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Circuit complexity across a topological phase transition
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We use Nielsen’s geometric approach to quantify the circuit complexity in a one-dimensional Kitaev chain
across a topological phase transition. We find that the circuit complexities of both the ground states and
nonequilibrium steady states of the Kitaev model exhibit nonanalytical behaviors at the critical points, and
thus can be used to detect both equilibrium and dynamical topological phase transitions. Moreover, we
show that the locality property of the real-space optimal Hamiltonian connecting two different ground states
depends crucially on whether the two states belong to the same or different phases. This provides a concrete
example of classifying different gapped phases using Nielsen’s circuit complexity. We further generalize
our results to a Kitaev chain with long-range pairing, and we discuss generalizations to higher dimensions.
Our result opens up an avenue for using circuit complexity as a tool to understand quantum many-body
systems.

DOI: 10.1103/PhysRevResearch.2.013323

I. INTRODUCTION

In computer science, the notion of computational complex-
ity refers to the minimum number of elementary operations
for implementing a given task. This concept readily extends
to quantum information science, where quantum circuit com-
plexity denotes the minimum number of gates to implement
a desired unitary transformation. The corresponding circuit
complexity of a quantum state characterizes how difficult
it is to construct a unitary transformation U that evolves a
reference state to the desired target state [1,2]. Nielsen and
collaborators used a geometric approach to tackle the problem
of quantum complexity [3–5]. Suppose that the unitary trans-
formation U (t ) is generated by some time-dependent Hamil-
tonian H (t ), with the requirement that U (t f ) = U (where t f

denotes the final time). Then, the quantum state complexity
is quantified by imposing a cost functional F [H (t )] on the
control Hamiltonian H (t ). By choosing a cost functional that
defines a Riemannian geometry in the space of circuits, the
problem of finding the optimal control Hamiltonian synthe-
sizing U then corresponds to finding minimal geodesic paths
in a Riemannian geometry [3–5].

Recently, Nielsen’s approach has been adopted in
high-energy physics to quantify the complexity of quantum
field theory states [6–18]. This is motivated, in part, by
previous conjectures that relate the complexity of the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

boundary field theory to the bulk space-time geometry,
i.e., the so-called “complexity equals volume” [19,20] and
“complexity equals action” [21,22] proposals. Jefferson et al.
used Nielsen’s approach to calculate the complexity of a
free scalar field [6], and found surprising similarities to the
results of holographic complexity. A complementary study
by Chapman et al., using the Fubini-Study metric to quantify
complexity [23], gave similar results. Several recent works
have generalized these studies to other states, including
coherent states [8,24], thermofield double states [7,11],
and free fermion fields [12–14]. However, the connection
between the geometric definition of circuit complexity and
quantum phase transitions has so far remained unexplored.
This connection is important fundamentally, and it is also
intimately related to the long-standing problem of quantum
state preparations across critical points [25–27].

In this work, we consider the circuit complexity of a
topological quantum system. In particular, we use Nielsen’s
approach to study the circuit complexity of the Kitaev chain,
a prototypical model exhibiting topological phase transitions
and hosting Majorana zero modes [28–33]. Strikingly, we
find that the circuit complexity derived using this approach
exhibits nonanalytical behaviors at the critical points for
both equilibrium and dynamical topological phase transitions.
Moreover, the optimal Hamiltonian connecting the initial and
final states must be nonlocal in real space when evolving
across a critical point. We further generalize our results to a
Kitaev chain with long-range pairing, and we discuss univer-
sal features of nonanalyticities at the critical points in higher
dimensions. Our work establishes a connection between ge-
ometrical circuit complexity and quantum phase transitions,
and it paves the way toward using complexity as a tool to study
quantum many-body systems.
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FIG. 1. (a) Phase diagram of the Kitaev chain, with W denoting
the winding number. (b) Ground-state circuit complexity and (c) its
derivative vs target state chemical potential (μT ) for several reference
states, each with a different chemical potential μR. (d) Bogoliubov
angle difference, �θkn , for different target ground states, with μR =
0. �R = �T = 1 for (b)–(d), and L = 1000 for (b) and (c).

II. THE MODEL

The one-dimensional (1D) Kitaev model is described by
the following Hamiltonian [28,29]:

Ĥ = −J

2

L∑
j=1

(â†
j â j+1 + H.c.) − μ

L∑
j=1

(
â†

j â j − 1

2

)

+ �

2

L∑
j=1

(â†
j â

†
j+1 + H.c.), (1)

where J is the hopping amplitude, � is the superconducting
pairing strength, μ is the chemical potential, L is the total
number of sites (assumed to be even), and â†

j (â j ) creates
(annihilates) a fermion at site j. We set J = 1 and assume an-
tiperiodic boundary conditions (âL+1 = −â1). Upon Fourier
transforming, Eq. 1 can be written in the momentum basis

Ĥ = −
∑

kn

[μ + cos kn]
(
â†

kn
âkn

− â−kn
â†

−kn

)
+ i� sin kn

(
â†

kn
â†

−kn
− â−kn

âkn

)
, (2)

where kn = 2π
L (n + 1/2) with n = 0, 1, . . . , L/2 − 1. The

above Hamiltonian can be diagonalized via a Bogoliubov
transformation, which yields the excitation spectrum: εkn =√

(μ + cos kn)2 + �2 sin2 kn. The ground state of Eq. (1) can
be written as

|�gs〉 =
L/2−1∏

n=0

(
cos θkn − i sin θkn â†

kn
â†

−kn

) |0〉 , (3)

where tan(2θkn ) = � sin kn/(μ + cos kn). A topological phase
transition occurs when the quasiparticle spectrum is gapless
[28], as illustrated in Fig. 1(a). The nontrivial topological

phase is characterized by a nonzero winding number and the
presence of Majorana edge modes [28–33].

