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This Supplemental Material consists of three sections. In
Sec. S.I, we derive the dynamical symmetry given by Eqs. (9)
and (10) in the main text. In Sec. S.II, we provide an intu-
itive derivation of the asymmetric expansion dynamics, based
on perturbation theory. In Sec. S.III, we compare features of
the bosonic OTOC (which is experimentally accessible) to the
anyonic OTOC given by Eq. (11) in the main text.

S.I. DYNAMICAL SYMMETRY OF DENSITY EXPANSION

In this section, we give detailed derivations for the dynam-
ical symmetry observed in the main text in Eqgs. (9) and (10).
The inversion symmetry operator Z acts on a bosonic opera-
tor as IZA)J-IT = Z;j/, where j' is the site that j is mapped to
under reflection about the middle of the 1D system. The time-
reversal operator 7 acts by complex-conjugating the entries
of a state (or operator) written in the bosonic Fock basis; for
instance, ’TZA)j’T*l = Ej and 797! = —i. Although Hp
respects neither time-reversal nor inversion symmetry, it does
obey the following K symmetry [S? ]:

KHpK! = Hp, (S1)
where IC = RZT, and R is defined as

Rze—iezjﬁj(ﬁj—l)/Q. (Sz)

With this, we now consider the symmetry properties of the
particle dynamics. Using Eq. (S1), one has:

Ke BT = ¢iflst (S3)

where we have used the anti-unitary property of the /C opera-
tor. We first focus on the symmetry properties when flipping
the sign of 6 [Eq. (10) in the main text]. We label H p with the
sign of 6 for convenience:
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The time-dependent density at site j is

(g (1)) g = (Wo| B0t o =m0t [y (S5)

where |Uy) is the initial Fock product state given in the main
text, |¥o) = [[, bj |0). (We have omitted the subscript “B”
for simplicity.) We obtain
(1)) 1o = (Wo| €147" iy ¢ 1o 10" )
= (Wo| KTe a0t )C oy KTt B 40t |0 W)
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where, in the second line, we have sandwiched KT C between
each two operators and used Eq. (S3); in the third line, we
have used (i) the fact that when /C operates on the initial state
| W) in the main text, it gives an unimportant phase after com-
plex conjugation, and (ii) the relation K7 ;KT = Zn,;ZT; in the
fourth line, we have defined the density operator 7,/ on site
J ', which is related to f1; by the inversion symmetry operator
7.

To proceed, we relate H B,+¢ by the time-reversal symme-
try operator 7

THpoT ' = Hp . (S7)
Thus,

Te iflzsot1 = gifln ot (S8)

Substituting the above equation into Eq. (S6), we get:
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Finally, we arrive at a very simple equation [Eq. (10) in the
main text]: (7;(t))+o = (A1, (t))—. This relation just tells
us that when flipping the statistical angle 6, the density expec-
tation values are related by inversion, which agrees with our
results in Figs. 1(f) and (g) in the main text. For 6 = 0 or 7,
we have (72 (t))o,+x = (2 (t))o,—x = (f1j (t))o,+x; thatis,
for the boson case (6 = 0) or the pseudofermion case (0 = 7),
the density expands symmetrically whether or not U = 0.

(89)



There remains another dynamical symmetry [Eq. (9) in the
main text]: when changing the sign of the interaction U, one
gets the same behavior as changing the sign of 6, i.e., the two
density expansions are related by inversion symmetry. Let us
now derive this relation.

Like in Eq. (S4), we label H 5 with the sign of U
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(S10)
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j=1

Replacing .HBT+0 with fAIB,JrU in Eq. (S6), we get

(1) v = (Wol e ety et [Wg) . (S11)
Now let us define a number parity operator, P = €™ 2r H2r+1,
which measures the parity of total particle number on the
odd sites. This operator anti-commutes with the first term of
Eq. (S10), but commutes with the second term. Therefore,

PHp P = Z (b1, + Hee.) + Z oy (7
= *HB,—U-
(S12)
Thus,

Peillviph — cifls. vt (S13)

Substituting the above equation into Eq. (S11) results in
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Once again, we arrive at a simple expression [Eq. (9) in the
main text], (7;(t))+v = (A, (t))-v, which confirms that
by changing the sign of interaction U, the density expansion
of anyons undergoes an inversion operation. For zero inter-
action strength, we have (7;(t))u=+0 = (A (t))v=—0 =
(fo;r (t))u=40. Therefore, the density expansion of anyons is

syrjnmetric when U = 0, regardless of whether 6 is a multiple
of .

