificant effect on the locations of
phase transitions, so we neglect J̃z2 for the remainder of the
paper.

The condition for a phase transition ±|J̃⊥| = J̃z1 is thus

±2
∣∣g(4,2)

t

∣∣ = f
(2,2)
t − 2f

(4,2)
t

+
(

J ′
⊥
t ′

)2 (
f

(2,2)
⊥ + f

(4,4)
⊥ − 2f

(4,2)
⊥

)
. (13)

Here, a transition between superfluid and checkerboard solid
occurs for +, a transition between superfluid and phase

FIG. 3. (Color online) Phase diagram for the t-J⊥ Hamiltonian.
The region to the right of the vertical black line is the region where
�t > 0. The line J ′

⊥/t ′ = J⊥/t is shown as a dashed green line and
passes through all three phases.

separation occurs for −, and the functions are evaluated at
J⊥/t . By solving Eq. (13), the phase diagram in the original
variables J⊥/t and J ′

⊥/t ′ is computed in the region �t > 0 and
is shown in Fig. 3. All three phases are present in this phase
diagram and the d-wave superfluid phase exists for a large
range of values of J⊥/t and J ′

⊥/t ′. The easiest case to study
experimentally is t ′ = t and J ′

⊥ = J⊥, which is outside the
validity of this perturbative calculation. However, as a guess
as to the physics for these values of t ′ and J ′

⊥, it is useful to
consider the line J ′

⊥/t ′ = J⊥/t . As is shown in Fig. 3, this line
passes through all three phases, indicating that all three phases
might be observable in the simplest t-J⊥ experiment with a
homogeneous lattice.

There is a strong indication that the qualitative features
of our results may be relevant to the nonperturbative regime
where J ′

⊥/t ′ = J⊥/t . Specifically, the phase diagram along
the line J ′

⊥/t ′ = J⊥/t in Fig. 3 is qualitatively similar to the
phase diagram along the line of 1/4 hole density in Fig. 4 of
Ref. [57], which numerically studies the standard t-J model.
Indeed, the order of the phases in the two diagrams is the same
provided that one identifies the region of uncondensed bound
holes in Ref. [57] with our checkerboard solid phase and the
Fermi liquid in Ref. [57] with our region �t < 0.

IV. ANALYSIS OF THE EFFECTS OF Jz , V , AND W

In this section, we analyze the effects of Jz, V , and W on
the d-wave superfluid phase. First in Sec. IV A, we repeat the
single-plaquette analysis of Sec. III A for various Hamiltonians
with nonzero Jz, V , and W . In Sec. IV C, we then compute
the phase diagrams using the methods of Sec. III B for those
Hamiltonians capable of exhibiting d-wave superfluidity.

A. Single-plaquette solutions

First, we examine the Hamiltonian with independent J⊥ and
Jz and zero V and W , the t-J⊥-Jz Hamiltonian. Contour plots
of the binding energy �t and |〈4|�†

d |2〉| for this Hamiltonian
are shown in Fig. 4. From these figures we see that �t > 0 and
|〈4|�†

d |2〉| �= 0 for most values of J⊥/t > 0 and Jz/t > 0.
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FIG. 4. (Color online) Single-plaquette analysis for the t-J⊥-Jz

Hamiltonian. (a) Binding energy �t . Contours of constant �t/t

are labeled. (b) Matrix element |〈4|�†
d |2〉|. Contours of constant

|〈4|�†
d |2〉| are labeled.

The |4〉 ground states in the A2 and B1 representations for
positive Jz/t are

|2,2(A2)〉 = 1√
2

(|↑↓↑↓〉 − |↓↑↓↑〉) ,

|2,2(B1)〉 = 1√
2

(|↑↓↑↓〉 + |↓↑↓↑〉) + O

(
J⊥
t

)
.

Thus, for positive Jz/t and along the line J⊥/t = 0, the two
alternating spin configurations are the twofold degenerate |4〉
ground states. When J⊥/t is made nonzero but small, the
symmetric combination of these two states, which has B1

symmetry, becomes the nondegenerate ground state.
Next, we examine the Hamiltonian with independent

J⊥ = Jz = J and W and zero V , the t-J -W Hamiltonian.

FIG. 5. (Color online) Single-plaquette analysis for the t-J -W
Hamiltonian with J⊥ = Jz = J . (a) Binding energy �t . Contours of
constant �t/t are labeled. (b) Matrix element |〈4|�†

d |2〉|. Contours
of constant |〈4|�†

d |2〉| are labeled.

Contour plots of the binding energy �t and |〈4|�†
d |2〉| for this

Hamiltonian are shown in Fig. 5. From these figures we see
that �t > 0 and |〈4|�†

d |2〉| �= 0 for most values of J/t > 0
and W/t approximately between the lines W/t = ±2J/3t .

This behavior can be explained by considering the ground-
state configurations and symmetries of |2〉 and |4〉 shown in
Fig. 6. If W is large and positive, all of the spins will point
down in the single-plaquette ground states: the |2〉 ground state
is a p wave |0,2〉 and the |4〉 ground state is a d wave |0,4〉.
For W = 0 and J/t > 0, it is energetically favorable to have
an equal number of spin-up and spin-down molecules on each
plaquette, and the |2〉 ground state is an s wave |1,1〉, while
the |4〉 ground state is a d wave |2,2〉. As W is decreased from
a large positive value (and J⊥/t > 0), the |2〉 ground state
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12

0

−12
0−12 12

W
/
t

J/t

↓↓ p
↓↓↓↓ d

↑↑ p
↑↑↑↑ d

↑↓ s
↑↑↓↓ d

↑↓ s
↑↓↓↓ s

↑↓ s
↑↑↑↓ s

↑↓ s
↓↓↓↓ d

↑↓ s
↑↑↑↑ d

FIG. 6. Configurations of the single-plaquette ground states for
two and four molecules for the t-J -W Hamiltonian with J⊥ = Jz = J .

first switches from |0,2〉 to an s wave |1,1〉, and then the |4〉
ground state switches from |0,4〉 to an s wave |1,3〉. As W is
further decreased, the |4〉 ground state switches to a d-wave
symmetric |2,2〉. As W is made large and negative, the process
repeats with up spins replacing down spins. 〈4|�†

d |2〉 vanishes
for W/t approximately outside the lines W/t = ±2J/3t since
the |4〉 ground state switches from d wave to s wave outside
this region. In particular, 〈4|�†

d |2〉 = 0 in the narrow region
where the ground states are s wave |1,1〉 and d wave |1,3〉
because �

†
d creates one up spin and one down spin.

We do not consider Hamiltonians with nonzero V here since
they do not support d-wave superfluidity in our perturbative
calculations as is described in the following section. We also
note that, similar to the t-J⊥ model where �40 becomes
negative at large J⊥/t , the region where a lattice of |2〉s and
|4〉s is the true ground state is also limited in the models
discussed in this section. However, as in the case of the t-J⊥
model, the full phase diagrams discussed in Sec. IV C can still
be accessed in experiments with ultracold polar molecules by
adiabatic preparation starting with suitable initial states.

B. First-order contributions to the X X Z effective Hamiltonian

In this section, we examine the question of which of the
Hamiltonians defined by Eq. (1) have nonzero first-order
contributions to the XXZ effective Hamiltonian. A first-order
shift in the ground-state energies, a nonzero H1g in Eq. (6),
would contribute to, and generally dominate, the diagonal
terms f (4,2), f (2,2), f (4,4), h(4,2), h(2,2), and h(4,4) but not the
off-diagonal term g(4,2). Since the order (t ′/t)2 function g(4,2)

is the only function contributing to J̃⊥ [Eq. (12a)], J̃⊥ will
generally be small compared to J̃z1 and J̃z2 [Eqs. (12b) and
(12c)], if there are nonzero first-order contributions. Thus,
this perturbative analysis predicts no robust superfluid phase
if there are nonzero first-order contributions to the effective
Hamiltonian. Therefore, we will not compute the phase

diagram for those Hamiltonians that contribute first-order
corrections. Note that there are no first-order shifts in the t-J⊥
Hamiltonian studied in Sec. III.

To study when first-order contributions arise, we consider
here the effects of the J ′

z, V ′, and W ′ terms separately. Since
these terms cannot couple |2〉|4〉 to |4〉|2〉, they will only
contribute to the diagonal matrix elements of Heff. Let R and
R′ label the plaquettes containing sites r and r ′, respectively,
and let nRσ denote the number of molecules with spin σ on
plaquette R. Due to the D4 symmetry, any single-plaquette
eigenstate |nR↑,nR↓〉 that is nondegenerate within the manifold
of states with constant nR↑ and nR↓ satisfies

〈nR↑,nR↓|nrσ |nR↑,nR↓〉 = 1
4nRσ . (14)

First, consider the V ′ term. From Eq. (14), the state
|nR〉|nR′ 〉 satisfies

〈nrnr ′ 〉 = 1
16nRnR′ ,

where nr = nr↑ + nr↓ and nR = nR↑ + nR↓. Thus the V ′
contributions vanish to first order if and only if at least one
of the two interacting plaquettes is empty. Since the effective
Hamiltonian is constructed from |2〉 and |4〉 plaquettes, the
V ′ term will always contribute to first order and will not be
considered further here. It is important to emphasize that our
analysis should be considered to be exactly valid only in our
perturbative regime, since it is believed that the t-J model,
which contains nonzero V ′, supports d-wave superfluidity
[1–3,57,58].

Next, consider the J ′
z term. Since Sz

r = (nr↑ − nr↓)/2, the
state |nR↑,nR↓〉|nR′↑,nR′↓〉 satisfies〈

Sz
r S

z
r ′
〉 = 1

64 (nR↑ − nR↓)(nR′↑ − nR′↓).