III. COMPLEXITY FOR A PAIR OF FERMIONS

Since Hamiltonian (1) is noninteracting, the ground-state
wave function (3) couples only pairs of fermionic modes with
momenta ±kn, and different momentum pairs are decoupled.
Hence, we first compute the circuit complexity of one such
fermionic pair [12–14], and then we obtain the complexity of
the full system by summing over all momentum contributions
[6,23].

Let us consider the reference (“R”) and target (“T ”)
states with the same momentum but different Bogoliubov
angles: |ψR,T 〉 = (cos θR,T

k − i sin θR,T
k â†

k â†
−k ) |0〉. Expanding

the target state in the basis of |ψR〉 and |ψR〉⊥ (i.e., the
state orthogonal to |ψR〉), we have |ψT 〉 = cos(�θk ) |ψR〉 −
i sin(�θk ) |ψR〉⊥, where �θk = θR

k − θT
k . Now the goal is to

find the optimal circuit to achieve the unitary transformation
connecting |ψR〉 and |ψT 〉:

Uk =
[

cos(�θk ) −ie−iφ sin(�θk )
−i sin(�θk ) e−iφ cos(�θk )

]
, (4)

where φ is an arbitrary phase. Nielsen approached this as a
Hamiltonian control problem, i.e., finding a time-dependent
Hamiltonian Hk (s) that synthesizes the trajectory in the space
of unitaries [3,4]:

Uk (s) = ←−P exp

[∫ s

0
dt H(t )

]
, Hk (t ) =

∑
I

Y I
k (t )OI , (5)

with boundary conditions Uk (s = 0) = 1 and Uk (s = 1) =
Uk . Here,

←−P is the path-ordering operator and OI are the
generators of U (2). The idea is then to define a cost (i.e.,
“length”) functional for the various possible paths to achieve
Uk [3,4,6,12]: D[Uk] = ∫ 1

0 ds
∑

I |Y I
k (s)|2, and to identify the

optimal circuit or path by minimizing this functional. The cost
of the optimal path is called the circuit complexity C of the
target state, i.e.,

C[Uk] = min{Y I
k (s)}D[Uk]. (6)

Following the procedures in Refs. [12–14], one can ex-
plicitly calculate the circuit complexity for synthesizing the
unitary transformation (4). For quadratic Hamiltonians, it is a
simple expression that depends only on the difference between
Bogoliubov angles (see Appendix A),

C(|ψR〉 → |ψT 〉) = |�θk|2. (7)

Note that the complexity C for two fermions is at most π2/4,
since |�θk| ∈ [0, π/2]. The maximum value is achieved when
the target state has vanishing overlap with the reference state.

IV. COMPLEXITY FOR THE FULL WAVE FUNCTION

Given the circuit complexity for a pair of fermionic modes,
one can readily obtain the complexity of the full many-body
wave function. The total unitary transformation that connects
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the two different ground states [Eq. (3)] is

∣∣�T
gs

〉 =
(

L/2−1∏
n=0

Ukn

) ∣∣�R
gs

〉
, (8)

where Ukn , given by Eq. (4), connects two fermionic states
with momenta ±kn. By choosing the cost function to be a
summation of all momentum contributions [6,12–14], it is
straightforward to obtain the total circuit complexity,

C
( ∣∣�R

gs

〉 → ∣∣�T
gs

〉 ) =
∑

kn

∣∣�θkn

∣∣2
, (9)

where �θkn is the difference of the Bogoliubov angles for
momentum kn. In the infinite-system-size limit, the sum-
mation can be replaced by an integral, and one can derive
that C ∝ L. This “volume law” dependence is reminiscent
of the “complexity equals volume” conjecture in holography
[19,20], albeit in a different setting.

The circuit complexity given by Eq. (9) has a geometric
interpretation, as it is the squared Euclidean distance in a high-
dimensional space [34]. The geodesic path (or optimal circuit)
in unitary space turns out to be a straight line connecting the
two points [i.e., Hk (s) independent of s] (Appendix A). In the
remainder of this paper, we demonstrate that the circuit com-
plexity between two states is able to reveal both equilibrium
and dynamical topological phase transitions.

We first choose a fixed ground state as the reference
state and calculate the circuit complexities for target ground
states with various chemical potentials μT , crossing the phase
transition point. The circuit complexity increases as the dif-
ference between the parameters of reference and target states
is increased [Fig. 1(b)]. More importantly, the complexity
grows rapidly around the critical points (μT = ±1), changing
from a convex function to a concave function at the critical
points. This is further illustrated in Fig. 1(c), where we plot the
derivative (susceptibility) of circuit complexity with respect
to μT . The clear divergence at the critical points indicates
that circuit complexity is nonanalytical at the critical points
(see Appendix B for the derivation), and thus can signal the
presence of a quantum phase transition. We emphasize that
these features are robust signatures of phase transitions, which
do not change if one chooses a different reference state in the
same phase [see Figs. 1(b) and 1(c)].