More generally, it is straightforward to show that the dy-
namical symmetry relations shown in Egs. (S9) and (S14) hold
for a class of initial states satisfying K |¥) = ¢ (|¥))* for

some ¢.

S.JI. PERTURBATION ANALYSIS OF ASYMMETRIC
EXPANSION

In this section, we provide intuition while deriving the
asymmetric expansion using perturbation theory. Specifically,

we show that the interference between the lowest two order
terms in the unitary evolution generally gives rise to asym-
metric density expansion dynamics. Once again, we focus on
the transformed bosonic Hamiltonian (H ) for simplicity.

Using a Taylor expansion, the unitary time evolution oper-
ator can be written as

. oo . T n . T 2
U= e Bt — Z % — lfiHBt+@7. ..
n=0
(S15)

We assume the initial state |1)o) to be a product state (in Fock
space) that is inversion symmetric around the lattice center
(i.e., Z 1) = |tbo)). The final state after time evolution can
be expanded as a sum of product states in Fock space. We
consider, as target states, a pair of such product states which
are related by inversion symmetry, [¢)2) = Z |11), and show
that their overlaps with the time-evolved state are different due
to the interference of the kth and (k 4 1)th order terms in the
expansion.

We denote the matrix element corresponding to the kth or-

— 1) der term evolving [tg) to [t)1) as

(—iHpt)*
k!

_i\k
MY = <¢1 wo> _ ! /j) Ap,  (S16)

where we have defined Aj, = (1| H%|1). Similarly, M
is the matrix element from [)g) to |¢)2) due to the kth order

term:
—it)F

M = <w2
where By, = (1o HE |1)o). Using the symmetry properties of
the Hamiltonian, we can get:

(—iHpt)*
k!

(S17)

By, = (| HE [to) = (1| TV HET o)
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(S18)

where in the second line, we have used the symmetry rela-
tion between |t/1) and |1)2) and the fact that |1)) is symmetric
under 7Z; in the third line, we extract the phase factor associ-
ated with the action of the R symmetry operator [defined in
Eq. (S2)] on states [1)92): R|tho2) = €902 [thg2); in the
fourth line, we have used the symmetry property given by
Eq. (S1); and in the fifth line, we have used the fact that the
time-reversal operator acting on H is equivalent to changing
the matrix element to its complex conjugate.

From here forward, let £ be the lowest order for which M, ,51)
[or, equivalently, M, ,52)] is non-zero. Because the Hamiltonian

Hp can have non-zero interactions U, the (k4 1)th expansion
terms could also evolve the initial state to |11 o). Therefore,



we consider the leading two order terms which contribute to
the matrix element for (1 o| U |tbg): M,EI’Q) and Méﬁ) We
define S » to be amplitudes including the total contribution
of the kth and (k + 1)th orders:

k
(1) t
S = [+ | = k!’ k+1A’“+1 , G19)
tk —it
)M(z +Mk+1‘ =5 ’Bk+ B (520)
Using Eq. (S18), Eq. (S20) can be re-written as
th it k 1
=_|B Biy1| = — |Af + —— A
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(S21)

Comparing Egs. (S19) and (S21), we can see that because the
sign before Ay, is different, the two amplitudes S; and S,
are in general not equal to each other. This is a simple way of
understanding the observed asymmetric expansion in the left
and right directions.

The following remarks regarding S; and S7 are in order: (i)
If we set 6 = 0 or § = 7, the matrix elements Ay and Ay
are both real numbers. In this case, S; and Sy are exactly
equal to each other. This implies that for zero statistical an-
gle 0, the perturbation analysis predicts symmetric density ex-
pansion, consistent with our numerics. (ii) On the other hand,
for non-zero 0, Ay, and Ay, are generally complex numbers,
and S; and S5 are not necessarily equal, therefore predicting
asymmetric expansion in general. (iii) When 6 reverses its
sign, all the matrix elements change to their complex conju-
gates, and therefore the values of S7 and So are swapped. In
this way, the anyons reverse their preferred propagation di-
rections, in agreement with the numerical results. (iv) When
the interaction strength U is zero, the matrix element M, 1521
vanishes, since the Hamiltonian only has hopping terms and
hopping once more could not get back to the same state con-
figuration as |1)1 2). Therefore, S; and Sy are the same when
U = 0. (v) When U’s sign is reversed, Ay also reverses its
sign, therefore swapping the values of S; and S;. Thus, the
anyons once again reverse their preferred propagation direc-
tions.

