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I. ADIABATIC ELIMINATION

In this section, we derive the Shrédinger equation (2)
of the main text.

Upon adiabatic elimination of the intermediate state
le), the two-particle wave function is described by four
components FE, ES, SE, and SS, each of which is a
function of time and two spatial coordinates. We define
ES, = (ES+£SE)/2 as the symmetric and antisymmet-
ric combinations of the photon-Rydberg components. In
the frequency domain, the Heisenberg equations can be
cast as (see Refs. [S1]-[S2] for more details)
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where w is the frequency, r = z — 2’ denotes the relative
coordinate, and R = (z 4 2’)/2 is the center of mass co-
ordinate. For an infinitely long medium, one can work
in Fourier space (relative to R) with the total momen-
tum K. Defining ¢(r) = ES;(r), Egs. (51,53,54) yield,
respectively,
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with P denoting the principal part near the singularity
at the blockade radius. The coefficient « is determined
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by matching boundary conditions across the singularity.
Inserting these expressions into Eq. (S2), we obtain a
second-order differential equation for ¢ as

L o2 Vil = 0, (58)

which is valid everywhere away from the blockade radius,
i.e. for |r| > rp(w) and |r| < rp(w). The effective poten-
tial is given by
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which, for CgA > 0, reduces to the effective potential
in Eq. (2) of the main text. Defining the normalized
units @ = wA /202 and K = cKA/2g?%, the values of the
energy and the mass take the form
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It is worth pointing out that scattering theory techniques

can be used to derive Egs. (S8-S11) without adiabati-
cally eliminating the excited state [S2] and to show their
validity for a wide range of parameters. In particular,
Egs. (S8-S11) are an excellent approximation as long as
1—- K > Q3%/A3 [S2], i.e., even for K close to 1.

The boundary conditions at the origin [¢/'(0) = 0] and
at infinity [¢(r — oo0) = 0] are necessary to solve for
1. Furthermore, the wavefunction should be continuous
across the singularity at » = r,. On the other hand, the

discontinuity in its first derivative at » = 7, determines
the coefficient «, via Egs. (52,53,57), as
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II. BOUNDARY CONDITION AT THE
SINGULARITY

In this section, we show how to explicitly calculate
-+

8,1!}’:_*’,, and hence determine « via Eq. (S12), taking into
b

account the boundary conditions at » = 0 and r = oc.
This is necessary for constructing the eigenbasis used in
Fig. 2(b) of the main text.

Because of the singularity in Vg, we find that o has
both real and imaginary parts which can never simul-
taneously vanish. This implies that all eigenstates have
a delta-function contribution. To show this, consider a
small neighborhood near the singularity where Eq. (S8)
takes the form
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with U~ gf/rgg? % llli}KAA/é?]g; and z = r/ry(w). This
equation is valid for |z — 1] < 1 and has analytic solu-

tions on both sides of the singularity in terms of first
order Bessel functions
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where F refers to < 1, and the ~ signs are meant to
indicate that these equalities hold only for |z — 1| < 1.
The solutions v for all x are obtained by using Eq. (S8)
to extend the above ¢f o to all z. One then imposes the
boundary conditions that 1 is symmetric about x = 0,
ie., dy/dz(x =0) =0, and ¥(z) — 0 as z — oo. The
solution for < 1 can be written as

U(x) = erpy (2) + eathy (),

where ¢; and ¢y are determined by the boundary condi-
tion at * = 0. For & > 1, one can show that the choice
of 15 in terms of the Bessel function of the second kind
K, near the singularity guarantees that, away from the
singularity where Eqs. (S15)-(S17) are no longer valid,
1/); decays exponentially for large values of z, while 1/);'
grows exponentially. Imposing the boundary condition
that 1 vanishes at infinity implies 1 (z) oc ¥ (x), while
the continuity of ¢(x) at x = 1 gives the result
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The contribution of z/Jli to 8mz/1|}t is ¢;.
culating the contribution of 1/12i to 6‘,T1/)|1J_r requires more
care because, near the singularity, 9,45 ~ log(1—x). To
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help resolve this, we examine the solutions in the presence
of an infinitesimal decay rate v/ from the Rydberg state.
In this case, near the singularity, the effective Schrodinger
equation takes the form
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where € = 7'/(w + 202 /A). Using the relation
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and integrating Eq. (S20) across the singularity suggests
a contribution to 8mw|1t equal to —im U%(1) = —imcs.
Combining this result with the ¢; contribution gives
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With this final result, we can construct the complete set
of states used in making Fig. 2(b) of the main text. First,
we solve numerically for v inside the blockade radius.
We then find ¢; and ¢ by matching these numerical so-
lutions, in a region near the singularity, to the analytic
solutions in Eqgs. (S14)-(S15). To check the arguments
presented above, we have also verified numerically that
when the imaginary component to « is neglected the re-
sulting solutions do not form an orthonormal basis, while,
when the imaginary term is included, the solutions are
consistent with an orthonormal basis.