We further plot �θkn versus the momentum kn for various
target states (with a fixed reference state) in Fig. 1(d). When
both states are in the same phase, �θkn first increases with
momentum and finally decreases to 0 when kn approaches
π . In contrast, when μT is beyond its critical value, �θkn

increases monotonically with momentum, and it takes the
maximal value of π/2 at kn = π . This is closely related
to the topological phase transition characterized by winding
numbers, where the Bogoliubov angles of two different states
end up at the same pole (on the Bloch sphere) upon winding
half of the Brillouin zone if the states belong to the same phase
[29]. Hence, the nonanalytical nature of the circuit complexity
is closely related to the change of topological number (and
topological phase transition).

Analytically, the derivatives of the circuit complexity (7)
can be explicitly recast into a closed contour integral over
the complex variable z = eik (see Appendix B for detailed

(a)

T

ΔT ΔT

T

(b)

FIG. 2. Derivative of circuit complexity as a function of μT and
�T . Panel (a) plots the derivative with respect to μT (in units of
1/�T ), and panel (b) plots the derivative with respect to �T . The
reference state is chosen as the ground state of Eq. (1) with μR = 0
and �R = −1, and L = 1000.

derivations). Depending on the parameters of the target states,
the poles associated with the integrand are located inside or
outside the contour. When the target state goes across a phase
transition, the poles sit exactly on the contour, resulting in
the divergence of the derivatives of the circuit complexity at
critical points (Appendix B). Interestingly, the whole param-
eter space can be classified into four different phase regimes
depending on which poles lie inside the contour (see Fig. 5
in Appendix B), which agrees exactly with the phase diagram
shown in Fig. 1(a).

Figures 2(a) and 2(b) show the derivative of circuit com-
plexity with respect to μT and �T for the whole parame-
ter regime. The derivatives show clear singular behavior at
both the horizontal [Fig. 2(a)] and vertical [Fig. 2(b)] phase
boundaries. Therefore, by using the first-order derivative of
complexity with respect to μT and �T , one can map out the
entire equilibrium phase boundaries of the Kitaev chain.

V. REAL-SPACE LOCALITY OF THE OPTIMAL
HAMILTONIAN

Since the ground state [Eq. (3)] is a product of all momen-
tum pairs, the optimal circuit connecting two different ground
states corresponds to the following Hamiltonian:

Ĥc =
∑
k>0

Ĥk =
∑
k>0

−i�θ (k)ψ̂†
k τ1ψ̂k , (10)

where τi are the Pauli matrices, and ψ̂k denotes the Nambu

spinor ψ̂k = ( âk

â†
−k

). By taking a Fourier series of the above
optimal Hamiltonian, one can show that the Hamiltonian can
be written in real space (see Appendix C for details):

Ĥc =
∑

j

∞∑
n=1

ωn(â j â j+n − H.c.), (11)

where �θ (k) = 2
∑∞

n=1 ωn sin(nk).
One crucial observation is that when the two ground states

are in the same phase, �θ (0) = �θ (π ) = 0 [see Fig. 1(d)];
hence the Fourier series of �θ (k) converges uniformly. There-
fore, the full series can be approximated by a finite order
N∗ with arbitrarily small error. This immediately implies
that the real-space optimal Hamiltonian (11) is local, with a
finite range N∗. In sharp contrast, if the two states belong
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(a) (b)

FIG. 3. (a) Circuit complexity growth for various postquench
chemical potentials, μ f . The initial state (serves as the reference
state) is the ground state of Eq. (1) with μi = 0. (b) Steady-state
values of complexity vs μ f . The different lines denote different
initial/reference states. �i = � f = 1 and L = 1000 in both plots.

to different phases, �θ (π ) = π/2 
= �θ (0) = 0; the Fourier
series of �θ (k) converges at most pointwise. Thus the optimal
Hamiltonian must be truly long-range (nonlocal) in real space
(Appendix C), given that the total evolution time is chosen
to be a constant [Eq. (5)]. Comparing to previous works
on classifying gapped phases of matter using local unitary
circuits [35–37], our results provide an alternative approach
that has a natural geometric interpretation.

VI. COMPLEXITY FOR DYNAMICAL TOPOLOGICAL
PHASE TRANSITIONS

Dynamical phase transitions have received tremendous
interest recently [38–50]. Studies on quench dynamics of
circuit complexity have mostly focused on growth rates in
the short-time regime [10,15]. Here, we show that the long-
time steady-state value of the circuit complexity following a
quantum quench can be used to detect dynamical topological
phase transitions.

We take the initial state to be the ground state of a Hamil-
tonian Ĥi, and we consider circuit complexity growth under a
sudden quench to a different Hamiltonian, Ĥf . The reference
and target states are chosen as the initial state |�i〉 and time-
evolved state |�(t )〉, respectively. The time-dependent |�(t )〉
can be written as [51,52]

|�(t )〉 =
L
2 −1∏
n=0

[
cos

(
�θkn

) − ie2iεkn t sin
(
�θkn

)
Â†

kn
Â†

−kn

] |0〉 ,

(12)
where �θkn is the Bogoliubov angle difference between eigen-
states of Ĥi and Ĥf , and εkn and Âkn are the energy levels
and normal mode operators, respectively, for the postquench
Hamiltonian. Similar to the previous derivations, one can
obtain the time-dependent circuit complexity,

C(|�i〉 → |�(t )〉) =
∑

kn

φ2
kn

(t ), (13)

where φkn (t ) = arccos
√

1 − sin2(2�θkn ) sin2(εknt ).
As shown in Fig. 3(a), the circuit complexity first in-

creases linearly and then oscillates [9,10,15] before quickly
approaching a time-independent value. The steady-state value
of circuit complexity increases with μ f of the postquench
Hamiltonian, until the phase transition occurs [Fig. 3(a)].

