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S1. RAINBOW SCAR ENTANGLEMENT
ENTROPY

In this Appendix, we show that, for a random parti-
tion of the system into sub-regions A and B, the average
entanglement between A and B for the rainbow state |I〉
scales extensively with the size of the smaller subregion.
(Without loss of generality, we assume region A to be
the smaller of the two sub-regions.) We further study
the scaling of the Rényi entropy for the projected rain-
bow scar states of the U(1) tower in the limit of large
system size N . We give results for both the standard en-
tanglement cut and a fine-tuned cut for which the rain-
bow state has zero entanglement. We emphasize that the
results of this Appendix also hold for the other rainbow
states |X〉 , |Y 〉 , and |Z〉, since these states are obtained
from |I〉 by unitary operations that generate no addi-
tional entanglement.

A. Average Entanglement Entropy for a Random
Bipartition

We consider the rainbow state |I〉 [see Eq. (2) in the
main text] in a system of 2N sites. In total there are
22N possible bipartitions, since each site can be either
included or excluded from region A. The size of region A
for a given bipartition is ` = 2nbp + ns where nbp is the
number of Bell pairs enclosed in region A and ns is the
number of singleton sites (or, equivalently, the number
of entanglement “bonds” cut by the bipartition). Given
a bipartition, the entanglement entropy scales with the
number of singletons, S = ns log(d) (for concreteness we
set d = 2.). For each ` ∈ [0, 2N ], we determine the
average singleton number, ns, as follows:

ns =

`∑′

ns=0

nsP`(ns) (S1)
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where P`(ns), the probability distribution of ns for fixed
`, satisfies

`∑′

ns=0

P`(ns) = 1. (S2)

Here, the prime on the summation symbol denotes that
the sum runs only over the values of ns for which nbp =
(` − ns)/2 is an integer. P`(ns) takes the combinatorial
form

P`(ns) =
1(
2N
`

)( N

nbp

)(
N − nbp

ns

)
2ns . (S3)

The above expression is determined first by picking nbp
from the total number of N Bell pairs in the rainbow
state. The remaining N − nbp Bell pairs furnish the ns
singletons. The factor 2ns arises from the fact that each
singleton site can reside within either of subsystems 1
and 2. The remaining factor of

(
2N
`

)
ensures normaliza-

tion. Combining Eq. (S1) and Eq. (S3) results in the
bipartition-averaged entanglement entropy

Sav =
1

2N − 1
(2N − `)` log(2), (S4)

which fits the numerical result in Fig. 1(a) of the main
text. Note that the above expression for Sav scales ex-
tensively with system size N when ` ∝ N . In the large-
N limit the probability distribution P`(ns) approaches a
Gaussian distribution of the form,

P`(ns)→
√

2N

n̄2sπ
exp

(
−N (ns − n̄s)2

2n̄2s

)
, (S5)

where the mean

n̄s =
1

2N
(2N − `)`. (S6)

The standard deviation of ns/N → 0 as N → ∞, in-
dicates that the ratio ns/N takes the average value for
a typical bipartition. This result emphasizes that the
entanglement scaling of the state |I〉 for a typical entan-
glement cut is extensive, in stark contrast with previous
exact constructions of scar states.
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FIG. S1. Entanglement Bipartitions. The standard biparti-
tion (orange) is constructed with a cut placed between sites N

and (N+1) and spanned by |SA(B)〉 in the local Sz basis. The
fine-tuned bipartition (blue) is formed by a cut between sites
(N/2, N/2 + 1), as well as, (3N/2, 3N/2 + 1) and spanned by
the basis states |SB〉 and its mirror |MSB〉.

B. Entanglement of the U(1) Rainbow Tower

In this section we consider the rainbow scars of the
XYZ model with a U(1) symmetry [Eq. (3) in the main
text with hx = hy = 0 and Jx = Jy] and perform a
large-N analysis of the Rényi entropy. When the total

magnetization Sz =
∑2N
i=1 S

z
i of the combined system is

conserved, the Hilbert space is a direct sum of sub-sectors
labelled by Sz eigenvalues {−N, · · · , N}. We represent
the rainbow scars within each magnetization sector as:

|Φn〉 = N (n)
(
J+
)n 2N∏

i=1

|↓〉i ,

=

(
N

n

)−1/2∑
S

|S〉 ⊗ |MS〉 ,
(S7)

where |S〉 is in the local Sz basis for the half-chain with
total magnetization mn = n −N/2 with n ∈ [0, · · · , N ].
Importantly, the state |Φn〉 is the sum over all per-
mutations of n mirror excitations in a polarized back-
ground (i.e., raised spins at sites i and ĩ). We emphasize
that with each application of J+ the number of exci-
tations (raised spins) increases by two, resulting in the
rainbow state having finite projection onto every other
magnetization sector, leaving a tower of (N + 1) states.
By contrast, previously studied U(1) scar towers have
a non-thermal eigenstate within each magnetization sec-
tor [1, 2].