The above analysis is completely consistent with the nu-
merical results in the main text. We have once again demon-
strated that the crucial ingredients for asymmetric expan-
sion are non-zero statistics # and interaction U. To illus-
trate more clearly the above derivations, we consider a very
simple example for clarification. Let us choose |¢g) =
|---0110---), |tp1) = |---0011---), [the) = |---1100---).
In this case, the second- and third-order terms in the per-
turbative time evolution could evolve |i¢g) to |¢1) if U
is non-zero. For second-order processes, there are two
paths one can start from |¢p) and end up with |¢)1): ei-
ther |---0110---) — |---0101--) — |---0011---) or

[--0110---) — |---0020---) — |---0011---). The
two paths contribute to a total second-order matrix element
(1| HE [ho) = J? + J?¢. Due to the on-site interac-
tions, there is also a third-order process which evolves |1)g)
to |¢1): |---0110--+) — |---0020---) — |---0020---) —
|---0011---), whose matrix element is (1| H3, [t) =
J2Ue™. The total amplitude for second and third order pro-
§|J2(1 + ¢) + S J2Ue|. Similarly we
can also obtain Sy = L |J3(1 + e~%) + =i J2Ue~*|. For
non-zero 6 and U, S7 # S5, implying asymmetric expansion.
The expressions also predict that the expansion changes its
preferred direction when either § or U reverses its sign.

cesses is S1 =

S.III. NUMERICAL COMPARISON OF ANYONIC AND
BOSONIC OUT-OF-TIME-ORDERED CORRELATORS

In this Eection, we provide numerical results for the bosonic
OTOC, Fjj,(t) = (b ()b} (0)b;()bi(0)), to illustrate that
such experimentally measurable quantities can indeed capture
the asymmetric information spreading.

Figure S1 shows the bosonic OTOC growth, with parame-
ters the same as Fig. 3 in the main text. As one can see, the
bosonic OTOCs with non-zero statistical angle also exhibit
asymmetric information propagation, similar to their anyonic
counterparts.

Figure S2 shows the butterfly velocities extracted from the
bosonic OTOC. In order to make comparisons to anyonic re-
sults, we also plot data from Figs. 4(c) and (d) of the main
text. As the figures illustrate, the bosonic butterfly velocities
are highly asymmetric for the left and right propagation direc-
tions. Moreover, in the regimes of either small 6 or large U,
both the left and right velocities of the bosonic OTOC agree
well with the anyonic OTOC. This can be understood intu-

(a)0=0, U=2

(b)yé=mn/4, U=0
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FIG. S1. Growth of the bosonic OTOC | F}y(t)| for different statis-
tical angles 6 and interaction strengths U. (a) Bosonic case (8 = 0)
with interaction strength U = 2. Anyonic case with (b) vanishing
and (c),(d) non-vanishing interaction strengths. Asin Fig. 3, L = 7,
ﬂ’l = 6, the local Hilbert space of each site is truncated to three
states, and the red dots denote the OTOC falling to 75% of its initial
value.
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FIG. S2. Comparison of butterfly velocities extracted from the any-
onic (dots) and bosonic (asterisks) OTOCs’ growth. (a) The butterfly
velocities’ dependence on statistical angle 6 for fixed U = 2. The
blue dots/asterisks denote the butterfly velocities in the left direction,
while the red dots/asterisks denote the butterfly velocities in the right
direction. (b) Similar to (a), but for fixed statistical angle § = 7 /2
and varying interaction strength U.

itively, as the fractional Jordan-Wigner transformation has re-
duced effect at small 6, and large U corresponds to the hard-
core limit, where anyonic statistics becomes less important.
Moreover, the bosonic/anyonic plots in Fig. S2 share quali-
tative features for all values of 6 or U. This suggests that
the bosonic OTOC also exhibits signatures of the asymmetric
propagation of information due to anyonic statistics.
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