(b)(a)

FIG. 4. (a) Derivative of circuit complexity with respect to μT

for three different reference ground states of the long-range Kitaev
chain, with �R = �T = 1.3. (b) Steady-state value of circuit com-
plexity vs μ f for three different initial ground states, with �i =
� f = 1. L = 1000 and α = 0 in both plots.

Figure 3(b) further illustrates the long-time steady-state values
of circuit complexity versus μ f for different initial states.
The steady-state complexity clearly exhibits nonanalytical
behavior at the critical point. This behavior arises because the
time-averaged value of φkn (t ) exhibits an upper bound after
the phase transition (see Appendix D), and it is a robust feature
of the dynamical phase transition regardless of the initial state.

VII. GENERALIZATION TO A LONG-RANGE KITAEV
CHAIN AND HIGHER DIMENSIONS

We further give an example of a Kitaev chain with long-
range pairing [53–56]:

ĤLR = −J

2

L∑
j=1

(â†
j â j+1 + H.c.) − μ

L∑
j=1

(
â†

j â j − 1

2

)

+ �

2

L∑
j=1

L−1∑
�=1

1

dα
�

(â†
j â

†
j+� + H.c.), (14)

where d� = min(�, L − �). In contrast to the short-range
model, the long-range model with α < 1 hosts topological
phases with semi-integer winding numbers [53,56]. As one
can see, the derivative of ground-state circuit complexity only
diverges at μT = 1 [Fig. 4(a)], in contrast with Fig. 1(c). This
agrees perfectly with the phase diagram for the long-range
interacting model, where a topological phase transition occurs
only at μ = 1 for α = 0 [56]. Figure 4(b) shows the long-time
steady-state values of the circuit complexity after a sudden
quench. Again, one observes nonanalytical behavior only at
μT = 1.

While we have so far restricted ourselves to 1D, the results
we found can be readily generalized to higher dimensions
[57], for example to p + ip topological superconductors in
2D. The ground-state wave function of a p + ip supercon-
ductor essentially takes the same form as Eq. (3), with the
momenta now being restricted to the 2D Brillouin zone, and
tan(2θk) = |�k|/εk, where �k and εk denote pairing and
kinetic terms in 2D. The circuit complexity can still be writ-
ten as C = ∑

k |�θk|2 = L2

(2π )2

∫
d2k|�θ (k)|2. One can show

again that the derivative of the circuit complexity is given by
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(see Appendix E)

∂μT C = L2

(2π )2

∫
d2k

θT (k)|�(k)|
E (k)2

, (15)

where E (k)2 = ε(k)2 + |�(k)|2, and θT (k) denotes the Bo-
goliubov angle for the target state. It is thus obvious that
nonanalyticity happens at the critical point where E (k) = 0
(Appendix E).

VIII. CONCLUSIONS AND OUTLOOK

We use Nielsen’s approach to quantify the circuit complex-
ity of ground states and nonequilibrium steady states of the
Kitaev chain with short- and long-range pairing. We find that,
in both situations, circuit complexity can be used to detect
topological phase transitions. The nonanalytic behaviors can
be generalized to higher-dimensional systems, such as p + ip
topological superconductors [58,59].

One interesting future direction is to use the geometric ap-
proach to quantify circuit complexity when the control Hamil-
tonians are constrained to be local in real space [37,60,61],
and study its connection to quantum phase transitions
[25,62–64]. It would also be of interest to investigate the cir-
cuit complexity of interacting many-body systems. One par-
ticular example is the XXZ spin-half chain, whose low-energy
physics can be modeled by the Luttinger liquid [65–67].
By restricting to certain classes of gates (i.e., by imposing
penalties on the cost function) [3,6], it might be possible to
find improved methods to efficiently prepare the ground state
of the XXZ model by calculating the geodesic path in gate
space.

Note added: Recently, we became aware of Ref. [68],
which used revivals in the circuit complexity as a qualitative
probe of phase transitions in the Su-Schrieffer-Heeger model.
In contrast to that work, we have shown that the circuit
complexity explicitly exhibits nonanalyticities precisely at
the critical points for the Kitaev chain. We also became
aware of Ref. [57], which numerically studied the complexity
of a two-dimensional “d · τ” model. By contrast, here we
analytically study the “p + ip” model, and we illustrate that
the closing of the gap is essential for the nonanalyticity of
circuit complexity.
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APPENDIX A: DERIVATION OF CIRCUIT COMPLEXITY
FOR A PAIR OF FERMIONS

In this Appendix, we present a detailed derivation of the
circuit complexity for a pair of fermions, i.e., Eq. (7). This
expression has previously been obtained using different ap-
proaches in Refs. [12–14]. To be comprehensive, here we
provide a detailed derivation following Ref. [13]. We note
that Ref. [12] provides an alternative derivation using a group
theory approach.

By taking the derivative with respect to s in Eq. (5), we get
the following expression:∑

I

Y I (s)OI = [∂sU (s)]U −1(s), (A1)

where U (s) is a unitary transformation that depends on s, and
we have omitted the label k for notational clarity.