Since c¢j,2 can be assumed to be real numbers, which
cannot both vanish, it is clear that all eigenstates have
the delta-function contribution. This is consistent with
the fact that, for ¢ = 0, the continuum is composed of
Rydberg molecule states. For finite g, these states be-
come dressed with the photons, but do not lose their
character as atomic bound states. The eigenstates linked
to the Coulomb states have the special property that

=U?(1) =0.

From this solution, we can also determine the behavior
of the eigenstates as the interaction strength U — oco. At
the singularity, ¥(1) = c3/U?, which implies that, as U
increases, ¥(1) — 0 and all solutions satisfy the same
boundary condition at the singularity. Additionally, in
this limit « — 0, which implies that the states confined
inside the Rydberg blockade completely decouple from
the continuum of Rydberg molecule states (i.e., the delta
functions). In this limit, the Coulomb states (without the
delta function) therefore become exact eigenstates and
would show zero spectral width in Fig. 2(b) of the main
text. This is again analogous to the leaky box discussed
in the main text, where, as the box becomes infinitely
deep, the eigenstates inside the well become decoupled
from the continuum of momentum states that live outside
the box.



IIT. NUMERICAL METHODS

In this section, we describe the numerical methods used
to obtain Fig. 3 of the main text.

We include the decay rate 2 of the intermediate state
by adding an imaginary component to A. Decay (with
rate 27') of the Rydberg state requires adding the term
—iy' [ dz ST(2)S(2) to the Hamiltonian.

Within the two-excitation subspace, H can be split
into a kinetic term T that describes the propagation of
photons and a part W that is diagonalizable in real space,
that includes the Rydberg-Rydberg interaction, decay,
and coupling to the quantum and classical light fields.
We can then find the time-evolution of the wavefunction
by a Trotter decomposition, whereby we split the prop-
agator into two parts which are separably diagonalizable
in momentum (7") and real-space (W)

efiH'r ~ efz'T'r/Qefz'W'refiT'r/Z + O([VV, T] 7_2). (823)

In our case, £ has a linear dispersion, which implies that
propagation with 7" corresponds to a uniform shift in real-
space of the £-components of the wavefunction, while
e~ "W can be found exactly for each point in space. Using
these solutions, we can construct the long-time-evolution
by stepwise application of Eq. (S23) for small 7.

For the experimental parameters in Fig. 3 of the main
text, the group velocity v,/c ~ Q?/¢g* ~ 107%, which
implies that there is a large separation of time scales
between the light propagation and the atomic dynam-
ics. Just increasing the time step cannot overcome this
because the error term in the Trotter decomposition be-
comes very large. This problem can, however, be over-
come by bringing the time scales closer together through
the scaling transformation z — ¢z, ¢ — ¢/, and
ry — (rp. One can see from Egs. (S10-S11) that the dy-
namics are invariant under this transformation provided
vg¢/c < (1= K)?. To obtain Fig. 3 of the main text, we
use ¢ = 1.2 x 107, which satisfies this condition.

The observation of Coulomb states requires large in-
teraction strengths (equivalently atomic densities). This
in turn requires a fine numerical mesh for the wavefunc-
tion, which makes the simulations very time consuming.
However, since the Coulomb states are confined to a re-
gion on the order of the blockade radius we can force the
wavefunction to be zero outside a region on the order of
a few blockade radii. This significantly reduces the re-
quired memory and simulation time. We have verified
that our numerical results are insensitive to this cutoff.

Finally, H is an effective Hamiltonian obtained after
adiabatically eliminating the intermediate state |e). We
have also verified numerically that our results hold when
state |e) is explicitly included in the simulations.