1. Standard Cut

We first consider the “standard” bipartition, where the
entanglement cut is placed between sites N and N + 1.
The state (S7) is already in Schmidt-decomposed form
with Schmidt coefficients

λ =

(
N

n

)−1/2
, (S8)

each with multiplicity
(
N
n

)
, ensuring the Schmidt coeffi-

cients are properly normalized. Therefore, the entangle-

ment entropy takes the following form:

S = log

(
N

n

)
→ −N ((1− γ) log(1− γ) + γ log γ) ,

(S9)
where γ = n/N . Thus, for the standard cut the entan-
glement entropy scales extensively with system size, in
contrast with previous examples of exact U(1) scar tow-
ers. Indeed, Eq. (S9) is the maximum possible entangle-
ment between two quantum systems with Hilbert space
dimension

(
N
n

)
.

2. Fine-Tuned Cut

We consider the state |Φn〉 in a system of 2N sites,
which we bipartition into regions A and B with sizes
NA and NB = 2N − NA. Here we focus on biparti-
tions of equal size, i.e., NA = NB = N (we take N to
be even.). Specifically, we focus on the fine-tuned bi-
partition where cuts are placed between sites N/2 and
(N/2+1), and between sites 3N/2 and (3N/2+1), which
identifies the middle half of the system as region A. The
entanglement spectrum is completely characterized by
the Schmidt coefficients, which are found by first decom-
posing the state (S7) as

|Φn〉 =
∑
k

λk |ΦAk 〉 |ΦBn−k〉 , (S10)

where |ΦA(B)
j 〉 are a set of orthonormal states for region

A(B) in the local Sz basis, labelled by the number j of
mirror excitations, given by

|ΦAk 〉 =

(
N/2

k

)−1/2∑
SA

|SA〉 |MSA〉

|ΦBn−k〉 =

(
N/2

n− k

)−1/2∑
SB

|SB〉 |MSB〉 .
(S11)

The sum in |ΦAk 〉 is over all states |SA〉 with magnetiza-
tionmk = k−N/4 in region A and the sum in |ΦBk 〉 is over
all states |SB〉 with magnetization mn−k = (n−k)−N/4
in region B. The Schmidt coefficients λk, properly nor-
malized, are given by

λ2k =

(N
2
k

)( N
2

n−k
)(

N
n

) , (S12)

and satisfy
∑n
k=0 λ

2
k = 1. Determining the λk permits

the construction of the Rényi entropy of order α defined
as:

S(α) =
1

1− α log

(∑
i

λ2αi

)
, (S13)
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The Rényi entropy is then computed by taking the loga-
rithm of the following result,

e(1−α)S
(α)

=

n∑
k=0

(N
2
k

)α( N
2

n−k
)α(

N
n

)α . (S14)

Using saddle point methods, the second-order (α = 2)
Rényi entropy in the large-N limit has the scaling form

S(2) =
N→∞

1

2
log (Nπγ(1− γ)) , (S15)

We note that this result is different than in the case of
other symmetries such as Z2, where the fine-tuned cut
has zero entanglement; here, the scar state in each mag-
netization sector scales logarithmically with N provided
γ = n/N is finite.

S2. HEISENBERG PERTURBATION

We consider the consequence of perturbing the U(1)-
symmetric point of two coupled Heisenberg XYZ chains
composed of N spins. In the main text [see Fig. 3(d)]
we demonstrated a perturbation of the form Vpert =
O ⊗ 1− 1⊗O∗, which respects the structure of Eq. (1)
but breaks the U(1) symmetry. In this instance the os-
cillations remain robust for perturbations strengths up
to D ∼ 0.5 before thermalization rapidly sets in. We
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FIG. S2. (a) Perturbation of Heisenberg XYZ model. The
inverse lifetime is extracted from fitting 〈(Sx(t))2〉/N with

the function f(τ) = Ae−t/τ cos(2µt) + 1/2. The constant
α ∼ 6.82 is found to be nearly twenty times larger than for
the perturbation considered in the main text. The parameters
used are Jz = 2.0, Jx = Jy = 1.0, µ = 0.5, J̃ = 0.5, λc =
1.5, dt = 0.1.