The unitary U (s) can be parametrized in matrix form:

U (s) = eiβ

[
e−iφ1 cos ω e−iφ2 sin ω

−eiφ2 sin ω eiφ1 cos ω

]
, (A2)

where β, φ1, φ2, ω explicitly depend on the parameter s. The
above matrix can be expressed in terms of the generators of
U (2), which we choose as follows:

O0 =
[

i 0
0 i

]
, O1 =

[
0 i
i 0

]
,

O2 =
[

0 1
−1 0

]
, O3 =

[
i 0
0 −i

]
. (A3)

Using the relation

tr(OaOb) = −2δab, (A4)

one can extract the strength, Y I (s), of generator OI [cf. Eq. 5]
as follows:

Y I (s) = − 1
2 tr

[
[∂sU (s)]U −1(s)OI

]
. (A5)

Our cost functional can then be expressed as

D =
∫ 1

0
ds

∑
I

|Y I (s)|2

=
∫ 1

0
ds

[(
dβ

ds

)2

+
(

dω

ds

)2

+ cos2 ω

(
dφ1

ds

)2

+ sin2 ω

(
dφ2

ds

)2]
. (A6)

Now, by exploiting the boundary condition at s = 0, i.e.,
U (s = 0) = I , we get⎛

⎜⎝
β(s = 0)
φ1(s = 0)
φ2(s = 0)
ω(s = 0)

⎞
⎟⎠ =

⎛
⎜⎝

0
0

φ2(0)
0

⎞
⎟⎠, (A7)
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FIG. 5. The phase diagram of the Kitaev chain, where in each
phase we list which of the two branch points given in Eq. (B5)
lies inside the contour integrals in Eq. (B4). The integrals can only
diverge at the phase transitions, where the branch points cross the
contour.

where φ2(0) is an arbitrary phase. Furthermore, we have the
boundary condition at s = 1,

U (s = 1) =
[

cos(�θ ) −ie−iφ sin(�θ )
−i sin(�θ ) e−iφ cos(�θ )

]
, (A8)

which results in ⎛
⎜⎝

β(s = 1)
φ1(s = 1)
φ2(s = 1)
ω(s = 1)

⎞
⎟⎠ =

⎛
⎜⎝

0
0

π/2
�θ

⎞
⎟⎠. (A9)

The integrand in Eq. (A6) is a sum of four non-negative
terms. Setting β(s) = φ1(s) = 0 and φ2(s) = π/2 minimizes
(i.e., sets to zero) three of the four terms without imposing any
additional constraints on the minimization of the remaining
(dω/ds)2 term. One can then easily check that the linear func-
tion w(s) = s�θ minimizes the remaining term and yields

C =
∫ 1

0
ds |�θ |2 = |�θ |2. (A10)

APPENDIX B: ANALYTICAL DERIVATION OF
DIVERGENT DERIVATIVES IN GROUND STATES

In this Appendix, we provide a detailed analytical deriva-
tion to show that the first-order derivative indeed diverges
at the critical points in the thermodynamic limit. We first
derive how the derivative diverges when the reference state
is in the trivial phase (|μR| > 1), and then we generalize
our results to show how this divergent behavior depends on
the particular choice of the reference state. Throughout this
Appendix, we assume the reference lies within a given phase,
and we allow the target state to approach an arbitrary point
in the phase diagram. Our analytical derivations show that
these divergences necessarily map out the phase boundary, as
illustrated in Figs. 2(a) and 2(b) and Fig. 5 below.

We begin with our general expression for the complexity as
a function of our reference and target states. The Bogoliubov
angle difference �θk for each momentum sector k can be

expressed as

�θk = 1

2
arctan

sin k[�RμT − �T μR + (�R − �T ) cos k]

(μR + cos k)(μT + cos k) + �R�T sin2 k
,

(B1)

and the circuit complexity is written in terms of �θk:

C/L = 1

2π

∫ π

0
|�θk|2 dk. (B2)

Note that we have replaced the discrete sum in the main text
with an integral for the thermodynamic limit, and written
“C(|�R

gs〉 → |�T
gs〉)” as “C” for brevity.

Now we substitute Eq. (B1) into Eq. (B2), and we take the
derivatives with respect to μT and �T . We obtain

∂μT C/L = �T

4π

∫ π

−π

�θk sin k

(μT + cos k)2 + �2
T sin2 k

dk,

∂�T C/L = − 1

4π

∫ π

−π

�θk sin k(μT + cos k)

(μT + cos k)2 + �2
T sin2 k

dk. (B3)

Here, we have used the fact that these functions are even in
k to extend the integrals to −π . In spite of the complicated
nature of these integrals, much can be learned about their an-
alytic properties by recasting them as closed contour integrals
in the complex plane. Defining the variable z = eik , we find
that the integrals take the form

∂μT C/L = −i�T

∮
dz

2π i

�θ (z)(z2 − 1)

(z2 + 2μT z + 1)2 − �2
T (z2 − 1)2

,

∂�T C/L = i

2

∮
dz

2π iz

�θ (z)(z2 − 1)(z2 + 2μT z + 1)

(z2 + 2μT z + 1)2 − �2
T (z2 − 1)2

,

(B4)

where the integration is taken counterclockwise over the con-
tour |z| = 1. In this form, we may use the fact that the value
of the integrals is entirely determined by the nonanalyticities
of the integrand, which are located inside the contour, and
that the value of the integration will only diverge if there is
a divergence located on the contour.