IV. CONDITION FOR REPULSIVE CORE

In this section, we establish the parameter regime when
the effective energy ' < Veg(0). In this case, the two-
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FIG. S1: Time evolution of the n = 1 Coulomb state as in
Fig. 3 of the main text, except here we take a much larger
value of g% r,/cA and much smaller decay rates to verify that
our analytical theory accurately describes the Coulomb states.
The initial condition for EE, ES, and SFE is chosen to be zero,
while SS is chosen to be given by Eq. (S24) with o = Q?/2A
and n = 1. The |EE| component is shown (a) shortly after ¢ =
0 at tvy/L = 10~ and at later times (b) tv,/L = 3-1072 and
(c) tvg/L = 6-1073. Here L is the length of the medium, and
we took g% ry/cA = 40, Q/g = 0.05, L/r, = 14, Q/A = 0.25,
v/A = 0.05, and 7' = 0. For these parameters, in contrast
to those of Fig. 3 in the main text, the EE component of the
Coulomb state is localized near the blockade radius.

photon state feels a repulsive core and becomes peaked
near the points £r,. From Eq. (S10) and Eq. (S11) we
can see that, for 02/g? < 1, we can rewrite
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which becomes negative when 1 — K < €/g. Note that,
in order for the adiabatic elimination to be valid near
K =1, we also require 1 — K > Q3/A3 [S2]. This sets
the constraints Q/g > 1 — K > Q3/A3, in order to have
a repulsive core, which can be easily satisfied.

In Fig. S1 we show the resulting backward propagat-
ing state under the same preparation procedure as de-
scribed in the main text and Fig. 3, except in this case
we took smaller decay rates, a larger value of g2ry/cA
and a much larger control field intensity. In particular,
the Coulomb state we prepared had 1 — K =~ 0.02 and
Q/g = 0.05. The double peaked structure is clearly visi-
ble, consistent with the presence of the repulsive core for
this bound state. The possibility of such tight localiza-
tion of Coulomb bound states around r» = +r, contrasts
with the bound states found when CgA < 0. The latter
are centered at r = 0 and have width 2 =, [S2, S3].

V. GROUP VELOCITY OF COULOMB STATES

In this section, we compare the group velocity pre-
dicted by the WKB treatment in the main text with
numerical simulations for n = 1, 2, and 3. To con-
struct the Coulomb wavepacket, we first choose a nar-
row range of frequencies around w = 0 and, for every
w, we find K, (w) from Eq. (4) in the main text, which
gives us an expression for p,(r,w). The initial state has
EE = ES = SE = 0 with SS given by the variational
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FIG. S2: Time evolution of the average center of mass position
of the Coulomb wave packets with parameters as in Fig. S1.
The initial state is given by Eq. (S24). The horizontal axis is
propagation time in units of L/v4, while the vertical axis is
defined as the average over r < r;, of the position of the peak
values of the FE-component of the wavefunction, where, at
each r, the peak value is defined with respect to R. The
n = 2 and 3 curves are shifted vertically for visibility. The
dashed lines are the prediction for the group velocity from
Eq. (5) in the main text and are also plotted with a shift
relative to solid curves for visibility. The extracted slope from
the linear region of the simulations agrees with the predicted
group velocity to within a few percent for each n.

wavefunction
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which vanishes at r,(w) for every w. Here NV is a normal-
ization constant, o is the width of the wavepacket, and
O is the Heaviside step function.

The results are shown in Fig. 3 of the main text and
in Figs. S1-S2. Fig. 3 of the main text and Fig. S1 show
snapshots of the backward-propagating n = 1 wavefunc-
tion. While Fig. 3 of the main text uses experimentally
realistic parameters, Fig. S1 assumes larger g2 r,/cA and
smaller decay rates to verify that our analytical theory
describes the Coulomb states accurately. Indeed, in Fig.
S2, which uses the parameters of Fig. S1, we see excel-
lent agreement between the numerical simulations and
the predicted group velocity. For each n, the extracted
slope in the linear region agrees with the predicted value
to within a few percent. For n = 1, 2 and 3, the group
velocity of the Coulomb states for these parameters is ap-
proximately —50 - vy, —20 - v4 and —10 - vy, respectively.