Thus, the J ′
z contributions vanish to first order if and only if at

least one of the two interacting plaquettes satisfies n↑ = n↓. In
all of the regions identified in Sec. IV A as possibly supporting
d-wave superfluidity in the t-J⊥-Jz Hamiltonian, |2〉 and |4〉
have this property. Therefore, J ′

z never contributes at first order
in the parameter regimes that we are interested in for this
Hamiltonian.

Finally, consider the W ′ term. The state
|nR↑,nR↓〉|nR′↑,nR′↓〉 satisfies

〈
nrS

z
r ′ + nr ′Sz

r

〉 = 1

16
(nR↑nR′↑ − nR↓nR′↓).

Thus the W ′ contributions vanish to first order if and only
if the two interacting plaquettes satisfy nR↑nR′↑ = nR↓nR′↓.
From Fig. 6, we see that this condition is met for |2〉|4〉, |2〉|2〉
and |4〉|4〉 only for the region where the |2〉 ground state is
s-wave symmetric |1,1〉 and the |4〉 ground state is d-wave
symmetric |2,2〉. We also note that the condition n↑ = n↓,
necessary for the J ′

z contributions to vanish at first order, is
satisfied by both |2〉 and |4〉 in this region. Notice, however,
that the condition n↑ = n↓ is not satisfied by the |4〉 states
outside this region. Thus, not only W ′ but also J ′

z will give
nonzero first-order contributions outside this region.

While other regions in Fig. 6 cannot exhibit a d-wave
superfluid within our analysis, they may still exhibit interesting
phases at appropriate filling fractions. For example, the regions
where the ground states are |1,1〉 and |0,4〉 or |4,0〉 might
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support a d-wave solid phase with an asymmetry between up
and down spins, while the regions where the ground states are
|1,1〉 and |1,3〉 or |3,1〉 might support an s-wave solid phase.
However, we will not discuss such phases further and will
focus, instead, on the parameter space that has no first-order
corrections and that is, therefore, capable of exhibiting d-wave
superfluidity.

C. Phase diagrams

We first consider the general t-J⊥-Jz Hamiltonian. There
are four independent parameters, J⊥/t , Jz/t , J ′

⊥/t ′, and J ′
z/t ′,

so the phase diagram is four dimensional. Notice that, within
the perturbative treatment, the fifth parameter t ′/t affects
only the overall energy scale but not the phase diagram. In
order to plot a manageable phase diagram, we restrict the
parameter space to J ′

⊥/t ′ = J⊥/t and J ′
z/t ′ = Jz/t . Using

the expressions for J̃⊥ and J̃z1 given by Eq. (12) and the
generalization of Eq. (8) to include Jz and J ′

z, we find the
phase boundaries by solving |J̃⊥| = |J̃z1|. The resulting phase
diagram is shown in Fig. 7. As is discussed in Sec. IV A, along
the Jz/t axis, the |4〉 ground state becomes doubly degenerate.
Thus, the effective Hamiltonian no longer maps to an XXZ

Hamiltonian, and we do not compute the phase diagram
along this line. In the absence of the hardcore constraint,
the t-Jz Hamiltonian on a homogeneous lattice is studied in
Ref. [32]. The t-J⊥ phase diagram along the green dashed
line J ′

⊥/t ′ = J⊥/t shown in Fig. 3 corresponds to the phase
diagram along the J⊥/t axis in Fig. 7. For values of Jz/t greater
than about 1, the checkerboard solid phase is no longer present,
and for values of Jz/t greater than about 2, the superfluid phase
is no longer present. We see that large values of Jz have the
effect of reducing the areas of the checkerboard solid and
superfluid phases. However, by tuning Jz/t to a value between
about 1 and 2, the extent of the d-wave superfluid phase along
the J⊥/t direction is increased relative to its value without
the Jz interaction. This is achieved by the suppression of the

FIG. 7. (Color online) Phase diagram for the t-J⊥-Jz Hamiltonian
assuming J ′

⊥/t ′ = J⊥/t and J ′
z/t ′ = Jz/t . The region above the black

curve is the region where �t > 0. The SU(2)-symmetric Hamiltonian
with J⊥ = Jz is shown by the dashed green line. We do not compute
the phase diagram along the Jz/t axis since the |4〉 ground state is
degenerate here.

FIG. 8. (Color online) Phase diagram for the t-J -W Hamiltonian
for J⊥ = Jz = J . Phase transitions for W = 0 [the SU(2)-symmetric
t-J⊥-Jz Hamiltonian] are shown in solid lines, transitions for W =
J/4 are shown in dashed lines, and transitions for W = J/2 are
shown in dotted lines. The regions to the right of the vertical black
lines are the regions where �t > 0 for these three values of W . The
line J ′/t ′ = J/t is shown as a dashed green line.

checkerboard solid and phase separation phases at small J⊥/t

and large J⊥/t , respectively.
We next consider the phase diagram for the SU(2)-

symmetric t-J⊥-Jz Hamiltonian with J⊥ = Jz = J shown in
Fig. 8 as solid lines. The phase diagram along the green dashed
line J ′/t ′ = J/t in Fig. 8 for the SU(2)-symmetric t-J⊥-Jz

Hamiltonian corresponds to the phase diagram along the green
dashed line J⊥ = Jz in Fig. 7. The regions not in phase
separation are reduced from those for the t-J⊥ Hamiltonian
(see Fig. 3). The fact that Jz reduces the superfluid phase for
the SU(2)-symmetric case is to be expected from Fig. 7 since
the line J⊥ = Jz does not pass through the regions where the
superfluid phase is enhanced by the presence of Jz.

Finally, we add W and consider the phase diagram for the
t-J -W Hamiltonian with J⊥ = Jz = J shown in Fig. 8. The
phase diagram is shown along the lines W = 0 (discussed
above), W = J/4, and W = J/2, which are contained within
the region where |2〉 is an s-wave symmetric |1,1〉 and |4〉 is a
d-wave symmetric |2,2〉 (see Fig. 6). Increasing W moves the
transition between the superfluid and phase separation phases
up along the J ′/t ′ axis and therefore slightly increases the
region of d-wave superfluidity. Increasing W also decreases
the extent of the checkerboard solid phase along the J/t axis.

In summary, within our treatment, Hamiltonians involving
V do not support superfluidity. At the same time, we identify
regions of parameter space where Jz and W enhance the d-
wave superfluid phase.

V. EXPERIMENTAL REALIZATIONS OF THE
PERTURBATIVE CALCULATION

The perturbative results obtained above can be regarded
only as a qualitative guess as to the behavior of the sim-
plest homogeneous square lattice since intraplaquette and
interplaquette couplings are equal in this case. Therefore,
in this section, we propose experimental configurations
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accurately described by our perturbative analysis. In Sec. V A,
we describe a one-dimensional stack of plaquettes. Then,
in Sec. V B, we briefly describe an experimentally more
challenging two-dimensional configuration.

A. One-dimensional stack of plaquettes

As shown in Fig. 9, we propose to apply a dc electric
field in the vertical (ẑ) direction. We then propose to stack
plaquettes with sides of length a on top of each other along ẑ a
distance a′ apart. The strength of dipolar interactions between
two molecules is proportional to

1 − 3 cos2 θ

r3
, (15)

where r is the distance between the molecules and θ is the
angle made between the line connecting the molecules and
the external dc electric field. Due to the 1/r3 dependence,
interplaquette dipolar interactions can be treated perturbatively
relative to the intraplaquette interactions provided a′ � a.
One way of achieving this geometry experimentally is to use
different frequency lasers to create the optical lattices in the
plane and in the vertical direction. The distances a and a′ can
also be controlled by varying the angle at which the lasers
interfere [59,60] or by holographic techniques [61].

The plaquettes can be made by interfering lasers of
wavelength 2a and 4a to create a superlattice [9] such
that tunneling between plaquettes in a plane is negligible.
To avoid in-plane interplaquette dipole-dipole interactions,
molecules in neighboring stacks may have to be removed. The
required addressability can be acheived by applying temporary
additional light shifts or electric field gradients. Alternatively,
instead of emptying neighboring stacks, an extreme version of
the superlattice can be used to separate the stacks enough to
make both the tunneling and the dipolar interactions between
them negligible.

As is shown in Fig. 9, with this geometry, there is a hopping
amplitude t between nearest neighbors within a plaquette
and a hopping amplitude t ′ along ẑ between nearest-neighbor
plaquettes. The amplitudes t and t ′ can be controlled separately

a′ � a

a

E

J, t

J
2
√

2

J ′, t′

J ′′

J ′′′

FIG. 9. (Color online) Geometry of the one-dimensional stack
of plaquettes. The external dc electric field is perpendicular to the
plaquettes.

by varying the intensities of the lasers making the lattices in
each direction. There are five strengths, two within a plaquette
and three between plaquettes, of the dipolar interactions J⊥, Jz,
V , and W discussed here generically as J . As shown in Fig. 9,
let J be the strength of dipolar interactions between nearest
neighbors within a plaquette, and let J ′, J ′′, and J ′′′ be the
strengths of the dipolar interactions between plaquettes. The
ratios J ′/J , J ′′/J , and J ′′′/J are functions of the ratio a′/a
and are controlled separately from the ratio t ′/t . For a′ > a,
by Eq. (15), J ′, J ′′, and J ′′′ are the opposite sign of J .

1. Phase diagrams

For a one-dimensional stack of plaquettes, we calculate the
same phase diagrams computed above for the two-dimensional
lattice of plaquettes. In an experiment with one independent
dipolar interaction strength J , there are three independent
parameters: J/t , a′/a, and t ′/t or, equivalently, J/t , J ′/t ′, and
a′/a. In order to compare with the phase diagrams computed
above, we choose the latter set of parameters. It is currently
possible to use lasers of wavelength 1064 nm to produce
optical lattices with spacing a′ = 532 nm. Assuming that it
is also possible to use a second wavelength in the range
400–600 nm, in the following phase diagrams, we use a′/a =
5/2. For a′/a = 5/2, J ′/J = −0.128, J ′′/J = −0.081, and
J ′′′/J = −0.054.