We proceed by defining the following variables:

z1,a = −μa + √
μ2

a + �2
a − 1

1 + �a
,

z2,a = −μa − √
μ2

a + �2
a − 1

1 + �a
,

z3,a = −μa + √
μ2

a + �2
a − 1

1 − �a
,

z4,a = −μa − √
μ2

a + �2
a − 1

1 − �a
, (B5)

where a = R, T . From Eq. (B4), both derivatives contain sim-
ple poles at zi,T for i = 1, 2, 3, 4, while ∂�T C additionally has
a simple pole at z = 0. Also, using the formula arctan(z) =
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FIG. 6. The deformation of the integration contour used to com-
pute the gradients of the circuit complexity in the case μT > 1. There
is a branch cut running between the branch points z1 and z3, where
the imaginary part of the integrand is discontinuous and the integrand
diverges near the branch points.

(i/2) ln 1−iz
1+iz , we can write the Bogoliubov angle as

�θ (z) = i

4
ln

[
(�T + 1)(z − z1,T )(z − z2,T )

(�T − 1)(z − z3,T )(z − z4,T )

× (�R − 1)(z − z3,R)(z − z4,R)

(�R + 1)(z − z1,R)(z − z2,R)

]
. (B6)

The important fact we will need is that the complex logarithm
contains branch cuts running from the zeros to the infinities
of its argument; therefore, the zia are really branch points

of the integrand. We now note that the derivatives of the
complexity will only diverge if the couplings are tuned to
a phase transition. This is because the zi,a can only have
unit modulus if we are at one of the phase transitions, and
at the phase transitions the branch points cross the contour
resulting in a divergent integral; see Fig. 5. In particular, we
may characterize the phase diagram in terms of which branch
points are inside or outside the contour integral.

In addition, we may actually compute the integrals exactly
in certain cases and limits, which allows us to obtain the exact
analytic dependence of the divergence on the couplings. As
a definite example, we consider the case |μT | > 1. In this
case, there is a branch cut inside the logarithm running from
z1,T to z3,T , and one outside between z2,T and z4,T , and the
divergences seen at μT → 1 will be due to these branch cuts
approaching the contour. In this case, we may entirely factor
out the dependence on the reference state from the logarithm
and focus on the terms that depend on the target state. We
deform the contour so that it skirts the branch cut (see the
parametrization into four contours in Fig. 6). A key point here
is that the argument of the logarithm is −π upon approaching
the branch cut from the bottom-half plane, while it is +π upon
approaching it from the top half. Therefore, in the sum of
the two contours running along the branch cut, the logarithm
simply contributes a phase factor, and we may evaluate the
resulting simplified integrand by elementary methods, and for
small ε we find

∫
C1

+
∫
C3

= 1

16
√

μ2
T + �2

T − 1
ln

∣∣∣∣ (z3 − z2)(z1 − z4)ε2

(z1 − z2)(z3 − z4)(z1 − z3)2

∣∣∣∣. (B7)

We perform the integral around contour C2 by writing z = z1 + εeiθ , and integrating from −π < θ < π . At small ε, we find∫
C2

= − 1

16
√

μ2
T + �2

T − 1
ln

∣∣∣∣ (�T + 1)ε(z1 − z2)

(�T − 1)(z1 − z3)(z1 − z4)

∣∣∣∣. (B8)

The computation for contour C4 is similar, although the phase winds around the other way:∫
C4

= − 1

16
√

μ2
T + �2

T − 1
ln

∣∣∣∣ (�T − 1)ε(z3 − z4)

(�T + 1)(z3 − z1)(z3 − z2)

∣∣∣∣. (B9)

Finally, taking the sum of all four contours, we find that the
ln ε divergence in each integral cancels, and we obtain the
desired result:

∂μT C/L = 1

8
√

μ2
T + �2

T − 1
ln

∣∣∣∣ μ2
T − 1

μ2
T + �2

T − 1

∣∣∣∣
+ I2(μR,�R, μT ,�T ), (B10)

where the function I2 depends on μR and �R, but it is
analytic as the phase transition is approached. Therefore,
when approaching from μT > 1, the quantity ∂μT C/L diverges
as ln(μT − 1)/8�T if �T 
= 0, but it is analytic if one ap-
proaches the multicritical point at �T = 0.

Similar manipulations may be made for ∂�T C/L and in
other phases. Sometimes the branch cuts take a complicated
form in the complex plane so that we cannot reduce the

expression into elementary integrals, but we can still deduce
the form of the divergence by considering how the contour
integrals behave as the branch points cross the contour.

Our final results are summarized as follows. The expres-
sion ∂μT C/L is always analytic unless μT → ±1. Near these
phase transitions, it diverges as

∂μT C/L ∼ sgn(μT )

8
√

μ2
T + �2

T − 1
ln

∣∣∣∣ μ2
T − 1

μ2
T + �2

T − 1

∣∣∣∣, (B11)

so the divergence is sgn(μT ) ln |μT − 1|/8�T if �T 
= 0, but
there is not a divergence at �T = 0.