VI. NON-NEGATIVITY OF GROUP VELOCITY

In this section, we show that the group velocity in a
system with, possibly interacting, right-going modes can-
not be negative for normalizable eigenstates. Let us write
the Schrédinger equation as

HK|\I/K>:WK|\I/K>7 (825)
where we have made explicit the dependence on some
parameter K, which will be identified later as the total
momentum of two particles. One can then see that

OrWK = <‘I’K‘8KHK|\I/K> +WK8K<\I’K|\I/K>
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where the second term in the first line vanishes for a
normalized state (¥ |¥g) = 1. This result is known as
the Hellmann-Feynman theorem.

For our system, we can cast the Hamiltonian
in the two-particle sector in the basis defined by
(EE ES; ES_ SS)T. (The generalization to the case
where |e) is not adiabatically eliminated is straightfor-
ward.) Identifying K with the total momentum, from
Egs. (S1-54), we have
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which is a nonnegative matrix acting on the Hilbert space
associated with the relative coordinate r (the center-
of-mass plane wave, although not normalizable, does
not enter the argument). Therefore, the group velocity
vy = Owg /OK given by Eq. (526) cannot be negative for
any eigenstate whose relative-coordinate wavefunction is
normalizable.

VII. EXPERIMENTAL CONSIDERATIONS

In this section, we point out several conditions nec-
essary for the treatment of the medium as a one-
dimensional continuum of stationary atoms [Eq. (1) in
the main text] and hence for the experimental observa-
tion of Coulomb states. We also discuss the effects of
finite decay rate 2’ of the Rydberg state.

First, the delta functions appearing in the underly-
ing exact eigenstates should be consistent with the treat-
ment of atoms as a continuous medium. This requires
p(mw?)ws > 1, where p is the atomic density, w is the
beam waist, and ws ~ |dry(w)/dw|/7T is the effective
width of the delta function due to the uncertainty in
w coming from the finite duration of an experiment T,
which is in turn limited by the lifetime of the Coulomb
states [~ A/20Q? from Fig. 2(b) in the main text]. Re-
cent experiments achieved a density of p = 2 x 10'2 cm ™3
with a beam waist of w = 4.5 pm, corresponding to



g/2m = 4 GHz [S3]. We will use below the parameters
of Fig. 3 in the main text, where g/2m = 17 GHz, so we
will take w = 4.5 ym and p = 3.6 x 10'3 cm 3. Taking
7 = ts, we then find ws ~ 0.2 pm and p(rw?)ws =~ 200.

Second, two atoms initially 7, away from each other
should not change their distance by more than ws if they
are displaced transversely by w. This leads to the con-
dition w < /wsTy, which is nearly satisfied, and can be
more strictly satisfied by changing the center frequency
of the wavepacket to increase rp(w).

Third, the force on a pair of Rydberg atoms r; apart
and their thermal velocity must both induce motion
less than ws over time 7, leading to the conditions
6Cs72/(mr]), 7\/kpT/m < ws. Using the mass m of
87Rb and temperature T' = 35 uK [S4], the first condition
is satisfied (0.07 ym < 0.2 pm). The second condition
can be satisfied by using a sufficiently high control field
intensity.

Finally, we note that the decay rate 2’ of the Rydberg

state can be ignored provided it is much smaller than the
inverse time 771 of the experiment. In the supplement
(Figs. S1 and S2), v" was taken to be zero. Since the du-
ration of the experiment in Fig. S1is 7= 6-10"3L/v, =
2.7/, 7' can be ignored provided 27" < /2.7, which is
satisfied in existing experimental systems [S4].

In the main text (Fig. 3), the duration of the experi-
ment is 7 = 5.5A/Q? = 0.7/(27), i.e. it is shorter than
1/(2v") but not much shorter. (While optimistic, the
chosen value of 7/ is realistic as it is only an order of
magnitude smaller than the values already demonstrated
experimentally [S4].) The resulting non-negligible v de-
cay, along with y-induced decay, contributes to the factor
of 0.05 drop in color scale between Fig. 3(b) and Fig. 3(d)
of the main text. The fact that we still see the negative
group velocity and the expected shape of the bound state
in the figure means that these features are robust even
in the presence of non-negligible v/ decay [5].
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