The phase diagram for the t-J⊥ Hamiltonian is shown in
Fig. 10. Since it is possible with this scheme to control J ′

⊥/t ′
by varying a′/a and t ′/t , we plot the lines −J ′

⊥/t ′ = J⊥/2t ,
−J ′

⊥/t ′ = J⊥/t , and −J ′
⊥/t ′ = 2J⊥/t in Fig. 10. This phase

diagram is qualitatively similar to the corresponding phase
diagram for the two-dimensional case (Fig. 3). However, the
overall vertical scale of the phase diagram is increased for
the stack resulting in a larger region of d-wave superfluidity.
The increase in the vertical scale can be explained by the
presence of the J ′′

⊥ and J ′′′
⊥ terms, which reduce the f⊥

functions relative to the ft and gt functions in Eq. (8). Thus, a
larger value of J ′

⊥/t ′ is needed to reach the phase boundaries.

FIG. 10. (Color online) Phase diagram for the t-J⊥ Hamiltonian
for a one-dimensional stack of plaquettes with a′/a = 5/2. Regions
to the right of the vertical black line are where �t > 0. The lines
−J ′

⊥/t ′ = J⊥/2t , −J ′
⊥/t ′ = J⊥/t , and −J ′

⊥/t ′ = 2J⊥/t are shown
by the green dashed lines.
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FIG. 11. (Color online) Phase diagram for the t-J⊥-Jz Hamilto-
nian assuming J ′

⊥/t ′ = J⊥/t and J ′
z/t ′ = Jz/t for a one-dimensional

stack of plaquettes with a′/a = 5/2. The region above the black curve
is the region where �t > 0. The SU(2)-symmetric Hamiltonian with
J⊥ = Jz is shown by the dashed green line.

We refer the reader to Appendix A3 for a symmetry-based
explanation for why J ′′

⊥ and J ′′′
⊥ reduce the f⊥ functions.

Similar arguments hold for the increased scales in the t-J⊥-Jz

and the t-J -W phase diagrams discussed below.
The phase diagram for the t-J⊥-Jz Hamiltonian with

J ′
⊥/t ′ = J⊥/t and J ′

z/t ′ = Jz/t is shown in Fig. 11. This phase
diagram is qualitatively similar to the corresponding phase
diagram for the two-dimensional case shown in Fig. 7. As
with the two-dimensional case, Jz can increase the superfluid
phase.

The phase diagram for the SU(2)-symmetric t-J⊥-Jz

Hamiltonian is shown in Fig. 12 as solid lines. Again, the
diagram is qualitatively similar to its counterpart for the
two-dimensional system (Fig. 8) with the range of J ′/t ′ not in
the phase-separation regime increased.

The overall scale of the phase diagram in Fig. 11 is increased
from the corresponding diagram for the two-dimensional
system shown in Fig. 7 as is expected from Figs. 10 and 12.
The t-J⊥ phase diagram along the middle green dashed line
−J ′

⊥/t ′ = J⊥/t shown in Fig. 10 corresponds to the phase
diagram along the J⊥/t axis in Fig. 11. The SU(2)-symmetric
phase diagram along the middle green dashed line −J ′/t ′ =
J/t shown in Fig. 12 corresponds to the phase diagram along
the green dashed line J⊥ = Jz in Fig. 11. Since both of these
green lines in Figs. 10 and 12 pass through larger regions of the
superfluid phase than in the corresponding phase diagrams for
the two-dimensional plane (Figs. 3 and 8), the overall scale of
the t-J⊥-Jz phase diagram (Fig. 11) increases. The superfluid
phase can be further increased by decreasing the slope of the
line relating J ′

⊥/t ′ (J ′/t ′) and J⊥/t (J/t) in Fig. 10 (Fig. 12)
since lines with shallower slopes pass through larger regions
of the superfluid phase.

The phase diagram for the t-J -W Hamiltonian for J⊥ =
Jz = J is shown in Fig. 12. In contrast to the phase diagram
for the two-dimensional t-J -W Hamiltonian, in the stack
geometry, an increase in W moves the transition between the
superfluid and phase separation phases down rather than up,
thus reducing the superfluid phase. Furthermore, in the stack

FIG. 12. (Color online) Phase diagram for the t-J -W Hamilto-
nian for J⊥ = Jz = J for a one-dimensional stack of plaquettes with
a′/a = 5/2. Phase transitions for W = 0 [the SU(2)-symmetric t-J⊥-
Jz Hamiltonian] are shown in solid lines, transitions for W = J/4
are shown in dashed lines, and transitions for W = J/2 are shown
in dotted lines. The regions to the right of the vertical black lines
are the regions where �t > 0 for these three values of W . The lines
−J ′/t ′ = J/2t , −J ′/t ′ = J/t , and −J ′/t ′ = 2J/t are shown by the
green dashed lines.

geometry, an increase in W only slightly decreases the extent of
the checkerboard solid phase. Thus, for the stack of plaquettes,
the W term can slightly increase the superfluid region only for
small |J ′/t ′|.

2. Preparation and detection

Since there are no strong relaxation mechanisms in optical
lattice experiments using cold atoms and molecules, it is not an
easy task to prepare the ground state of a given Hamiltonian.
One strategy is to prepare an easier state that is the ground
state of another Hamiltonian and to adiabatically change
that Hamiltonian to the desired one [9,48,62,63]. Here we
consider the adiabatic preparation of the d-wave superfluid
phase at the point where J̃z1 = 0 for the t-J⊥ Hamiltonian.
This corresponds to preparing the ground state of the XX

magnet. We propose first adiabatically preparing |2〉 and |4〉
states alternating in a stack and then adiabatically preparing
the ground state of the t-J⊥ Hamiltonian. The preparation of
the ground state of the XX magnet is similar to the method
described in Ref. [62] for adiabatically preparing the ground
state of the Heisenberg antiferromagnet.

First, consider bringing the plaquettes far apart to avoid
interplaquette interactions and preparing the |2〉 and |4〉
ground states alternating along the stack. Let H0 be the t-J⊥
Hamiltonian on a single plaquette and consider the following
single-plaquette Hamiltonians:

H2(τ ) = H0 − B(τ )
(
Sz

1 − Sz
3

)
, (16)

H4(τ ) = H0 − B(τ )
(
Sz

1 + Sz
2 − Sz

3 − Sz
4

)
, (17)

used to prepare the |2〉 and |4〉 ground states, respectively.
Here B(τ ) is the strength of an effective alternating magnetic
field on the sites of the plaquette as a function of time τ . For
large positive values of B(τ ), the ground state of H2 for two
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molecules is up on 1 and down on 3, while the ground state of
H4 for four molecules is up on 1 and 2 and down on 3 and 4.
These states can be prepared using single-site addressability
provided by electric field gradients or high-resolution optics
[6,7]. For values of J⊥/t of interest, in a plaquette with two
molecules, the energy gap between the ground state and first
excited state of H2 never closes as B(τ ) is reduced to zero.
The same is true of H4 for a plaquette with four molecules.
Thus, the |2〉 and |4〉 ground states of the t-J⊥ Hamiltonian can
be prepared by adiabatically reducing the effective magnetic
field B(τ ) from some large initial value to zero in H2 and
H4, respectively. Once the |2〉 and |4〉 ground states have been
prepared, the plaquettes can be brought to a distance a′ from
each other by changing the angle at which the lasers interfere
or by holographic techniques.

Once the |2〉 and |4〉 ground states have been prepared, the
ground state of the t-J⊥ Hamiltonian at the point J̃z1 = 0 can
be prepared by adiabatically turning off the effective magnetic
field B̃(τ ) acting on the effective spins |⇑〉 and |⇓〉 in the
Hamiltonian

H (τ ) = J̃⊥
∑
R

(
SX

R SX
R+1 + SY

RSY
R+1

) + B̃(τ )
∑
R

(−1)RSZ
R .

(18)

The first term is just the XXZ effective Hamiltonian Eq. (11)
at the point J̃z1 = 0, while the second term describes an
alternating effective magnetic field between plaquettes along
the Z direction. The energy gap between the ground state and
the first excited state of the Hamiltonian Eq. (18) decreases
monotonically with decreasing magnetic field but never closes,
so the d-wave superfluid phase can, in principle, be prepared
by adiabatically turning off B̃(τ ). However, for a stack of N

plaquettes, the energy gap between the ground state and the
first excited state of the XX chain is proportional to 1/N .
Although it is outside the scope of the present paper, the
ideal B̃(τ ) over a given time T can be calculated by mapping
Eq. (18) to free fermions and maximizing the superfluid order
parameter when B̃(T ) = 0. Since the energy gap is large for
large B̃(τ ) and only scales as 1/N for small B̃(τ ), it is likely
that this ideal B̃(τ ) decreases rapidly initially and more slowly
at later times.