In contrast, the expression ∂�T C/L is analytic whenever
�T 
= 0. In this case, the divergence depends on whether
the couplings (μT ,�T ) approach the phase transitions from
the topological phase or the trivial phase. If we approach
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the multicritical points from the trivial phases, we find that
∂�T C/L remains analytic. In contrast, if we approach �T = 0
from the topological phases, we find

∂�T C/L ∼ 1

4

⎛
⎝1 + |μT �T |√∣∣μ2

T + �2
T − 1

∣∣
⎞
⎠ ln |�T |. (B12)

In this case, we have a ln |�T |/4 divergence when |μT | < 1,
but now we find that the divergence crosses over to ln |�T |/2
as we approach the multicritical points.

APPENDIX C: REAL-SPACE BEHAVIOR OF THE
OPTIMAL CIRCUITS

In this Appendix, we show that the real-space optimal
circuit behaves differently depending on whether or not the
initial and target states are in the same topological phase.

As we have derived in Appendix A, for a single momentum
sector k, the circuit complexity is found to be the squared
difference between the Bogoliubov angles [Eq. (7)], and the
optimal circuit is generated by the following time-independent
Hamiltonian:

Hk = −�θk O1,k, (C1)

where O1,k is the same generator given by Eq. (A3) for
momentum sector k. Here, we have omitted the time label
“s” for simplicity as the circuit is time-independent (and the
total evolution time is fixed to be constant 1). As in the main
text and following the circuit complexity literature, we have
defined Hk to be anti-Hermitian [Eq. (5)].

Since the ground state of the Hamiltonian is a product of
all momentum sectors with k > 0, the optimal circuit that
generates the evolution between two ground states can be
written as

H =
∑
k>0

Hk =
∑
k>0

−�θk O1,k . (C2)

We are interested in the real-space behavior of the above
Hamiltonian. To discern this, we first write the above Hamil-
tonian in operator form,

H =
∑
k>0

Hk =
∑
k>0

−i�θ (k)ψ̂†
k τ1ψ̂k , (C3)

where τi are the Pauli matrices, and ψ̂k denotes the Nambu
spinor,

ψ̂k =
(

âk

â†
−k

)
. (C4)

Utilizing the particle-hole symmetry of the Nambu spinor,

ψ̂−k = τ1(ψ̂†
k )T , (C5)

we can extend the sum in the evolution Hamiltonian to be over
the entire Brillouin zone,

H =
∑

k

−iω(k)ψ̂†
k τ1ψ̂k , (C6)

where ω(k) satisfies

ω(k) − ω(−k) = �θ (k) (C7)

for k > 0. In particular, only the odd part of the function con-
tributes since the even part cancels in the τ1 pairing channel.

We now proceed by performing a Fourier series expansion
of the function ω(k) over the Brillouin zone. Without loss of
generality, we may consider only the odd Fourier series since
the even terms will cancel. Thus, we write

ω(k) =
∞∑

n=1

ωn sin(nk) = �θ (k)

2
, (C8)

where the last equality is used to determine the Fourier
coefficients.

Our crucial observation is that when the two states are
within the same phase, the Fourier sine series for �θ (k) ought
to be uniformly convergent. This can be seen by considering
the boundary conditions, which in this case read �θ (0) =
�θ (π ) = 0, as shown in Fig. 1(d) in the main text. Thus, if we
allow the time-evolved state |� ′

T 〉 to be within an arbitrarily
small error ε to the real target state |�T 〉, this Fourier series
can be accurately truncated to a finite order N∗ over the entire
Brillouin zone.

This is relevant because in real space, the Fourier har-
monic sin(lk) ψ̂

†
k τ1ψ̂k is generated by a term involving two

fermionic operators separated by l sites. More specifically,
as this occurs in the τ1 channel, H must involve real-space
pairing terms such that

H =
∑

j

N∗∑
n=1

ωn(â j â j+n − H.c.). (C9)

The above argument holds when the system size L is taken
to be infinite. In such a case, the finite-range interacting
evolution Hamiltonian can be regarded as a truly short-range
Hamiltonian, and our results imply that the optimal circuit
(with constant time or depth) which evolves states within the
same phase region is short-range.

On the other hand, when the two states are in different
phases, the boundary conditions �θ (π ) = π/2 
= �θ (0) =
0 obstruct uniform convergence, analogous to the Gibbs
phenomenon. In this case, the Fourier sine series may still
converge pointwise, but for fixed error the series cannot be
truncated to finite order N∗ over the entire Brillouin zone. In
such cases, the optimal evolution Hamiltonian H that trans-
forms states between different topological phases must be
long-range when the evolution time is fixed to be a constant.
Again, this is because the longest real-space distance required
to generate the evolution Hamiltonian is given by the highest
order of Fourier mode appearing in the momentum space
series, which now cannot be accurately truncated.

APPENDIX D: NUMERICAL EVIDENCE FOR
NONANALYTICITY OF QUENCH DYNAMICS

In this Appendix, we provide detailed numerical expla-
nations for the nonanalyticity of the long-time steady-state
value of the circuit complexity at critical points, as observed
in Fig. 3(b).
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(a) (b)

FIG. 7. (a) Maximum value of φkn (t ) vs kn for different
postquench Hamiltonian parameters. (b) Time-averaged value of
φkn (t ) vs kn for different postquench Hamiltonian parameters. In
both panels, μi = 0, �i = � f = 1, and L = 1000. The diamond
markers denote the expected locations of the maxima across the
phase transition, given by solutions to 1 + μ f cos kn = 0 (see text).