emphasize that in previous studies of perturbations of
scarred models [3] the oscillations decay at much lower
perturbation strengths. Therefore, the structure alone of
Eq. (1) seems to act as a stabilizer of the scars’ coher-
ent dynamics without needing to add extra terms to the
Hamiltonian. We confirm this suspicion by considering
a perturbation which explicitly breaks the structure of
Eq. (1) and the U(1) symmetry. Specifically, consider a

perturbation of the form Vpert = O⊗1+1⊗O∗ with the

operator O =
∑N
i S

x
i S

x
i+1. We extract the inverse life-

time of the oscillations’ decay by fitting to a function of
the form f(τ) = Ae−t/τ cos(µt) + 1/2 and plot it against
the perturbation strength D in Fig. S2. The inverse life-
time is then fit with the function τ−1 = αD2, which is
expected from Fermi’s golden rule. Surprisingly, while
the perturbation considered here follows the same power
law as in the main text, here the coefficient α = 6.82 is
roughly twenty times larger than the value (α = 0.4) ob-
tained for the perturbation considered in the main text.
Due to the size of this constant, thermalization sets in at
perturbation strengths ten times smaller than when the
construction’s structure is respected. In the future, we
plan on exploring the role the structure plays in dynamics
and obtain a better understanding of the constant α.

S3. RYDBERG SYSTEM

In this appendix we first study the Rydberg system
from the main text in the presence of different experi-
mental errors. For example, in order to ensure that the
central sites are at the optimal detuning value, very pre-
cise laser placement is required, which generically is not
perfectly accurate. As a result, some of the applied light
will be imparted on the atoms directly adjacent to the
two central ones, giving them a finite detuning. We study
this scenario in depth and find the rainbow scar state to
be robust over a wide range of parameters.

We further address the problem of state preparation
by considering a the Rydberg system in the geometry of
a ladder rather than a chain. Here the rainbow state
is prepared on each rung of the ladder, which can be
achieved with local entangling gates. Another reason why
the ladder geometry is appealing is that its Hamiltonian
is translation invariant.

A. Experimental Error

We now study the effects of various possible sources
of error that may occur in an experimental realization of
the model discussed in the main text.

As an experimental realization of rainbow scars, we
studied two coupled chains of Rydberg atoms. To obtain
the strongest dynamical signature of the rainbow scars,
each atom should be on resonance, i.e, ∆i = 0, except for
the atoms on the two central sites, where the detuning
takes an optimal value ∆opt. In practice, satisfying these
conditions is challenging; therefore, in this appendix we
study how robust the scar state is under more realistic
conditions.

The first possibility we consider is to have the two cen-
tral sites not set exactly at the optimal detuning; we
can then define their detuning to be ∆ = η∆opt, where
η ∈ [0, 1]. The case η = 0 corresponds to the entire
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FIG. S3. Rydberg Perturbation. (a) Maximum overlap of
|PZ〉, the projection of |Z〉 into the sub-sector absent of neigh-
boring Rydberg excitations, with all eigenstates in that sub-
sector as a function of the detuning ∆ on the two central sites.
As ∆ approaches ∆opt and the nearest-neighbor interaction
strength V0 is increased, the maximum overlap approaches
unity. (b) Same as (a) with the detuning on the central sites
fixed to ∆opt, while the detuning on the sites directly adja-
cent to the central sites is fixed to different fractions of the
optimal value. In this case, the maximal overlap is plotted
as a function of the nearest-neighbor interaction strength V0.
Parameters used in (a), (b): Ω/2π = 2MHz, ∆opt = V0/2ã
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with ã ∼ 1.51 and 2N = 12.

chain being on resonance, making the chain translation-
invariant except for the spacing between the two central
sites. To probe the role of the detuning on the central
sites, in Fig. S3(a) we plot the maximum overlap of |PZ〉,
the projection of the rainbow state |Z〉 into the sub-
sector absent of neighboring Rydberg excitations, with
all eigenstates in that sub-sector as a function of the de-
tuning ∆ on the two central sites. Surprisingly, even in
the case η = 0 the maximum overlap is around fifty per-
cent [see Fig. S3(a)], demonstrating that the signature
of the scar state is not strictly conditioned on the de-
tuning on the central sites being optimal. As the ratio
∆/∆opt approaches one and the interaction strength V0
approaches infinity, the maximum overlap converges to
unity in agreement with our findings in the main text.