As a rough estimate for the minimum time T necessary to
prepare the superfluid phase at the point J̃z1 = 0, we estimate
T = N/J̃⊥. The strength of the dipole-dipole interactions at
a distance of 200 nm is roughly J⊥ ≈ 2π × 4 kHz for the
molecule KRb. The value of J ′

⊥ ≈ −2π × 500 Hz is then
fixed by the ratio a′/a. t is chosen such that J̃⊥ is as large
as possible while perturbation theory is valid. t ′ is chosen such
that J̃z1 = 0. Then for J⊥/t = 4, t ≈ 2π × 1 kHz and J̃z1 = 0
requires t ′ ≈ 2π × 300 Hz. At this point, J̃⊥ ≈ 2π × 1.5 Hz
so T ≈ 100N ms. For these parameters, �t ≈ 2π × 2 kHz
and �⊥ ≈ 2π × 4 kHz so the conditions t ′ � �t and J ′

⊥ �
�⊥ are met, and perturbation theory is valid. Using the inverse
gap at B(τ ) = 0 in Eqs. (16) and (17) gives 400 μs as a
rough estimate for the minimum time necessary to prepare the
|2〉 and |4〉 ground states. Thus, as expected, the preparation
time is dominated by the preparation of the ground state of
the XX chain. Therefore, assuming an optimistic coherence
time of 1 s, roughly 10 plaquettes can be prepared. For LiCs,

J⊥ ≈ 2π × 400 kHz at a distance of 200 nm allowing roughly
103 plaquettes to be prepared in 1 s. These numbers can
be improved by reducing the ratio a′/a or by preparing a
superfluid away from the point J̃z1 = 0.

The effective magnetic fields in Eqs. (16)–(18) can be
created using tensor shifts [18,21,24,30,43,64] and superlat-
tices [9] so that up- and down-spins (both the initial |↑〉 and |↓〉
and the effective |⇑〉 and |⇓〉) have different potential energies.

The d-wave superfluid phase can be detected via second-
order noise correlations in the expanding molecular cloud
which is proportional to the the four-point function

Gσσ ′(Q,Q′) ∝ 〈nσ (Q)nσ ′(Q′)〉 − 〈nσ (Q)〉〈nσ ′(Q′)〉
at the time the molecules are released from the trap [37,65,66].
Here

nσ (Q) ∝
∑
r,r ′

eiQ·Lrr′ c†rσ cr ′σ

is the quasimomentum distribution and Lrr ′ is the vector
connecting lattice sites r and r ′. Since G↑↓(Q,Q′) contains
terms proportional to 〈�†

d,R�d,R′ 〉 (where R and R′ label
plaquettes), a d-wave superfluid will exhibit interference
fringes at Q + Q′ = 2πmẑ/a′ for any integer (half-integer)
m where ẑ is the unit vector along the stack when J̃⊥ < 0
(>0). Since the state has dx2−y2 symmetry, these fringes will be
modulated in the x-y plane by an envelope that vanishes along
the nodal lines Qx = ±Qy and Q′

x = ±Q′
y [37]. Therefore,

the behavior of the fringes will be similar to that shown in
Ref. [37], except that the superfluid phase will be signaled
by fringes along ẑ instead of fringes in the x-y plane.
Due to the absence of cycling transitions in molecules, the
noise correlation measurements may have to be done by first
converting the molecules back into atoms [12].

B. Two-dimensional realization of the perturbative regime

While we have discussed the one-dimensional stack of
plaquettes, d-wave superfluidity is associated with a plane.
An experiment observing d-wave superfluidity in a two-
dimensional lattice would therefore be more relevant. The
simple solution of increasing the spacing between plaquettes
in a two-dimensional lattice to reduce the dipolar interactions
is not feasible since this would typically reduce the tunneling
amplitude t ′ between plaquettes to essentially zero.

However, if the energy difference between the rotor levels
is not constant throughout a lattice of plaquettes, then the J⊥
dipolar interaction between plaquettes could be suppressed.
This can be achieved by introducing an extra splitting �

between rotor levels in some plaquettes and not in others. Then
the Hamiltonian for each plaquette with the extra splitting gets
an extra term

�
∑

r

Sz
r ,

where the sum is taken over the four sites of the plaquette.
Let (Rx,Ry) be the integer coordinates of the plaquette labeled
by R. Suppose that the splitting is arranged in a checkerboard
fashion, so, for integers n and m, plaquettes (Rx + 2n,Ry +
2m) get the extra splitting � while plaquettes (Rx + 2n +
1,Ry + 2m + 1) do not. In this case, dipolar interactions
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between nearest-neighbor plaquettes will be suppressed by
� since they are off resonant; however, dipolar interactions
between next-nearest-neighbor (diagonal) plaquettes will not
be suppressed since they will stay resonant. Thus, to make
the perturbative calculations valid, four separate splittings
would need to be introduced to suppress both nearest and
next-nearest-neighbor interactions. However, with only one
splitting �, a one-dimensional chain of plaquettes can be
simulated experimentally.

Finally, for � that is large enough to make perturbation
theory valid, a lattice of plaquettes filled with |1,1〉 and
|2,2〉 states will typically be an excited state of the system
of decoupled plaquettes, and the d-wave superfluid state
will typically be an excited state of the full Hamiltonian of
weakly coupled plaquettes. Nevertheless, such states can still
be prepared adiabatically from appropriate excited states.

VI. CONCLUSIONS

We have shown that the t-J⊥ Hamiltonian on a square
lattice, in the regime of weakly coupled plaquettes, exhibits a
d-wave superfluid phase in addition to the checkerboard solid
phase and phase separation. The addition of large Jz or W

interactions destroys the superfluid phase; however, we have
identified ranges of these parameters, for which the superfluid
phase is enhanced. Any nonzero V destroys the superfluid
phase in this perturbative analysis.

These perturbative calculations can be used as a quali-
tative guess for the behavior of the simplest experiments,
which are outside of the perturbative limit. Furthermore,
the perturbative regime can be accessed in experiments in
a one-dimensional stack of plaquettes. The phase diagrams
for the one-dimensional stack of plaquettes are qualitatively
similar to the phase diagrams for the two-dimensional lattice
of plaquettes. By experimentally observing the phase dia-
grams in both the perturbative and nonperturbative regimes
for the one-dimensional stack, one may be able to understand
the relationship between the calculations presented here and
the nonperturbative phase diagrams. This knowledge may then
be useful in understanding the relationship between the two-
dimensional phase diagrams presented here and experiments
on a homogeneous two-dimensional lattice. Similar results
might be achievable experimentally with the large-magnetic-
moment atoms dysprosium [67] and chromium [68] instead of
polar molecules.

Ultracold polar molecules have the potential for exper-
imentally observing d-wave superfluidity in a controlled
environment that could allow us to learn about the physics
of the t-J model. We hope that the insight gained by these
investigations could help to explain the physics of high-
temperature superconductivity and result in many theoretical
and practical applications.
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APPENDIX A: GROUP THEORETIC TECHNIQUES

In this Appendix, we describe the group theoretic tech-
niques that we have used to diagonalize the single-plaquette
Hamiltonians and to study their symmetries. Exact diagonal-
ization [47] is discussed in general in Appendix A1, while
the symmetries [33,38] of the irreducible representations of
D4 are discussed in Appendix A2. Finally, in Appendix A3,
we use symmetry arguments to explain why the overall scale
of the phase diagrams in the stack geometry is larger than the
corresponding scale in the two-dimensional geometry. Related
group theoretic techniques are discussed in the context of exact
diagonalization of the Hubbard Hamiltonian in Refs. [69,70].

1. Diagonalization of the Hamiltonian

As is discussed in Sec. III A, the operators n↑ and n↓
commute with the Hamiltonian Eq. (1) and with each other,
so we diagonalize subspaces with fixed values of n↑ and
n↓ separately. The Hamiltonian Eq. (1) has the symmetries
of a square described by the group D4 so we use the
irreducible representations of D4 to further simplify the task
of diagonalizing each subspace. The discussion below uses D4

as an example but is general and can be applied to any finite
group. In this section, we closely follow Ref. [47].

D4 has h = 8 group elements corresponding to the symme-
tries of a square, considered here to be lying in the x-y plane:
the identity E, rotations by π around the x, y, and z axes
C2x , C2y , and C2z, rotations by π around the lines x = y and
x = −y C2xy and C2xȳ , and counterclockwise and clockwise
rotations by π/2 around the z axis C4z and C−1

4z . There are five
conjugacy classes and thus five irreducible representations for
D4. The five classes are the identity E, the π rotation about
the z axis C2 consisting of C2z, the two π/2 rotations 2C4

consisting of C4z and C−1
4z , the two π rotations about the x

and y axes 2C ′
2 consisting of C2x and C2y , and the two π

rotations about the lines x = y and x = −y 2C ′′
2 consisting

of C2xy and C2xȳ . There are four one-dimensional irreducible
representations A1, A2, B1, and B2 and one two-dimensional
irreducible representation E. The character table for D4 is
shown in Table III.

TABLE III. Character table for the group D4 taken from Ref. [47],
along with the classification of each irreducible representation as is
discussed in Appendix A2.

E C2 2C4 2C ′
2 2C ′′

2 Symmetries

A1 1 1 1 1 1 s

A2 1 1 1 −1 −1 s

B1 1 1 −1 1 −1 dx2−y2

B2 1 1 −1 −1 1 dxy

E 2 −2 0 0 0 px and py
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TABLE IV. Group structure of the single-plaquette Hilbert space
with D4 symmetry in the presence of n↑ and n↓ conservation. The
results are symmetric on interchange of n↑ and n↓.

n↑,n↓ Dimension Representation

1,0 4 A1 ⊕ B2 ⊕ E

2,0 6 A2 ⊕ B2 ⊕ 2E

1,1 12 2A1 ⊕ A2 ⊕ B1 ⊕ 2B2 ⊕ 3E

3,0 4 A2 ⊕ B1 ⊕ E

2,1 12 A1 ⊕ 2A2 ⊕ 2B1 ⊕ B2 ⊕ 3E

4,0 1 B1

3,1 4 A2 ⊕ B1 ⊕ E

2,2 6 A1 ⊕ A2 ⊕ 2B1 ⊕ E

The number of times the nth irreducible representation
appears in the decomposition of a reducible representation
is [47]

an = 1

h

∑
R

χ (n)(R)∗χ (R), (A1)

where the sum is taken over all group elements R, χ (n)(R) is the
character of R in the nth irreducible representation, and χ (R)
is the character of R in the reducible representation. Let |α〉
denote a basis function in the occupation basis. By writing the
eight symmetry operations in the occupation basis for a fixed
n↑ and n↓ subspace of the full Hilbert space, we calculate the
character of each element in this occupation representation.
Using Eq. (A1), we calculate the group structure of each of
these subspaces. The results are shown in Table IV.