As derived in the main text, the time-dependent circuit
complexity is given by

C(|�i〉 → |�(t )〉) =
∑

kn

φ2
kn

(t ), (D1)

where

φkn (t ) = arccos
√

1 − sin2
(
2�θkn

)
sin2

(
εknt

)
. (D2)

Then the long-time steady-state complexity is just given by
the time-averaged value of the above expression,

C(|�i〉 → |�(t )〉) =
∑

kn

φ2
kn

(t ), (D3)

where the overline denotes time averaging. Because φ2
kn

(t )
is such a complex expression, it is unknown to us how to
derive an analytical function for the time-averaged circuit
complexity. Instead, we plot φkn (t ) numerically, and we show
that the nonanalyticity indeed occurs at the phase transition.

From the expression of φkn (t ), it is clear that its value os-
cillates with time, and it reaches its maximal value (envelope)
for each momentum sector kn when sin(εknt ) = 1. In Fig. 7(a),
we plot the maximum value of φkn (t ) for different postquench
Hamiltonian parameters. As the figure clearly shows, when
the chemical potential μ f of the postquench Hamiltonian is
below the critical value (μ f = 1), max[φkn (t )] is a smooth
function of kn. However, when μ f is above the critical value,
max[φkn (t )] exhibits a kink at a certain momentum kn, with
its maximal value reaching π

2 . To understand this behavior,
we can write down the expression for max[φkn (t )] given the
choice of parameters μi = 0,�i = � f = 1:

max
[
φkn (t )

] = arccos

∣∣∣∣∣∣
1 + μ f cos kn√

μ2
f + 2μ f cos kn + 1

∣∣∣∣∣∣. (D4)

From the above expression, it is clear that when μ f <

1, max[φkn (t )] is always smaller than π/2; when μ f > 1,
max[φkn (t )] can obtain the maximal value of π/2 when 1 +
μ f cos kn = 0. Because one needs to take the absolute value
for the arguments of arccos, the quantity max[φkn (t )] exhibits
a kink when reaching π/2, in agreement with Fig. 7(a).

We plot the time-averaged value of φkn (t ) in
Fig. 7(b). Again, we see an upper bound of φkn (t ) when
quenching across the critical point. Similar to Fig. 7(a),
φkn (t ) reaches its maximal value when 1 + μ f cos kn = 0, i.e.,
when sin(2�θkn ) = 1. For this special momentum sector, the
expression for φkn (t ) can be written as

φkn (t ) = arcsin
∣∣sin

(
εknt

)∣∣. (D5)

Clearly, the time-averaged value of the above expression is
just π/4, in agreement with the numerical results shown in
Fig. 7(b). Therefore, after the phase transition takes place, the
maximal value of φkn (t ) is bounded by π/4. (This feature is
independent of the parameters of the prequench Hamiltonian.)

Having revealed this feature of φkn (t ), the nonanalyticity
can be understood as follows: as μ f increases but is still below

the phase transition point, the integral of φ2
kn

(t ) increases

smoothly with μ f . After reaching the phase transition, φ2
kn

(t )
saturates the bound, and thus the integral’s (circuit complex-
ity’s) dependence on μ f takes a different form. In particular,
for the parameters shown in Fig. 7 [blue line in Fig. 3(b)], the
integral (i.e., the circuit complexity) becomes a constant after
the phase transition. This leads to a clear nonanalytical (kink)
point at μ f = 1.

APPENDIX E: CIRCUIT COMPLEXITY FOR
TWO-DIMENSIONAL p + ip TOPOLOGICAL

SUPERCONDUCTORS

In this Appendix, we show how our results for the 1D
Kitaev chain can be generalized to 2D. In particular, we
consider a p + ip topological superconductor for which the
Hamiltonian can be written in momentum space as

Ĥ =
∑

k

ψ̂
†
kHkψ̂k, (E1)

where the summation is taken over the 2D Brillouin zone, and
ψ̂k = ( âk

â†
−k

) is the Nambu spinor. The single-particle Hamilto-
nian takes the following form:

Hk =
(

εk �∗
k

�k −εk

)
, (E2)

where εk and �k denote the kinetic and pairing terms in 2D,
respectively. The ground-state wave function can be written as

|�gs〉 =
∏

k

(cos θk − i sin θkâ†
kâ†

−k) |0〉 , (E3)

where tan(2θk) = |�k|/εk. Similar to 1D, the circuit complex-
ity of the full wave function is given by

C =
∑

k

|�θk|2 = L2

(2π )2

∫
d2k|�θ (k)|2, (E4)

where we have replaced the summation by an integral in the
infinite-system limit. In this continuum limit, ε(k) ≈ k2

2m − μ

and �(k) ≈ i�(kx + iky).
We expect that the nonanalyticity should not depend on the

particular choice of initial reference state, so we take μR →
−∞ [with θR(k) = 0] for simplicity. This corresponds to the
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trivial vacuum with no particle. Upon tuning μ, the system undergoes a quantum phase transition into the topological phase at
μ = 0. Taking the derivative of C with respect to μT , we obtain

∂μT C = L2

(2π )2

∫
d2k 2θT (k)∂μT θT (k) = L2

(2π )2

∫
d2k θT (k)∂μT

[
arctan

|�(k)|
ε(k)

]
= L2

(2π )2

∫
d2k

θT (k)|�(k)|
E (k)2

. (E5)
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