Another possibility is error due to the coupling laser
not being entirely focused on the central two sites,
thereby imparting a non-zero detuning onto the sites di-
rectly adjacent to them. In Fig. S3(b) we re-calculate
the maximal overlap between |PZ〉 and the exact eigen-
states with the detuning on sites N − 1 and N + 2 set
to various fractions of ∆opt. We find that, even at mod-
erately large fractions of ∆opt, the maximum overlap re-
mains above fifty percent provided the nearest-neighbor
interaction is sufficiently large. From an experimental
perspective, these results suggest that the dynamical sig-
nature of the rainbow scars will emerge for a wide range
of detunings.

B. Rydberg Ladder

In the main text we showed that, when a non-uniformly
spaced Rydberg chain has its two central atoms detuned
to a specific value, they become coupled by an Ising inter-
action, resulting in non-ergodic dynamics from a tower
of rainbow scar states. While the rainbow state has a
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FIG. S4. Rydberg Ladder. (a) Cartoon depiction of the
Rydberg ladder considered in Sec. S3 B for nearest-neighbor
and all-to-all interactions. (b) Dynamics of the correlator

〈
∑
σxi,1σ

x
i,2〉 for the initial state |Z〉, calculated using Krylov

time-evolution. The parameters are: 2N = 16, Ω/2π =
2MHz, V0 = 12Ω, ∆opt = V0/2ã

6, and ã ∼ 1.51.

strong dynamical signature, its experimental preparation
can be difficult. A possible resolution mentioned in the
main text is to “fold” the chain into a ladder, which per-
mits the use of local gates for state preparation, as well
as rendering the model translation invariant. Below, we
give numerical evidence that the non-ergodic signature of
the rainbow scars persists in the ladder geometry under
experimentally reasonable conditions. To this end, we
begin with the Hamiltonian

H‖ =

2∑
b=1

Ω

2

N∑
i=1

σxi,b +
∑
i<j

Vi,jni,bnj,b

 ,

H⊥ = −
N∑
i=1

2∑
b=1

∆i,bni,b +
∑
i,j

Ṽi,jni,1nj,2,

(S16)

where b = 1, 2 labels the legs of the ladder. We set the
interatomic spacing a = 1 between atoms on the same
leg, and define ã to be the spacing between the legs. The
operator σxi connects the internal ground state |g〉i to
the Rydberg state |r〉i of the i-th atom, with parame-
ters Ω (Rabi frequency) and ∆i (detuning) characterizing
the drive laser. Rydberg atoms in the same leg interact
through Vi,j = V0/r

6
i,j , with operators ni = (1 + σzi ) /2.

Rydberg atoms in different legs interact through Ṽi,j =
V0/r̃

6
i,j , where r̃i,j is the distance between site i in the

leg b = 1 and site j in the leg b = 2. In the limit
Vi,i+1 � Ω � Vi,i+2, we take Ṽi,i = V0/ã

6 to be compa-
rable to Ω; equivalently, we take ã > 1.0. By contrast to
the non-uniformly spaced 1D chain, where only the mid-
dle sites are off resonance, here each rung pair is detuned
to the optimal value, ∆i,1 = ∆i,2 = ∆opt = Ṽi,i/2. With
this detuning, each rung pair interacts through an Ising
coupling, V0σ

z
i,1σ

z
i,2/4ã

6. In the strong-coupling limit
Vi,i+1 � Ω � Vi,i+2, the Hilbert space splits into the
sub-sectors discussed in the main text.

In this ladder geometry, the equally spaced tower
of states discussed in the main text still reveals itself
through the system’s dynamics. We probe the presence
of the tower by preparing the ladder in the |Z〉 rainbow
state and, using experimentally reasonable parameters,
simulate the dynamics well beyond the local relaxation
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timescale, 1/Ω. In Fig. S4(b), we measure the expec-

tation value 〈∑σxi,1σ
x
i,2〉 for the case of both nearest-

neighbor and all-to-all long-range interactions with pa-
rameters V0 = 12Ω and ã ∼ 1.51.

In the coupled-1D-chain example discussed in the main
text, the two chains interact through a single term on
the center sites. Here, instead, there are N Ising cou-
plings between the legs for nearest-neighbor interactions.
Remarkably, the non-ergodic dynamics remain robust to
this increase in interactions, which results from the pro-
jection of the |Z〉 rainbow state onto each sub-sector be-

ing a local eigenstate of H⊥ in the strong coupling limit.
Introducing long-range interactions leads to faster de-
cay, except here the primary perturbation comes from
the diagonal interaction between legs, rather than next-
nearest-neighbor interactions within each leg. Despite
the fact that the two sub-systems are coupled by more
than a single term, the non-ergodic dynamics persists.
The ladder geometry thus provides a promising alterna-
tive way to probe experimentally the dynamical signature
of rainbow scars.
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