As we will see below, the Hamiltonian is block diagonal in
the representation basis, so we would like to change basis
from the occupation basis |α〉 to the representation basis
|φ(n)

iλ 〉 to reduce the dimensions of the matrices needing to be
diagonalized. Here |φ(n)

iλ 〉 refers to a normalized basis function
for the ith row of the nth irreducible representation. If the
nth irreducible representation is present more than once in
the decomposition of the occupation representation, then there
will be an > 1 orthogonal basis functions for the same row of
the nth irreducible representation indexed by λ. Let there be c

irreducible representations and c classes. (For D4, c = 5). |α〉
can be expanded in terms of the |φ(n)

iλ 〉 as

|α〉 =
c∑

n=1

ln∑
i=1

an∑
λ=1

b
(n)
iλ

∣∣φ(n)
iλ

〉
, (A2)

where ln is the dimension of the nth irreducible representation.
The |φ(n)

iλ 〉 and b
(n)
iλ are found by applying the projection

operator

P
(n)
ij = ln

h

∑
R

�(n)(R)∗ijPR (A3)

to |α〉. �(n)(R) is the nth irreducible representation of the group
element R, and PR is the operator corresponding to R that acts
on functions instead of coordinates and satisfies

PRg(x) = g(R−1x).

To compute PR in practice, one finds the action of R on the
spatial indicies of the creation operators used to define the
second-quantized wave function.

The projector P
(n)
ii projects into the ith row of the nth

irreducible representation, so∣∣f (n)
iλ(α)

〉 = P
(n)
ii |α〉 (A4)

yields a function |f (n)
iλ(α)〉 that transforms as the ith row of

the nth irreducible representation. For the ith row of the nth
irreducible representation, a given |α〉 will only be composed
of a function belonging to one of the an copies, the λ(α)th
copy, of the ith row of the nth irreducible representation even
if an > 1. Note that |f (n)

iλ(α)〉 will be zero if an = 0. For each

nonzero |f (n)
iλ(α)〉, the corresponding normalized basis function

is, up to a global phase,∣∣φ(n)
iλ(α)

〉 = (〈
f

(n)
iλ(α)

∣∣f (n)
iλ(α)

〉)−1/2∣∣f (n)
iλ(α)

〉
.

The coefficients b
(n)
iλ of the decomposition Eq. (A2) are

b
(n)
iλ =

{
0 if an = 0(〈
f

(n)
iλ(α)

∣∣f (n)
iλ(α)

〉)1/2
δλ,λ(α) if an �= 0

.

To find all of the basis functions for the representation
basis, we compute Eq. (A4) for every basis function |α〉 in the
occupation basis for all P (n)

ii .1 By applying the same projection
operator to different functions |α〉, different functions for the
same row of the same representation will be generated for
all λ = 1, . . . ,an. Once all of the |φ(n)

iλ 〉 have been found, the
Hamiltonian can be transformed into the representation basis
by

Hrepresentation = S†HoccupationS,

where S is the transformation matrix given by Sα,φ = 〈α|φ(n)
iλ 〉.

Since PR commutes with H for all R,〈
φ

(n)
iλ(α)

∣∣H ∣∣φ(m)
jμ(β)

〉 ∝ 〈
α
∣∣P (n)

ii HP
(m)
jj

∣∣β〉
= 〈

α
∣∣HP

(n)
ii P

(m)
jj

∣∣β〉 ∝ δn,mδi,j .

Thus, matrix elements between different irreducible rep-
resentations or different rows within the same irreducible
representation vanish. Therefore, this transformation into the
representation basis can be made separately for each row
of each irreducible representation, and each of the resulting
Hamiltonians can be diagonalized separately. This greatly
reduces the dimension of the Hamiltonians that need to be
diagonalized since the dimension of the Hamiltonian for the
ith row of the nth irreducible representation is an. States found
in the representation basis can be transformed back into the
occupation basis by

〈α|ψ〉 =
∑

φ

Sα,φ〈φ|ψ〉.

1If ln > 1, once the basis function for a single row, the ith row, of
the nth irreducible representation has been found by Eq. (A4), it is
also possible to find the basis functions for the other ln − 1 rows by
applying the projection operator to the basis function just found by
the property |φ(n)

jλ 〉 = P
(n)
ji |φ(n)

iλ 〉.
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In order to compute the projector Eq. (A3), it is necessary
to know the representation �(n)(R) of each group element R

in each representation n. For the one-dimensional representa-
tions, the representations �(n)(R) are just the characters χ (n)(R)
listed in Table III. In the (x,y) basis, the representations of the
group elements in the E representation are

�(E)(E) =
[

1 0
0 1

]
�(E)(C2z) =

[−1 0
0 −1

]

�(E)(C4z) =
[

0 −1
1 0

]
�(E)(C−1

4z ) =
[

0 1
−1 0

]
(A5)

�(E)(C2x) =
[

1 0
0 −1

]
�(E)(C2y) =

[−1 0
0 1

]

�(E)(C2xy) =
[

0 1
1 0

]
�(E)(C2xȳ) =

[
0 −1

−1 0

]
.

2. Classification of the eigenstates

In this section, we classify the symmetries of the five
representations of D4 and give examples of states transforming
as each of these representations. Since the A and B represen-
tations are one dimensional, we can study their symmetries
directly from the character table (Table III). The A states are
symmetric under π/2 rotations 2C4, while the B states are
antisymmetric under these rotations. For this reason, the A

states are classified as s wave and the B states are classified
as d wave. The A1 representation is symmetric under all five
classes, while the A2 representation is antisymmetric under
2C ′

2 and 2C ′′
2 . The B1 representation is symmetric under 2C ′

2
and is antisymmetric under 2C ′′

2 , while the B2 representation is
antisymmetric under 2C ′

2 and is symmetric under 2C ′′
2 . Thus,

B1 is classified as dx2−y2 and B2 is classified as dxy .
The E representation is two dimensional, so we need to

consider the representations of the group elements given by
Eq. (A5). Both rows of the representation are antisymmetric
under π rotations about the z axis. For this reason, E is
classified as p wave. The first row transforms into the second
row and the second row transforms into negative the first row
under a positive rotation by π/2 about the z axis. The first
row is antisymmetric and the second row is symmetric under
a π rotation about the x axis. The first row transforms into the
second row and the second row transforms into the first row
under a π rotation about the line y = x. Similar considerations
for the other rotations lead to the classification of the first row
of the E representation as px and the second row as py .

Simple examples of states in the A1, B2, and E represen-
tations come from n↑ = 1 and n↓ = 0. An example of an A1

state is

|A1〉 = 1
2 (|↑ 000〉 + |0 ↑ 00〉 + |00 ↑ 0〉 + |000 ↑〉) .

We use the notation in which, for example,

|↑ 0 ↓ 0〉 = c
†
1↑c

†
3↓|0〉,

and the numbering of sites within a plaquette is given in Fig. 1.
This state is clearly invariant under all five of the D4 classes.
An example of a B2 state is

|B2〉 = 1
2 (|↑ 000〉 − |0 ↑ 00〉 + |00 ↑ 0〉 − |000 ↑〉) .

This state is invariant under C2 and 2C ′′
2 but changes sign under

2C4 and 2C ′
4. An example of two E states is

|Ex〉 = 1
2 (|↑ 000〉 − |0 ↑ 00〉 − |00 ↑ 0〉 + |000 ↑〉) ,∣∣Ey

〉 = 1
2 (|↑ 000〉 + |0 ↑ 00〉 − |00 ↑ 0〉 − |000 ↑〉) .

These states are antisymmetric under π rotations about z.
Under a positive rotation by π/2 about z, |Ex〉 → |Ey〉
and |Ey〉 → −|Ex〉. Under a π rotation about the x axis,
|Ex〉 → |Ey〉 and |Ey〉 → −|Ex〉. Under a π rotation about
the line y = x, |Ex〉 → |Ey〉 and |Ey〉 → |Ex〉. Thus, |Ex〉
transforms as px and

∣∣Ey

〉
transforms as py .

A simple example of an A2 state comes from n↑ = 2 and
n↓ = 0, where

|A2〉 = 1
2 (|↑↑ 00〉 + |0 ↑↑ 0〉 + |00 ↑↑〉 − |↑ 00 ↑〉)

= 1
2

(
c
†
1↑c

†
2↑ + c

†
2↑c

†
3↑ + c

†
3↑c

†
4↑ + c

†
4↑c

†
1↑

) |0〉 .

This state is invariant under C2 and 2C4 since these transfor-
mations cyclically permute the indices. Under 2C ′

2 and 2C ′′
2 ,

|A2〉 → − |A2〉 since this corresponds to swapping indices.
A simple example of a B1 state is just the state from n↑ = 4

and n↓ = 0

|B1〉 = |↑↑↑↑〉 = c
†
1↑c

†
2↑c

†
3↑c

†
4↑ |0〉 .

As can be seen by appropriately switching the indicies on the
creation operators, this state has the B1 symmetries discussed
above.

3. Scale increase in the phase diagrams for the stack geometry

In this section, we use symmetry arguments to explain
the increase in the overall scale of phase diagrams for the
stack geometry (Figs. 10–12) relative to the corresponding
diagrams for the two-dimensional geometry (Figs. 3, 7, and
8). The main reason for this increase is that the J ′

⊥, J ′
z, and W ′

transition matrix elements between the low- and high-energy
subspaces decrease as J ′′/J ′ and J ′′′/J ′ are varied from 0 to
1. As a result, all phase transitions occur at smaller values of
t ′. To gain intuition for why these matrix elements decrease
as J ′′ and J ′′′ approach J ′, we study the t-J⊥ Hamiltonian
for the stack geometry in the regime where J ′

⊥ = J ′′
⊥ = J ′′′

⊥
(obtained as a′/a → ∞). A similar argument holds for the
other Hamiltonians considered.

Consider two neighboring plaquettes in a stack in the
|2,2〉|2,2〉 state coupled by the J ′

⊥ perturbing Hamiltonian
H1⊥ with J ′

⊥ = J ′′
⊥ = J ′′′

⊥ . From Table II, both plaquettes have
B1 symmetry. Since every vertex in one of the plaquettes is
equally coupled to every vertex in the other plaquette, H1⊥ is
symmetric under arbitrary permutations of the vertices within
one of the plaquettes. As a result, the matrix element

〈1,3| 〈3,1| H1⊥|2,2〉|2,2〉
will vanish unless both |1,3〉 and |3,1〉 have B1 symmetry;
otherwise, an appropriate permutation can be used to show that
this matrix element is equal to negative itself. This drastically
reduces the magnitude of f

(4,4)
⊥ relative to its value in the

J ′′
⊥ = J ′′′

⊥ = 0 case. A similar argument shows that f
(4,2)
⊥ and

f
(2,2)
⊥ vanish for J ′

⊥ = J ′′
⊥ = J ′′′

⊥ (since the |1,3〉 and |3,1〉
manifolds have no A1 states. See Table IV).
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APPENDIX B: BASIS VECTORS IN THE
REPRESENTATION BASIS

In this Appendix, we list the basis vectors for the irre-
ducible representations for D4. The results are symmetric on
interchange of up spins with down spins. We use the notation∣∣n↑,n↓(�)

〉
to refer to the basis vector for a plaquette with n↑

up spins and n↓ down spins in the irreducible representation
�. If there are an > 1 copies of an irreducible representation,
we denote them by a superscript. We use subscripts x and y

to denote the first and second rows of the E representation,
respectively. Thus |1,1(E1

y)〉 refers to the basis vector for |1,1〉
in the first copy of the second row of the E representation, and
|2,1(B2

1 )〉 refers to the basis vector for |2,1〉 in the second copy
of the B1 representation.

1. n↑ = 1 and n↓ = 0

|1,0(A1)〉 = 1

2
(|↑ 000〉 + |0 ↑ 00〉 + |00 ↑ 0〉 + |000 ↑〉)

|1,0(B2)〉 = 1

2
(|↑ 000〉 − |0 ↑ 00〉 + |00 ↑ 0〉 − |000 ↑〉)

|1,0(Ex)〉 = 1

2
(|↑ 000〉 − |0 ↑ 00〉 − |00 ↑ 0〉 + |000 ↑〉)

|1,0(Ey)〉 = 1

2
(|↑ 000〉 + |0 ↑ 00〉 − |00 ↑ 0〉 − |000 ↑〉)

2. n↑ = 2 and n↓ = 0

|2,0(A2)〉 = 1

2
(| ↑↑ 00〉 + |0 ↑↑ 0〉 − | ↑ 00 ↑〉 + |00 ↑↑〉)

|2,0(B2)〉 = 1

2
(| ↑↑ 00〉 − |0 ↑↑ 0〉 + | ↑ 00 ↑〉 + |00 ↑↑〉)

∣∣2,0
(
E1

x

)〉 = 1√
2

(| ↑↑ 00〉 − |00 ↑↑〉)
∣∣2,0

(
E1

y

)〉 = 1√
2

(|0 ↑↑ 0〉 + | ↑ 00 ↑〉)
∣∣2,0

(
E2

x

)〉 = 1√
2

(| ↑ 0 ↑ 0〉 − |0 ↑ 0 ↑〉)
∣∣2,0

(
E2

y

)〉 = 1√
2

(| ↑ 0 ↑ 0〉 + |0 ↑ 0 ↑〉)

3. n↑ = 1 and n↓ = 1

∣∣1,1
(
A1

1

)〉 = 1

2
√

2
(| ↓↑ 00〉 − |↑↓ 00〉 + |0 ↓↑ 0〉 − |0 ↑↓ 0〉

+ | ↓ 00 ↑〉 + |00 ↓↑〉 − | ↑ 00 ↓〉 − |00 ↑↓〉)∣∣1,1
(
A2

1

)〉 = 1

2
(|↓ 0 ↑ 0〉 − |↑ 0 ↓ 0〉+ |0 ↓ 0 ↑〉− |0 ↑ 0↓〉)

|1,1(A2)〉 = 1

2
√

2
(|↓↑ 00〉 + |↑↓ 00〉 + |0 ↓↑ 0〉 + |0 ↑↓ 0〉

−| ↓ 00 ↑〉 + |00 ↓↑〉 − | ↑ 00 ↓〉 + |00 ↑↓〉)
|1,1(B1)〉 = 1

2
√

2
(|↓↑ 00〉 − |↑↓ 00〉 − |0 ↓↑ 0〉 + |0 ↑↓ 0〉

− | ↓ 00 ↑〉 + |00 ↓↑〉 + | ↑ 00 ↓〉 − |00 ↑↓〉)

∣∣1,1
(
B1

2

)〉 = 1

2
√

2
(|↓↑ 00〉+ | ↑↓ 00〉− |0 ↓↑ 0〉 − |0 ↑↓ 0〉

+| ↓ 00 ↑〉 + |00 ↓↑〉 + | ↑ 00 ↓〉 + |00 ↑↓〉)∣∣1,1
(
B2

2

)〉 = 1

2
(|↓ 0 ↑ 0〉− |↑ 0 ↓ 0〉− |0 ↓ 0 ↑〉+ |0↑ 0↓〉)

∣∣1,1
(
E1

x

)〉 = 1

2
(| ↓↑ 00〉 + | ↑↓ 00〉 − |00 ↓↑〉 − |00 ↑↓〉)

∣∣1,1
(
E1

y

)〉 = 1

2
(|0 ↑↓ 0〉 + |0 ↓↑ 0〉 + | ↑ 00 ↓〉 + | ↓ 00 ↑〉)

∣∣1,1
(
E2

x

)〉 = 1

2
(|0 ↑↓ 0〉 − |0 ↓↑ 0〉 − | ↑ 00 ↓〉 + | ↓ 00 ↑〉)

∣∣1,1
(
E2

y

)〉 = 1

2
(| ↓↑ 00〉 − | ↑↓ 00〉 − |00 ↓↑〉 + |00 ↑↓〉)

∣∣1,1
(
E3

x

)〉 = 1

2
(|↓ 0↑ 0〉 + |↑ 0 ↓ 0〉− |0↓ 0 ↑〉− |0↑ 0↓〉)

∣∣1,1
(
E3

y

)〉 = 1

2
(|↓ 0 ↑ 0〉+ |↑ 0 ↓ 0〉+ |0 ↓ 0 ↑〉 + |0↑ 0↓〉)

4. n↑ = 3 and n↓ = 0

|3,0(A2)〉 = 1

2
(| ↑↑↑ 0〉 + | ↑↑ 0 ↑〉 + | ↑ 0 ↑↑〉 + |0 ↑↑↑〉)

|3,0(B1)〉 = 1

2
(| ↑↑↑ 0〉 − | ↑↑ 0 ↑〉 + | ↑ 0 ↑↑〉 − |0 ↑↑↑〉)

|3,0(Ex)〉 = 1

2
(| ↑↑↑ 0〉 + | ↑↑ 0 ↑〉 − | ↑ 0 ↑↑〉 − |0 ↑↑↑〉)

|3,0(Ey)〉 = 1

2
(| ↑↑↑ 0〉 − | ↑↑ 0 ↑〉 − | ↑ 0 ↑↑〉 + |0 ↑↑↑〉)

5. n↑ = 2 and n↓ = 1

|2,1(A1)〉 = 1

2
√

2
(|↓↑↑ 0〉− |↑↑↓ 0〉− |↑↓ 0 ↑〉− |↓0 ↑↑〉

+ |0 ↓↑↑〉 + | ↑ 0 ↓↑〉 + | ↑↑ 0 ↓〉 − |0 ↑↑↓〉)∣∣2,1
(
A1

2

)〉 = 1

2
√

2
(|↓↑↑ 0〉+ |↑↑↓ 0〉+ |↑↓ 0↑〉+ |↓ 0↑↑〉

+ |0 ↓↑↑〉 + | ↑ 0 ↓↑〉 + | ↑↑ 0 ↓〉 + |0 ↑↑↓〉)∣∣2,1
(
A2

2

)〉 = 1

2
(|↑↓↑ 0〉 + |↓↑ 0 ↑〉 + |0 ↑↓↑〉 + | ↑ 0 ↑↓〉)

∣∣2,1
(
B1

1

)〉 = 1

2
√

2
(|↓↑↑ 0〉+ |↑↑↓ 0〉− |↑↓ 0 ↑〉+ |↓ 0↑↑〉

− |0 ↓↑↑〉 + | ↑ 0 ↓↑〉 − | ↑↑ 0 ↓〉 − |0 ↑↑↓〉)∣∣2,1
(
B2

1

)〉 = 1

2
(|↑↓↑ 0〉 − |↓↑ 0 ↑〉 − |0 ↑↓↑〉 + | ↑ 0 ↑↓〉)

|2,1(B2)〉 = 1

2
√

2
(|↓↑↑ 0〉− |↑↑↓ 0〉+ |↑↓ 0 ↑〉− |↓ 0↑↑〉

− |0 ↓↑↑〉 + | ↑ 0 ↓↑〉 − | ↑↑ 0 ↓〉 + |0 ↑↑↓〉)∣∣2,1
(
E1

x

)〉 = 1

2
(|↓↑↑ 0〉 + |↑↓ 0 ↑〉 − | ↑ 0 ↓↑〉 − |0 ↑↑↓〉)

∣∣2,1
(
E1

y

)〉 = 1

2
(|↑↑↓ 0〉 − |↓ 0 ↑↑〉 + |0 ↓↑↑〉 − | ↑↑ 0 ↓〉)
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∣∣2,1
(
E2

x

)〉 = 1

2
(|↑↑↓ 0〉 − |↓ 0 ↑↑〉 − |0 ↓↑↑〉 + | ↑↑ 0 ↓〉)

∣∣2,1
(
E2

y

)〉 = 1

2
(|↓↑↑ 0〉 − |↑↓ 0 ↑〉 − | ↑ 0 ↓↑〉 + |0 ↑↑↓〉)

∣∣2,1
(
E3

x

)〉 = 1

2
(|↑↓↑ 0〉 + |↓↑ 0 ↑〉 − |0 ↑↓↑〉 − | ↑ 0 ↑↓〉)

∣∣2,1
(
E3

y

)〉 = 1

2
(|↑↓↑ 0〉 − |↓↑ 0 ↑〉 + |0 ↑↓↑〉 − | ↑ 0 ↑↓〉)

6. n↑ = 4 and n↓ = 0

|4,0(B1)〉 = | ↑↑↑↑〉

7. n↑ = 3 and n↓ = 1

|3,1(A2)〉 = 1

2
(| ↓↑↑↑〉 − | ↑↓↑↑〉 + | ↑↑↓↑〉 − | ↑↑↑↓〉)

|3,1(B1)〉 = 1

2
(| ↓↑↑↑〉 + | ↑↓↑↑〉 + | ↑↑↓↑〉 + | ↑↑↑↓〉)

|3,1(Ex)〉 = 1

2
(| ↓↑↑↑〉 − | ↑↓↑↑〉 − | ↑↑↓↑〉 + | ↑↑↑↓〉)

|3,1(Ey)〉 = −1

2
(| ↓↑↑↑〉 + | ↑↓↑↑〉 − | ↑↑↓↑〉 − | ↑↑↑↓〉)

8. n↑ = 2 and n↓ = 2

|2,2(A1)〉 = 1

2
(| ↓↓↑↑〉 − | ↑↓↓↑〉 − | ↓↑↑↓〉 + | ↑↑↓↓〉)

|2,2(A2)〉 = 1√
2

(| ↓↑↓↑〉 − | ↑↓↑↓〉)
∣∣2,2

(
B1

1

)〉 = 1

2
(| ↓↓↑↑〉 + | ↑↓↓↑〉 + | ↓↑↑↓〉 + | ↑↑↓↓〉)

∣∣2,2
(
B2

1

)〉 = 1√
2

(| ↓↑↓↑〉 + | ↑↓↑↓〉)

|2,2(Ex)〉 = 1√
2

(| ↑↓↓↑〉 − | ↓↑↑↓〉)

|2,2(Ey)〉 = 1√
2

(| ↓↓↑↑〉 − | ↑↑↓↓〉)

APPENDIX C: EXPLICIT EXPRESSIONS FOR
IMPORTANT GROUND STATES AND ENERGIES

In this Appendix, we give explicit expressions for the
ground states and energies for those |2〉 and |4〉 states
responsible for d-wave superfluidity in the t-J⊥ Hamiltonian,
the t-J⊥-Jz Hamiltonian, and the t-J -W Hamiltonian with
J⊥ = Jz = J . We also discuss intuition for the symmetries of
some of these states.

1. t- J⊥ Hamiltonian

Here we give the |2〉 and |4〉 ground states of the t-J⊥
Hamiltonian responsible for d-wave superfluidity (see Table II
and Fig. 2). The s-wave symmetric |1,1〉 ground state for
J⊥/t > −1.22 is

|1,1(A1)〉 ∝ b
∣∣1,1

(
A1

1

)〉 + ∣∣1,1
(
A2

1

)〉
(C1)

with energy

Eg(1,1) = − 1

16

[√
(18 − 8

√
2)

(
J⊥
t

)2

+ 2048

+ (4 +
√

2)
J⊥
t

]
, (C2)

where

b = 1

32

[√
(9 − 4

√
2)

(
J⊥
t

)2

+ 1024 + (2
√

2 − 1)
J⊥
t

]
.

The d-wave symmetric |2,2〉 ground state for J⊥/t > 0 is

|2,2(B1)〉 ∝
√

65 − 1

8

∣∣2,2
(
B1

1

)〉 − ∣∣2,2
(
B2

1

)〉
(C3)

with energy

Eg(2,2) = 1 − √
65

4
√

2

J⊥
t

.

We can understand the symmetries of the |2〉 ground states
as follows. In the limit of vanishing t , the ground state will be
an eigenstate of the J⊥ interaction. The two eigenstates of the
J⊥ interaction for an up and a down molecule on sites r and r ′
are

|±〉rr ′ = 1√
2

(
c
†
r↑c

†
r ′↓ ± c

†
r↓c

†
r ′↑

)|0〉 (C4)

since
J⊥
2

(
S+

r S−
r ′ + S−

r S+
r ′
)|±〉rr ′ = ±J⊥

2
|±〉rr ′ .

[Note that |−〉rr ′ = s
†
rr ′ |0〉 where s

†
rr ′ is given by Eq. (4)].

Thus for positive J⊥, the singlet state |−〉 is the ground
state of the J⊥ interaction. Note that it is disadvantageous
to have identical spins since, in that case, the J⊥ interaction
vanishes. For two molecules with small tunneling amplitude
t , the |2〉 ground state is thus a superposition of singlets on
the four nearest-neighbor bonds. Diagonalizing the effective
Hamiltonian of this system shows that the ground state is the
following symmetric superposition:

|−〉12 + |−〉23 + |−〉34 + |−〉41.

This state has s-wave symmetry and is proportional to the basis
vector |1,1(A1)〉, consistent with Eq. (C1). For negative J⊥,
the |+〉 state is the ground state of the J⊥ interaction on two
sites, and the two resulting single-plaquette ground states have
p-wave symmetry.

The symmetries of the |4〉 ground states can be understood
by considering only nearest-neighbor interactions. In this case,
for positive J⊥, the ground state is∣∣2,2

(
B2

1

)〉 − ∣∣2,2
(
B1

1

)〉
,

which has dx2−y2 symmetry. For negative J⊥, the ground state
is ∣∣2,2

(
B2

1

)〉 + ∣∣2,2
(
B1

1

)〉
,

which also has dx2−y2 symmetry. When the effects of next-
nearest neighbors are considered, the coefficients in the
superposition of |2,2(B1

1 )〉 and |2,2(B2
1 )〉 are changed.
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2. t- J⊥- Jz Hamiltonian

Here we give the |2〉 and |4〉 ground states of the t-J⊥-Jz

Hamiltonian responsible for d-wave superfluidity (see Fig. 4).
The s-wave symmetric |1,1〉 ground state is

|1,1(A1)〉 ∝ a
∣∣1,1

(
A1

1

)〉 + ∣∣1,1
(
A2

1

)〉
(C5)

with energy

Eg(1,1) = − 1

16

[√
2048 − 2(4

√
2 − 9)

(
J⊥
t

+ 2
Jz

t

)2

+ (4 +
√

2)
J⊥
t

+ 2(4 +
√

2)
Jz

t

]
,

where

a = 1

32
√

2

[√
2048 − 2(4

√
2 − 9)

(
J⊥
t

+ 2
Jz

t

)2

−(
√

2 − 4)
J⊥
t

− 2(
√

2 − 4)
Jz

t

]
.

The d-wave symmetric |2,2〉 ground state is

|2,2(B1)〉 ∝ b
∣∣2,2

(
B1

1

)〉 + ∣∣2,2
(
B2

1

)〉
(C6)

with energy

Eg(2,2) = 1

8

{
−

[
130

(
J⊥
t

)2

+ 16(2
√

2 − 1)
J⊥
t

Jz

t

+ 32(9 − 4
√

2)

(
Jz

t

)2
]1/2

+
√

2
J⊥
t

− 16
Jz

t

}
,

where

b = 1

8

t

J⊥

{
−

[
65

(
J⊥
t

)2

+ 8(2
√

2 − 1)
J⊥
t

Jz

t

+16(9 − 4
√

2)

(
Jz

t

)2
]1/2

+ J⊥
t

+ (8
√

2 − 4)
Jz

t

}
.

3. t- J-W Hamiltonian with J⊥ = Jz = J

Here we give the |2〉 and |4〉 ground states of the t-J -
W Hamiltonian with J⊥ = Jz = J responsible for d-wave
superfluidity (see Figs. 5 and 6). Note that the following
formulas do not depend on W in the sector where |1,1〉 and
|2,2〉 are the ground states. The s-wave symmetric |1,1〉 ground
state is

|1,1(A1)〉 ∝ a
∣∣1,1

(
A1

1

)〉 + ∣∣1,1
(
A2

1

)〉
(C7)

with energy

Eg(1,1) = − 1

16

[√
18(9 − 4

√
2)

(
J

t

)2

+ 2048

+ 3(4 +
√

2)
J

t

]
, (C8)

where

a = 1

32

[√
9(9 − 4

√
2)

(
J

t

)2

+ 1024 + (6
√

2 − 3)
J

t

]
.

The d-wave symmetric |2,2〉 ground state is

|2,2(B1)〉 ∝ b
∣∣2,2

(
B1

1

)〉 + ∣∣2,2
(
B2

1

)〉
(C9)

with energy

Eg(2,2) = 1

8

J

t

[
(
√

2 − 16) −
√

402 − 96
√

2

]
,

where

b = −
√

201 − 48
√

2

8

J

t
+

√
2 − 3

8
.

We can understand the symmetries of the ground states of
this Hamiltonian in the different sectors as follows. For large
positive W , when the ground states are |0,2〉 and |0,4〉, the |4〉
Hilbert space is one dimensional with state

|0,4(B1)〉 = | ↓↓↓↓〉,
so the |4〉 state automatically has dx2−y2 symmetry. In the limit
of infinite W , the |2〉 ground subspace is a manifold consisting
of two down spins next to each other. In this limit, the states
in the A2 and B2 representations and the two states

|0,2(Ex)〉 ∝ |0 ↓↓ 0〉 + | ↓ 00 ↓〉 + O

(
t

W

)

|0,2(Ey)〉 ∝ |00 ↓↓〉 + | ↓↓ 00〉 + O

(
t

W

)

in the E representation are the ground states. For finite but
large W , the O(t/W ) terms, proportional to |0 ↓ 0 ↓〉 and
| ↓ 0 ↓ 0〉, make the p-wave symmetric states the ground
states.

As W is decreased, the |2〉 ground state is s-wave |1,1〉
since positive J⊥ and Jz make it favorable to have molecules
of opposite spins. For intermediate values of J⊥ and Jz, the
|4〉 ground state becomes |1,3〉. With four molecules on a
plaquette, there is no tunneling to consider in the energies of the
states. Furthermore, since n↑ and n↓ are fixed, as determined by
Jz, J⊥, and W in this sector, we only have to consider the effects
of J⊥ to explain the behavior of |4〉 in this sector. Consider
two molecules of opposite spins on sites r and r ′. The two
eigenstates of the J⊥ interaction are |±〉rr ′ defined in Eq. (C4).
Since J⊥ > 0, the singlet |−〉rr ′ is the ground state of the J⊥
interaction. Therefore, we may expect the |1,3〉 ground state to
be a superposition of singlets on nearest-neighbor bonds with
relative phases chosen for constructive interference:(

s
†
12t

†
34 + s

†
23t

†
41 + s

†
34t

†
12 + s

†
41t

†
23

)|0〉.
Here

trr ′ = c
†
r↓c

†
r ′↓

creates the m = −1 triplet state on sites r and r ′, while srr ′ ,
defined in Eq. (4), creates the singlet state on sites r and r ′.
This state is indeed the |1,3〉 ground state and has the s-wave
A2 symmetry.
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[34] W.-F. Tsai, H. Yao, A. Läuchli, and S. A. Kivelson, Phys. Rev.

B 77, 214502 (2008).
[35] W.-F. Tsai and S. A. Kivelson, Phys. Rev. B 73, 214510

(2006).
[36] G. Karakonstantakis, E. Berg, S. R. White, and S. A. Kivelson,

Phys. Rev. B 83, 054508 (2011).
[37] A. M. Rey, R. Sensarma, S. Fölling, M. Greiner, E. Demler, and
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[53] F. Hébert, G. G. Batrouni, R. T. Scalettar, G. Schmid, M. Troyer,

and A. Dorneich, Phys. Rev. B 65, 014513 (2001).
[54] G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi, and A. P. Kampf,

Phys. Rev. Lett. 74, 2527 (1995).
[55] R. T. Scalettar, G. G. Batrouni, A. P. Kampf, and G. T. Zimanyi,

Phys. Rev. B 51, 8467 (1995).
[56] G. G. Batrouni and R. T. Scalettar, Phys. Rev. Lett. 84, 1599

(2000).
[57] E. Dagotto and J. Riera, Phys. Rev. Lett. 70, 682 (1993).
[58] E. Dagotto and J. Riera, Phys. Rev. B 46, 12084 (1992).
[59] K. Nelson, X. Li, and D. Weiss, Nat. Phys. 3, 556 (2007).
[60] S. Peil, J. V. Porto, B. Laburthe Tolra, J. M. Obrecht, B. E. King,

M. Subbotin, S. L. Rolston, and W. D. Phillips, Phys. Rev. A 67,
051603 (2003).

063639-19

http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1088/0034-4885/71/3/036501
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1103/PhysRevLett.105.265303
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1126/science.1163861
http://dx.doi.org/10.1103/PhysRevLett.105.203001
http://dx.doi.org/10.1103/PhysRevLett.105.203001
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://arXiv.org/abs/arXiv:1110.4420
http://dx.doi.org/10.1103/PhysRevLett.96.190401
http://dx.doi.org/10.1103/PhysRevLett.96.190401
http://dx.doi.org/10.1038/nphys287
http://dx.doi.org/10.1038/nphys287
http://dx.doi.org/10.1088/1367-2630/9/5/138
http://dx.doi.org/10.1088/1367-2630/9/5/138
http://dx.doi.org/10.1038/nphys678
http://dx.doi.org/10.1103/PhysRevA.80.053621
http://dx.doi.org/10.1088/1367-2630/11/5/055027
http://arXiv.org/abs/arXiv:0910.4922
http://dx.doi.org/10.1103/PhysRevA.82.013611
http://dx.doi.org/10.1088/1367-2630/12/10/103044
http://dx.doi.org/10.1088/1367-2630/12/10/103007
http://dx.doi.org/10.1088/1367-2630/12/10/103007
http://dx.doi.org/10.1088/1367-2630/12/9/093008
http://dx.doi.org/10.1103/PhysRevA.82.033428
http://dx.doi.org/10.1103/PhysRevA.82.033428
http://dx.doi.org/10.1103/PhysRevB.83.174409
http://dx.doi.org/10.1103/PhysRevB.83.174409
http://dx.doi.org/10.1103/PhysRevA.84.033619
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1103/PhysRevA.84.043630
http://dx.doi.org/10.1103/PhysRevB.76.161104
http://dx.doi.org/10.1103/PhysRevB.76.161104
http://dx.doi.org/10.1103/PhysRevB.77.214502
http://dx.doi.org/10.1103/PhysRevB.77.214502
http://dx.doi.org/10.1103/PhysRevB.73.214510
http://dx.doi.org/10.1103/PhysRevB.73.214510
http://dx.doi.org/10.1103/PhysRevB.83.054508
http://dx.doi.org/10.1209/0295-5075/87/60001
http://dx.doi.org/10.1103/PhysRevLett.105.187002
http://dx.doi.org/10.1103/PhysRevLett.105.187002
http://dx.doi.org/10.1103/PhysRevLett.104.030402
http://dx.doi.org/10.1103/PhysRevLett.104.030402
http://dx.doi.org/10.1103/PhysRevA.82.020703
http://dx.doi.org/10.1103/PhysRevA.82.020703
http://dx.doi.org/10.1103/PhysRevLett.105.073202
http://dx.doi.org/10.1103/PhysRevLett.98.060404
http://dx.doi.org/10.1103/PhysRevLett.98.060404
http://dx.doi.org/10.1103/PhysRevA.76.043604
http://dx.doi.org/10.1103/PhysRevA.76.043604
http://dx.doi.org/10.1103/PhysRevLett.101.073201
http://dx.doi.org/10.1103/PhysRevLett.101.073201
http://dx.doi.org/10.1103/PhysRevA.81.031601
http://dx.doi.org/10.1103/PhysRevA.81.031601
http://dx.doi.org/10.1103/PhysRevLett.103.155302
http://dx.doi.org/10.1103/PhysRevLett.103.155302
http://dx.doi.org/10.1103/PhysRevLett.96.250402
http://dx.doi.org/10.1103/PhysRevLett.96.250402
http://dx.doi.org/10.1088/1367-2630/12/5/055009
http://dx.doi.org/10.1088/1367-2630/12/5/055009
http://dx.doi.org/10.1103/PhysRev.147.392
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1103/PhysRevB.65.014513
http://dx.doi.org/10.1103/PhysRevLett.74.2527
http://dx.doi.org/10.1103/PhysRevB.51.8467
http://dx.doi.org/10.1103/PhysRevLett.84.1599
http://dx.doi.org/10.1103/PhysRevLett.84.1599
http://dx.doi.org/10.1103/PhysRevLett.70.682
http://dx.doi.org/10.1103/PhysRevB.46.12084
http://dx.doi.org/10.1038/nphys645
http://dx.doi.org/10.1103/PhysRevA.67.051603
http://dx.doi.org/10.1103/PhysRevA.67.051603


KEVIN A. KUNS, ANA MARIA REY, AND ALEXEY V. GORSHKOV PHYSICAL REVIEW A 84, 063639 (2011)

[61] J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207,
169 (2002).

[62] A. S. Sørensen, E. Altman, M. Gullans, J. V. Porto, M. D. Lukin,
and E. Demler, Phys. Rev. A 81, 061603 (2010).

[63] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

[64] S. Kotochigova and D. DeMille, Phys. Rev. A 82, 063421 (2010).
[65] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70, 013603

(2004).

[66] I. B. Spielman, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett.
98, 080404 (2007).

[67] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev.
Lett. 107, 190401 (2011).

[68] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 (2005).

[69] R. Schumann, Ann. Phys. (NY) 11, 49 (2002).
[70] G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 46, 1048

(1992).

063639-20

http://dx.doi.org/10.1016/S0030-4018(02)01524-9
http://dx.doi.org/10.1016/S0030-4018(02)01524-9
http://dx.doi.org/10.1103/PhysRevA.81.061603
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevA.82.063421
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.107.190401
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1002/1521-3889(200201)11:1<49::AID-ANDP49>3.0.CO;2-7
http://dx.doi.org/10.1103/PhysRevB.46.1048
http://dx.doi.org/10.1103/PhysRevB.46.1048

